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Abstract

It is widely believed that the scaling limit of the self-avoiding walk (SAW) is given

by Schramm’s SLE8/3. In fact, it is known that if SAW has a scaling limit which

is conformally invariant, then the distribution of such a scaling limit must be given

by SLE8/3. The purpose of this paper is to study the relationship between SAW

and SLE8/3, mainly through the use of restriction measures; conformally invariant

measures that satisfy a certain restriction property.

Restriction measures are stochastic processes on randomly growing fractal subsets

of the complex plane called restriction hulls, though it turns out that SLE8/3 measure

is also a restriction measure. Since SAW should converge to SLE8/3 in the scaling

limit, it is thought that many important properties of SAW might also hold for

restriction measures, or at the very least, for SLE8/3.

In [DGKLP2011], it was shown that if one conditions an infinite length self-

avoiding walk in half-plane to have a bridge height at y − 1, and then considers

the walk up to height y, then one obtains the distribution of self-avoiding walk in the

strip of height y. We show in this paper that a similar result holds for restriction

measures Pα, with α ∈ [5/8, 1). That is, if one conditions a restriction hull to have

a bridge point at some z ∈ H, and considers the hull up until the time it reaches z,

then the resulting hull is distributed according to a restriction measure in the strip of

height Im(z). This relies on the fact that restriction hulls contain bridge points a.s.

for α ∈ [5/8, 1), which was shown in [AC2010].

We then proceed to show that a more general form of that result holds for restric-

tion hulls of the same range of parameters α. That is, if one conditions on the event

that a restriction hull in H passes through a smooth curve γ at a single point, and

then considers the hull up to the time that it reaches the point, then the resulting

hull is distributed according to a restriction hull in the domain which lies underneath
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the curve γ. We then show that a similar result holds in simply connected domains

other than H.

Next, we conjecture the existence of an object called the infinite length quarter-

plane self-avoiding walk. This is a measure on infinite length self-avoiding walks,

restricted to lie in the quarter plane. In fact, what we show is that the existence of

such a measure depends only on the validity of a relation similar to Kesten’s relation

for irreducible bridges in the half-plane. The corresponding equation for irreducible

bridges in the quarter plane, Conjecture 4.1.19, is believed to be true, and given this

result, we show that a measure on infinite length quarter-plane self-avoiding walks

analogous to the measure on infinite length half-plane self-avoiding walks (which was

proven to exist in [LSW2002]) exists. We first show that, given Conjecture 4.1.19,

the measure can be constructed through a concatenation of a sequence of irreducible

quarter-plane bridges, and then we show that the distributional limit of the uniform

measure on finite length quarter-plane SAWs exists, and agrees with the measure

which we have constructed. It then follows as a consequence of the existence of such

a measure, that quarter-plane bridges exist with probability 1.

As a follow up to the existence of the measure on infinite length quarter-plane

SAWs, and the a.s. existence of quarter-plane bridge points, we then show that

quarter plane bridge points exist for restriction hulls of parameter α ∈ [5/8, 3/4), and

we calculate the Hausdorff measure of the set of all such bridge points.

Finally, we introduce a new type of (conjectured) scaling limit, which we are calling

the fixed irreducible bridge ensemble, for self-avoiding walks, and we conjecture a

relationship between the fixed irreducible bridge ensemble and chordal SLE8/3 in the

unit strip {z ∈ H : 0 < Im(z) < 1}.
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Chapter 1

Introduction

1.1 Introduction

In recent years, much work has been done on discrete lattice models that arise in

the study of statistical mechanics. These include the Ising model, critical percola-

tion, loop-erased random walk, self-avoiding walks, etc. One of the most important

problems posed throughout the study of these lattice models is the determination of

a scaling limit. That is, a probability measure obtained as the lattice spacing goes to

zero.

If the lattice model is two dimensional, we can identify the two-dimensional plane

with the complex plane, and we can ask whether or not the scaling limit of such a

lattice model is conformally invariant (invariant under conformal transformations), if

such a scaling limit exists. The existence of such scaling limits had been conjectured

by theoretical physicists for years, for many of the important lattice models that arise

in the study of statistical mechanics, although rigorous mathematical proof of their

existence remained elusive. However, in 2000, Oded Schramm introduced a stochastic

process which was very successful in describing many of these scaling limits. It was

originally referred to as stochastic Lowener evolution, but in years since has been

referred to as the Schramm-Lowener evolution, or SLEκ. It is technically defined as

a family of conformal maps gt which satisfy the initial value problem

∂

∂t
gt(z) =

2

gt(z)−
√
κBt

, g0(z) = z

where Bt is a standard one-dimensional Brownian motion. The random family of

conformal maps give rise to an increasing family of hulls Kt such that gt maps H\Kt

onto H. For κ ≤ 4, these hulls are simple curves (and in fact it can be shown that the



12

Lowener chains are generated by curves for all κ ≤ 8). This will be further discussed

in Section 2.2.

