EXAM 2 STUDY GUIDE

MATH 223 · FALL 2012

1. Concepts

1. (a) Write expressions for the partial derivatives $f_x(a, b)$ and $f_y(a, b)$ as limits.

(b) How do you interpret $f_x(a, b)$ and $f_y(a, b)$ geometrically? How do you interpret them as rates of change?

(c) If f(x, y) is given by a formula, how do you calculate f_x and f_y ?

2. Under what conditions can you conclude that $f_{xy} = f_{yx}$?

3. How do you find a tangent plane to each of the following types of surfaces?

(a) A graph of a function of two variables, z = f(x, y)

(b) A level surface of a function of three variables, F(x, y, z) = c

4. Define the local linearization of f at (a, b). What is the corresponding linear approximation? What is the geometric interpretation of the linear approximation?

5. If z = f(x, y), what are the differentials dx, dy and dz?

6. State the chain rule for the case where z = f(x, y) and x and y are functions of one variable. What if x and y are functions of two variables? Now, state the chain rule for the case that z = g(x, y, t), and x and y are both functions of t.

7. If z is defined implicitly as a function of x and y by an equation of the form F(x, y, z) = 0, how do you find $\partial z / \partial x$ and $\partial z / \partial y$?

8. (a) Write an expression as a limit for the directional derivative of f at (x_0, y_0) in the direction of a unit vector $\hat{u} = a\hat{i} + b\hat{j}$. How do you interpret it as a rate? How do you interpret it geometrically?

(b) If f has continuous first order partial derivatives, write an expression for $f_{\hat{u}}(x_0, y_0)$ in terms of f_x and f_y .

9. (a) Define the gradient vector grad f for a function f of two or three variables.
(b) Express f_û in terms of grad f.

(c) Explain the geometric significance of the gradient.

10. What do the following statements mean?

- (a) f has a local maximum at (a, b).
- (b) f has a global maximum at (a, b).
- (c) f has a local minimum at (a, b).
- (d) f has a global minimum at (a, b).
- (e) f has a saddle point at (a, b).

11. (a) If f has a local maximum at (a, b), what can you say about its partial derivatives at (a, b)?

(b) What is a critical point of f?

12. State the second derivative test.

13. (a) Let \mathbb{R}^2 denote the set of all points (x, y), where x and y are real numbers. What is a closed set in \mathbb{R}^2 ? What is a bounded set?

(b) State the Extreme Value Theorem for functions of two variables.

(c) How do you find the values that the Extreme Value Theorem guarantees?

14. Suppose that f is a continuous function defined on a rectangle $R: a \le x \le b, c \le y \le d$.

(a) Write an expression for a double Riemann sum of f. If $f(x, y) \ge 0$, what does the sum represent?

(b) Write the definition of $\int_{R} f dA$ as a limit.

(c) What is the geometric interpretation of $\int_R f dA$ if $f(x, y) \ge 0$? What if f takes on both positive and negative values?

(d) How do you evaluate $\int_{B} f dA$?

(e) Write an expression for the average value of f.

15. How do you define $\int_D f dA$ if D is a bounded region that is not a rectangle?

16. If D is a bounded region, write an expression representing the area D in terms of a double integral.

 $\mathbf{2}$