
Section 18.4: Path Dependent Vector Fields and Green’s Theorem

One obvious way to tell confirm that a vector field is path dependent is to compute a line integral of
the vector field along multiple piecewise smooth curves connecting points P and Q. If the value of the
line integral changes from one curve to the next, then the vector field is path dependent.

As we can see, the vector field pictured above is path dependent. What can you say about a circulation∮
C

~F · d~r in this case?

The following is an immediate result of the FTCLI

A vector field is conservative if and only if

∮
C

~F · d~r = 0 for every closed curve C.

How To Tell if a Vector Field is Path-Independent Algebraically: The Curl

Consider a two dimensional vector field ~F = F1
~i + F2

~j. If ~F is conservative, then there is a scalar
function f such that

~F = F1
~i + F2

~j =
∂f

∂x
~i +

∂f

∂y
~j,

from which we can conclude that

F1 =
∂f

∂x
and F2 =

∂f

∂y
.

If the components of ~F have continuous partial derivatives, we have

∂F1

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=

∂F2

∂x
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We arrive at the following result:

If ~F (x, y) = F1
~i + F2

~j is a vector field with continuous partial derivatives, then

∂F2

∂x
− ∂F1

∂y
= 0.

If ~F (x, y) = F1
~i + F2

~j is an arbitrary vector field, then we define the 2-dimensional scalar curl of

the vector field ~F to be
∂F2

∂x
− ∂F1

∂y

Green’s Theorem

We know now that if ~F = ∇f for some potential function f , then ∂F2/∂x− ∂F1/∂y = 0. A natural
question is whether or not the implication works in the other direction. That is, if the scalar curl of
a vector field is zero, can we conclude that the vector field is in fact conservative? This is a difficult
question to answer.

But given everything we know, we should suspect that there is a relationship between a circulation∮
C
~F · d~r and the scalar curl of F . This relationship can be described by Green’s Theorem.

GREEN’S THEOREM:
Suppose C is a piecewise smooth simple closed curve that is the boundary of a region R in

the plane and oriented so that the region is on the left as we move around the curve. Suppose
~F = F1

~i + F2
~j is a smooth vector field on an open region containing R and C. Then

∮
C

~F · d~r =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dx dy.
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Examples:

1. Use Green’s Theorem to evaluate

∮
C

(y2~i+x~j) · d~r where C is the counterclockwise path around

the perimeter of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

The Curl Test for Vector Fields in the Plane

Assuming the results from Green’s Theorem, it is now easy to see that the reverse implication we
discussed from above is indeed true. That is,

THE CURL TEST FOR VECTOR FIELDS IN R2:
Suppose ~F = F1

~i + F2
~j is a vector field with continuous partial derivatives such that

• The domain of ~F has the property that every closed curve in it encircles a region that lies

entirely within the domain. In particular, the domain of ~F has no holes.

• ∂F2

∂x
− ∂F1

∂y
= 0.

Then ~F is path-independent, so ~F is a gradient field and thus has a potential function.
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Why Are Holes in the Domain of the Vector Field Important?

Example:

Let ~F be the vector field given by ~F =
−y~i + x~j

x2 + y2
.

(a) Calculate
∂F2

∂x
− ∂F1

∂y
. Does the curl test imply that ~F is path-independent?

(b) Calculate

∮
C

~F · d~r, where C is the unit circle centered at the origin and oriented counterclock-

wise. Is ~F a path-independent vector field?

(c) Explain why your answers to parts (a) and (b) do not contradict Green’s Theorem.
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The Curl Test for Vector Fields in R3:

If ~F = F1
~i+F2

~j +F3
~k is a vector field in R3, we define a new vector field, curl ~F , or ∇× ~F in R3 by

curl ~F = ∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣ =

(
∂F3

∂y
− ∂F2

∂z

)
~i−

(
∂F3

∂x
− ∂F1

∂z

)
~j +

(
∂F2

∂x
− ∂F1

∂y

)
~k.

THE CURL TEST FOR VECTOR FIELDS IN R3:
Suppose ~F is a vector field in R3 with continuous partial derivatives and such that

• The domain of ~F has the property that every closed curve in it can be contracted to a point
in a smooth way, staying at all times within the domain.

• ∇ × ~F = ~0.

Then ~F is path-independent, so ~F is a gradient field and has a potential function.

Examples:

2. Decide if the given vector field is the gradient of a function f .

(a) ~F = 2xy~i + x2~j

(b) ~F = (2xy3 + y)~i + (3x2y2 + x)~j
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(c) ~F = 2x cos(x2 + z2)~i + sin(x2 + z2)~j + 2z cos(x2 + z2)~k.

3. Find

∮
C

~F · d~r if ~F (x, y) = −y3~i + x3~j and C is the circle of radius 3, centered at the origin,

oriented counterclockwise.

4. Calculate

∮
C

((3x + 5y)~i + (2x + 7y)~j) · d~r where C is the circular path with center (a, b) and

radius m, oriented counterclockwise.
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5. Show that the line integral of ~F = x~j around a closed curve in the xy-plane, oriented as in
Green’s Theorem, measures the area of the region enclosed by the curve.