Since its introduction, SLEκ has been successfully used to describe the scaling

limits of many important lattice models which arise in statistical mechanics, and as a

result, it has been used to rigorously derive the values of many critical exponents. A

few of these critical exponents had been calculated rigorously before, but the advent

of SLEκ allowed for a rigorous calculation of many more critical exponents.

One of the most important problems in the present-day study of statistical me-

chanics is the determination of the scaling limit of the self-avoiding walk, or SAW. It is

conjectured that SAW has a scaling limit of SLE8/3, and it has been shown [LSW2002]

that if the scaling limit of self-avoiding walk exists, and if it is conformally invariant,

then it must be given by SLE8/3. In Section 2.2, we will describe in detail what it

means for SAW to have a scaling limit, and what it means for this scaling limit to be

conformally invariant.

The purpose of this paper is to study the relationship between SAW and SLE8/3

through the use of restriction measures. This is a stochastic process on randomly

growing families of restriction hulls (see Section 2.3) which are conformally invariant,

and which satisfy the restriction property, which will also be discussed in Section 2.3.

In Chapter 2, we will provide all the requisite background information required

for the remainder of the paper. In 2.1, we describe half-plane self-avoiding walks and

even briefly discuss the construction of the infinite upper half-plane SAW. In Section

2.2, we will discuss many of the important results from complex analysis which will be

used throughout the paper. We will also describe scaling limits, conformal invariance,

and precisely state the conjecture that SAW converges to SLE8/3 in the scaling limit.

In 2.3, we will review many important facts about restriction measures, as well as

briefly discuss the construction of such measures.

In Chapter 3, we will show that if we consider restriction hulls K on the triple

(H, 0,∞), and condition on the event that K has a bridge point at z ∈ H and consider
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the hull K up until the first time it touches z, then the resulting hull is distributed

according to a restriction measure with the same parameter, on the domain {w ∈ H :

0 < Im(w) < Im(z)}, from 0 to z. We then proceed to prove a generalization of this

theorem, which requires a kind of generalized bridge point. We define a generalized

bridge point to be a point where a restriction hull K on the triple (H, 0,∞), intersects

a smooth curve γ : [a, b] → H, where γ(a, b) ⊂ H, at a single point. We show then,

that it follows from conformal invariance that the same type of result holds in arbitrary

simply connected domains D other than all of C.

In Chapter 4, we construct an object called the infinite length quarter-plane self-

avoiding walk. We define a type of SAW called a quarter-plane bridge, and we es-

sentially construct the measure by defining a measure on irreducible quarter plane

bridges and then concatenating an i.i.d. sequence of such bridges. One might wonder,

however, if there aren’t more natural measures on infinite quarter plane SAWs. By

it’s construction, the previously mentioned measure is supported on concatenated se-

quences of i.i.d. irreducible bridges, so what it really gives us is a measure on infinite

length quarter-plane bridges. For this reason, we prove the existence of the distribu-

tional limit on the uniform measure of n-step quarter-plane SAWs as n→ ∞, and we

show that it coincides with the measure we have constructed.

The construction of the infinite length quarter-plane SAW was then motivation

to consider restriction measures defined in the quarter-plane. In Chapter 5, we prove

the existence of quarter-plane bridge points for restriction hulls K under the law of

restriction measures in the quarter-plane, starting at 0 and ending at ∞. In fact, we

show more. If one considers a restriction measure with parameter α > 0, then we

show that with probability 1, the Hausdorff measure of the set of quarter-plane bridge

points of a given hull K under the law of the restriction measure, is min(0, 2−8/3α).

This is interesting because it is known that for restriction measures in the half-plane,

bridge points exist with probability 1, and the Hausdorff dimension of the set of

bridge points is given by min(0, 2− 2α). Thus, in the half-plane, bridge points exist
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for all α ∈ [5/8, 1). However, in the quarter-plane, quarter-plane bridge points cease

to exist for all α > 3/4. The α = 3/4 case remains unknown.

Finally, in Chapter 6, we introduce a new ensemble for self-avoiding walks as

follows: take a self-avoiding walk of infinite length in the half-plane distributed ac-

cording to the measure constructed in [LSW2002], [DGKLP2011], consider it up to

the n-th bridge height and scale by the reciprocal of the n-th bridge height to obtain

a curve in the unit strip {z ∈ H : 0 < Im(z) < 1}. These curves inherit a distribution

from the measure on the original SAW, and if one takes the limit as n → ∞, one

obtains an ensemble of curves spanning the unit strip, ending anywhere along the

upper boundary of the unit strip. A natural question to ask would be whether or not

these curves are distributed according to SLE8/3, starting at 0 and ending at x + i,

integrated along the conjectured exit density of the scaling limit of SAW in the unit

strip starting at 0 and ending anywhere along the upper boundary. We argue that

this is not the case, but that one can obtain the SLE8/3 distribution integrated along

such an exit density if one first weights each of the scaled walks in the unit strip by the

n-th bridge height raised to an appropriate power (before taking the limit n → ∞).

