Section 16.5: Integration in Cylindrical and Spherical Coordinates

Integration in Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in \mathbb{R}^3 are obtained by representing the x and y coordinates using polar coordinates (or potentially the y and z coordinates or x and z coordinates) and letting the third coordinate remain unchanged.

RELATION BETWEEN CARTESIAN AND CYLINDRICAL COORDINATES: Each point in \mathbb{R}^3 is represented using $0 \le r < \infty, \ 0 \le \theta \le 2\pi, \ -\infty < z < \infty$.

$$x = r \cos \theta,$$

$$y = r \sin \theta,$$

$$z = z.$$

As with polar coordinates in the plane, note that $x^2 + y^2 = r^2$.

Notice that we can now interpret r as the distance from the point (x, y, z) to the z axis, while the interpretation of θ and z remain unchanged.

Question: What are the surfaces obtained by setting r, θ , and z equal to a constant?

What is dV in Cylindrical Coordinates?

Recall that when integrating in polar coordinates, we set $dA = r dr d\theta$. When viewing a small piece of volume, ΔV , in cylindrical coordinates, we will see that the correct form for dV is rather intuitive based on this.

It is clear from this image that we should have $\Delta V \approx r \, \Delta r \, \Delta \theta \, \Delta z$. This leads us to the following conclusion:

When computing integrals in cylindrical coordinates, put $dV = r dr d\theta dz$. Other orders of integration are possible.

Examples:

1. Evaluate the triple integral in cylindrical coordinates: $f(x, y, z) = \sin(x^2 + y^2)$, W is the solid cylinder with height 4 with base of radius 1 centered on the z-axis at z = -1.

Spherical Coordinates

The spherical coordinates of a point (x, y, z) in \mathbb{R}^3 are the analog of polar coordinates in \mathbb{R}^2 . We define $\rho = \sqrt{x^2 + y^2 + z^2}$ to be the distance from the origin to (x, y, z), θ is defined as it was in polar coordinates, and ϕ is defined as the angle between the positive z-axis and the line connecting the origin to the point (x, y, z).

From the above figure, we can see that $r = \rho \sin \phi$, and $z = \rho \cos \phi$, so using the relationship between Cartesian coordinates (x, y, z) and cylindrical coordinates, $x = r \cos \theta$, $y = r \sin \theta$, z = z, we arrive at the following:

RELATIONSHIP BETWEEN CARTESIAN AND SPHERICAL COORDINATES: Each point in \mathbb{R}^3 is represented using $0 \le \rho < \infty, \ 0 \le \phi \le \pi, \ 0 \le \theta \le 2\pi$.

$$x = \rho \sin \phi \cos \theta,$$

$$y = \rho \sin \phi \sin \theta,$$

$$z = \rho \cos \phi.$$

Also,
$$x^2 + y^2 + z^2 = \rho^2$$
.

Question: What surfaces are obtained by setting ρ , θ , and ϕ equal to a constant?

What is dV is Spherical Coordinates?

Consider the following diagram:

We can see that the small volume ΔV is approximated by $\Delta V \approx \rho^2 \sin \phi \, \Delta \rho \, \Delta \phi \, \Delta \theta$. This brings us to the conclusion about the volume element dV in spherical coordinates:

When computing integrals in spherical coordinates, put $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$. Other orders of integration are possible.

Examples:

2. Evaluate the triple integral in spherical coordinates. $f(x, y, z) = 1/(x^2 + y^2 + z^2)^{1/2}$ over the bottom half of a sphere of radius 5 centered at the origin.

3. For the following, choose coordinates and set up a triple integral, inlcluding limits of integration, for a density function f over the region.

(a)

(b) A piece of a sphere; angle at the center is $\pi/3$.

(c)

4. Write a triple integral in spherical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $d\theta \, d\rho \, d\phi$.

5. If W is the region shown below, what are the limits of integration in the following exercises?

(a)
$$\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(r, \theta, z) r \, dz \, dr \, d\theta$$

(b)
$$\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} g(\rho, \phi, \theta) \rho^{2} \sin \theta \, d\rho \, d\phi \, d\theta$$

(c)
$$\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} h(x, y, z) dz dy dx$$

6. Write a triple integral expressing the volume above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere of radius 2 centered at the origin. Do this in both cylindrical and spherical coordinates, including limits of integration.