Exam 1 Study Guide

Math 223

- 1. Consider the points A = (1, -3, 2), B = (3, -1, -1), C = (-4, -9, -8).
 - (a) Find an equation of the plane containing the points A, B, and C.
 - (b) Find the area of the triangle formed by A, B, and C.
- 2. Match the following functions, graphs, and level curves.

- 3. Find or estimate, depending on the type of data provided, partial derivatives f_x and f_y at the point P = (3, 2) for the following four functions.
 - (a) The function f_1 is given by the formula

$$f_1(x,y) = x^2 \cos(xy)$$

- x = 2.8 x = 3.0 x = 3.2 $f_2(x,y)$ x = 3.4y = 2.11.20 1.351.501.64 y = 2.01.261.551.701.41y = 1.91.311.461.61 1.751.371.521.661.81y = 1.8
- (b) Values for the function f_2 are given by the table:

(c) The function f_3 is given by its level curves

- 4. This problem consists of three unrelated questions on vector algebra and geometry.
 - (a) Two vectors \vec{v} and \vec{w} are of the form $\vec{v} = a(\hat{i} + \hat{j})$, and $\vec{w} = b\hat{i} + \hat{j}$, where a and b are scalars. If $\vec{v} + \vec{w} + 10\hat{i} - \hat{j} = \vec{0}$, find the scalars a and b.
 - (b) A constant force $\vec{F} = -\hat{i} + 2\hat{j} 5\hat{k}$ acts on a particle as it moves from the point (2, 4, 1) to (-2, 1, 3). Find the work done by the force.
 - (c) Find the area of the parallelogram spanned by the vectors $\hat{i} \hat{k}$ and $-2\hat{i} + 2\hat{j}$.
- 5. Let A = (2, -5, 6), B = (3, -5, 7), and C = (3, -6, 8).
 - (a) Compute $\vec{AB} \times \vec{AC}$ and $\vec{AB} \cdot \vec{AC}$.
 - (b) Find the angle between \vec{AB} and \vec{AC} .
 - (c) Find an equation for the plane containing A, B, and C.
- 6. Show that the following three relationships hold for any vectors \vec{a} , \vec{b} , and \vec{c} .
 - (a) $||\vec{a} \times \vec{b}||^2 = ||\vec{a}||^2 ||\vec{b}||^2 (\vec{a} \cdot \vec{b})^2$.
 - (b) If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
 - (c) $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$.
- 7. Consider the following three planes:

Plane A: x - y = 2z + 1 Plane B: $x - z = \frac{3 - y}{2}$ Plane C: x = y + 2z.

Which of the above planes are parallel to each other?

8. Consider a cube with side lengths of 2: see the picture below. Let A and B be the vertices indicated in the picture. Let Q be the point which is in the middle of an edge on the box (equal distance from the two endpoints of the edge) as indicated in the picture.

- (a) What is the angle between the line segment QA and the line segment QB? (You can leave your answer as the inverse cosine of a real number.)
- (b) What is the area of the triangle formed by A, B, and Q?
- 9. In a gesture of goodwill (or perhaps just wanting to move a test along), GLaDOS offers Chell a Companion Cube, a cubical box that falls out of a hatch in the ceiling. At one point in the cube's descent, three of the vertices of the box are at (3, 1, 2), (1, -1, 3), and (2, -3, 1), as shown below. (*Note*: Even though the box itself is not a perfect cube, the vertices do form a cube.)

- (a) What are the coordinates of the vertex P, shown above?
- (b) What are the coordinates of vertex Q, shown above?

- 10. Find an equation of the plane that passes through the point (-1, 2, 1) and is perpendicular to the line of intersection of the planes x + y z = 2 and 2x y + 3z = 1.
- 11. Consider the level curves shown below, and answer the following questions.

(I) Which picture represents the level curves of $f(x, y) = \sqrt{x^2 + y^2}$?

- (II) Which picture represents the level curves of $f(x, y) = x^2 y^2$?
- (III) The picture (i) is a contour diagram of a function among the following choices. Circle the correct function.

(A)
$$\sin x \sin y$$
 (B) $\sin x + \sin y$ (C) $\sin(xy)$ (D) $\sin(x+y)$
(E) $\frac{1}{x^2 + y^2 + 1}$ (F) $\frac{x+y}{x^2 + y^2 + 1}$ (G) $\frac{xy}{x^2 + y^2 + 1}$ (H) $x^2 + y^2 + 1$

12. Let $\vec{A} = 2\hat{i} + 3\hat{j} + \hat{k}$. Let P be the plane x + y + z = 7. Write the vector \vec{A} as a sum $\vec{A} = \vec{B} + \vec{C}$

where \vec{B} is perpendicular to the plane P and \vec{C} is parallel to the plane P.

13. The superheroine Differentia is battling her arch-nemesis Vek-Tor for control of the city of Mathtropolis. Hoping to destroy Vek-Tor from the sky, Differentia takes off southward from the center of the city at an angle of 41° with the ground and flies a distance of 650 meters to a point P. Hoping to avoid her, Vek-Tor takes off eastward from the same spot at an angle of 32° with the ground and flies a distance of 430 meters to a point Q. (See Figure 1.)

- (a) Once Differentia and Vek-Tor have reached points P and Q, respectively, how far apart are they?
- (b) Differentia aims an enormous fireball at Vek-Tor and blasts him with such great force that the fireball drives him backwards until he hits the ground. (See Figure 2.) At what angle does Vek-Tor crash into the ground?

14. Choose the items from the following list that best describes the given object.

(A) Line	(B) Circle	(C) Parabola	(D) Hyperbola
(E) Plane	(F) Cone	(G) Sphere	(H) Cylinder
(I) Paraboloid	(J) Hyperboloid	(K) Saddle	

- (a) The graph of $f(x, y) = x^2 + y^2 4$
- (b) The g = 0 level set of g(x, y) = 3x + 5y + 1
- (c) The p = 0.4 level set of $p(x, y, z) = e^{-(x^2+y^2+z^2)}$
- (d) The h = 7 level set of $h(x, y, z) = x^2 y^2 z$.
- 15. Suppose that the wind is blowing from the northwest at a speed of 50 km/hr. If a pilot is flying a plane with an airspeed of 250 km/hr, what direction must he travel (relative to the air) in order to end up going a true course due east? What is his groundspeed?
- 16. A tow truck drags a stalled car. The chain makes an angle of 30° with the road and the tension in the chain is 1500 Newtons. Find the work done by the tow truck in dragging the car for 1 km along the road.