In addition to a heuristic argument in support of this, we provide numerical evidence

in support of the conjecture, and this allows us to give an estimate on the boundary

scaling exponent for self-avoiding walk, which agrees with the conjectured value for

the boundary scaling exponent within an error of 0.000303.

1.2 Remark on notations

Throughout this paper we use the standard convention of letting C denote the complex

plane and R the set of real numbers. The set of natural numbers will be denoted by

N, while the set of integers will be Z. For z ∈ C, we let Re z and Im z denote the

real and imaginary parts of z, respectively. |z| =
√

(Re z)2 + (Im z)2 is referred to

as the modulus, or absolute value, of z. Given a set A, we let A denote the closure of
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A, A◦ denote the interior of A and ∂A the boundary of A.

We will denote the open unit disk in C by D := {z ∈ C : |z| < 1}, the upper half

plane by H := {z ∈ C : Im z > 0}. Given d ∈ N, we let Zd be the set of points in

Rd whose coordinates are integers. Furthermore, in the case d = 2, we consider Z2 as

Z2 = Z+ iZ, the set of points in the complex plane with real and imaginary parts in

Z.

Suppose that f(x) and g(x) are functions defined on some subset of R. We will

use the following notations when referring to asymptotic results concerning f and g

in the limit as x→ a for a ∈ [−∞,+∞].

• f(x) ∼ g(x) if limx→a f(x)/g(x) = 1.

• f(x) ≈ g(x) if log f(x) ∼ log g(x).

• f(x) ≍ g(x) if there exist positive constants c1 and c2 such that

c1f(x) ≤ g(x) ≤ c2f(x)

for all x sufficiently close to a.
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Chapter 2

Background

In an effort to keep this paper relatively self contained, this chapter is dedicated to

providing the requisite background information necessary for the results found in sub-

sequent chapters. This chapter contains no new results, and the information contained

in it can be found in [MS1993],[DGKLP2011],[LSW2002],[LSW2003],[Lawler2008]. In

section 2.1 we will review the self-avoiding walk, including the construction of the in-

finite half-plane self-avoiding walk and the bridge decomposition thereof. In section

2.2, we introduce the notion of conformal invariance and the Schramm-Loewner evo-

lution, as well as reviewing some essential facts from complex analysis. In section 2.3,

we introduce restriction measures and briefly review their construction.

2.1 The half-plane self-avoiding walk in Z2

Throughout this paper we will primarily consider self-avoiding walks on the lattice

δZ2 = δZ + iδZ for δ > 0. In this section we fix δ = 1 and discuss results for self-

avoiding walks on Z2. Most of the results we mention hold for self-avoiding walks on

the lattice Zd for any dimension d ≥ 2, and much of it can be found in [MS1993],

[DGKLP2011], [LSW2002].

2.1.1 Full-plane SAW

Definition 2.1.1. An N -step self-avoiding walk (SAW) on the lattice Z2 beginning

at x ∈ Z2 is a sequence of lattice sites ω = [ω0, . . . , ωN ] which satisfy the following:

• |ωj − ωj−1| = 1 for all j = 1, . . . , N

• ωj 6= ωk for j 6= k
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• ω0 = x.

We can realize Z2 as the set of all complex points z whose real and imaginary

parts are integers, along with the line segments connecting neighboring points, which

we call nearest neighbor bonds. In doing so, we may realize a given N -step SAW as

a simple curve in C by connecting consecutive points in the sequence through the

corresponding nearest neighbor bond.

Let SN denote the set of all N -step SAWs in Z2 beginning at the origin. Let

cN := |SN | denote the cardinality of SN . By convention, we take c0 = 1 (i.e. the

trivial walk ω = 0). We realize SN as a probability space by equipping it with the

uniform measure, PN . That is, given ω ∈ SN , we define PN(ω) = 1/cN .

Although it is difficult to determine cN for large values of N , one might hope that

it is possible to determine some asymptotic results concerning cN as N → ∞. It is

conjectured that there exist lattice-independent critical exponents ν and γ such that

cN ∼ AβNNγ−1 (2.1.2)

for some positive constant A, and

EN [|ωN |2] ∼ CN2ν , (2.1.3)

where EN denotes expectation with respect to PN and C is a positive constant. The

constant β in (2.1.2) is referred to as the connective constant, and is lattice-dependent.

