Section 17.1: Parametrized Curves

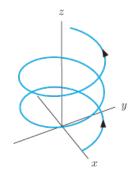
A curve in \mathbb{R}^2 or \mathbb{R}^3 can be parametrized by a series of functions of a single variable, one for each of the coordinates. In \mathbb{R}^3 , this means that a curve can be parametrized by three functions x = f(t), y = g(t), and z = h(t), where t is allowed to vary over some domain on the real numbers. As t varies, the coordinates (x, y, z) trace out a curve in space.

Examples:

1. Find parametric equations for the curve $y = x^3$ in the xy-plane.

2. Describe in words the motion given parametrically by

 $x = \cos t,$ $y = \sin t,$ z = t.



3. Write parametric equations for the circle of radius 2, centered at the origin in the xy-plane.

4. Find parametric equations for the line in the direction of the vector $\vec{i} + 2\vec{j} - \vec{k}$ and through the point (3, 0, -4)

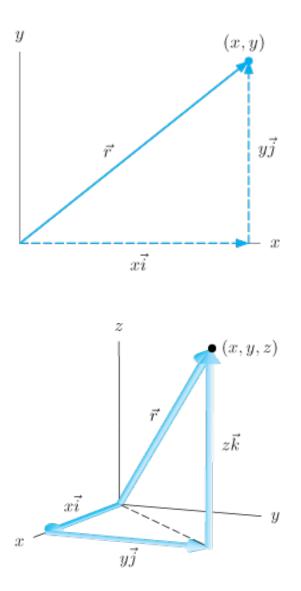
The previous example can be generalized to show how to obtain the parametric equations for a line that passes through any arbitrary point and points in the direction of any vector.

PARAMETRIC EQUATIONS OF A LINE through the point (x_0, y_0, z_0) and parallel to the vector $a\vec{i} + b\vec{j} + c\vec{k}$ are

 $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$.

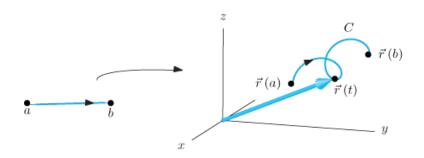
Using Position Vectors to Write Parametrized Curves as Vector-Valued Functions

As we noted before, there is a one-to-one correspondence between points in \mathbb{R}^2 and \mathbb{R}^3 and vectors. Any point (x, y) in \mathbb{R}^2 can be represented by the *position vector* $\vec{r} = x\vec{i} + y\vec{j}$. Similarly, any point (x, y, z) in \mathbb{R}^3 can be represented by the position vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.



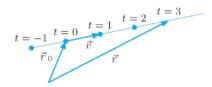
If x = f(t), y = g(t), and z = h(t) are parametric equations for a curve in \mathbb{R}^3 , we can now combine these three equations into the single vector equation

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}.$$



Parametric Equations of a Line

As before, consider a straight line in the direction of a vector \vec{v} which passes through the point (x_0, y_0, z_0) with position vector \vec{r}_0 . The idea is to start at \vec{r}_0 , and move up the line, adding different multiples of \vec{v} .



PARAMETRIC EQUATION OF A LINE IN VECTOR FORM: The line through the point with position vector $\vec{r_0} = x_0\vec{i} + y_0\vec{j} + z_0\vec{k}$ in the direction of the vector $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$ has parametric equation

 $\vec{r}(t) = \vec{r}_0 + t\vec{v}.$

Examples:

5. Parametrize the line perpendicular to the plane z = 2x - 3y + 7 and through the point (1, 1, 6).

6. Parametrize the circle of radius 2 parallel to the xy-plane, centered at the point (0, 0, 1), and traversed counterclockwise when viewed from below.

7. Parametrize the curve in which the plane z = 2 cuts the surface $z = \sqrt{x^2 + y^2}$.

8. Parametrize the line through P = (2, 5) and Q = (12, 9) so that the points P and Q correspond to the parameter values t = 0 at P and t = 5 at Q.

9. Find an equation for the plane containing the point (2,3,4) and the line x = 1 + 2t, y = 3 - t, and z = 4 + t.