Both equations (2.1.2) and (2.1.3) remain conjecture, though it is not very difficult

to show a weaker form of (2.1.2), namely

cN ≈ βN . (2.1.4)

This is most easily seen through the process of concatenation.

Definition 2.1.5. Suppose ω1 ∈ SN and ω2 ∈ SM . The concatenation of ω1 with ω2,

denoted ω1 ⊕ ω2, is the N +M step SAW beginning at 0 defined by

ω1 ⊕ ω2
j =

{

ω1
j , j = 0, . . . , N

ω1
N + ω2

j−N , j = N + 1, . . . , N +M
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Notice that every SAW in SN+M can be written as the concatenation of a SAW

in SN with a SAW in SM , though not every concatenation of a SAW in SN with a

SAW in SM is self-avoiding. Since cNcM is the number of concatenations of walks in

SN with walks in SM , we thus have

cN+M ≤ cNcM . (2.1.6)

Therefore, we see that the sequence (log cN ) is subadditive, and by Proposition A.1.1,

the limit

log β := lim
N→∞

log cN
N

(2.1.7)

exists. We refer to the constant β in equation (2.1.7) as the connective constant, and

(2.1.4) follows.

2.1.2 Half-plane SAW

In this section we will review the construction of the infinite half-plane SAW, a mea-

sure on SAWs of infinite length which stay in the upper half-plane H. We begin by

first defining SAWs in the half-plane of finite length. A half-plane self-avoiding walk

starting at 0 is defined to be a SAW which stays in the upper half plane H. Formally,

Definition 2.1.8. An N -step half-plane self-avoiding walk beginning at 0 is defined

to be an ω ∈ SN which satisfies

Im(ωj) > 0 (2.1.9)

for all j = 1, . . . , N . Let HN denote the set of all ω ∈ SN satisfying (2.1.9) and

hN := |HN |. By convention, we take h0 = 1.

Perhaps the most important step in the construction of the infinite half-plane

SAW is the introduction of a bridge.



19

H

Figure 2.1. A 37-step half-plane SAW.

Definition 2.1.10. An n-step bridge is an n-step self-avoiding walk, ω, the imaginary

parts of which satisfy

Im(ω0) < Im(ωj) ≤ Im(ωn). (2.1.11)

We will let Bn denote the set of n-step bridges beginning at 0 and bn := |Bn|. By

convention, we take b0 = 1.

It is clear that every ω ∈ Bn is also in Hn. Furthermore, if ω1 ∈ Bn and ω2 ∈ Bm,

then we have ω1 ⊕ ω2 ∈ Bn+m, and it follows that

bnbm ≤ bn+m. (2.1.12)

It follows that the sequence (− log bn) is subadditive, and thus, once again by Propo-

sition A.1.1, the limit

βbridge = lim
n→∞

b1/nn (2.1.13)

exists and is equal to supn≥1 b
1/n
n . Since bn ≤ cn for all n ≥ 1, we have βbridge ≤ β.

It is known, however, that indeed, βbridge = β. For a proof of this fact, the reader is

referred to [MS1993]

We have seen that the concatenation of two bridges always gives rise to another

bridge. However, it is not true that every bridge can be written as the concatenation

of two (non-trivial) bridges. In the latter case, we call the bridge an irreducible bridge.
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H

R

Figure 2.2. A 37-step bridge.

We will see that irreducible bridges turn out to be the building blocks of the infinite

half-plane SAW.

Let In denote the set of all n-step irreducible bridges beginning at the origin, and

set λn := |In|. By convention, we take λ0 = 0. It will be useful to consider sets of

walks of variable length. Let H =
⋃∞

N=0HN be the set of all half-plane SAWs of any

length, and similarly let S =
⋃∞

N=0 SN , B =
⋃∞

n=0 Bn and I =
⋃∞

n=1 In. We will make

use of the following generating functions :

Definition 2.1.14. The generating functions for the sequences (cN), (hN), (bn) and

(λn) are defined by the formulae

S(z) =
∑

ω∈S

z|ω| =

∞
∑

N=0

cNz
N

H(z) =
∑

ω∈H

z|ω| =

∞
∑

N=0

hNz
N

B(z) =
∑

ω∈B

z|ω| =
∞
∑

n=0

bnz
n

I(z) =
∑

ω∈I

z|ω| =
∞
∑

n=1

λnz
n,

where |ω| denotes the length of ω, or the number of steps of ω.
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The first thing to observe is that by definition, zc := β−1 is the radius of conver-

gence for the series S(z). Also, according to (A.1.2), we have

βN ≤ cN for all N ≥ 1. (2.1.15)

This allows us to prove the following form of “continuity” of S(z) at zc:

Proposition 2.1.16.

S(zc) := lim
z→zc−

S(z) = +∞. (2.1.17)

Proof. (2.1.15) gives us, for z < zc,

S(z) =

∞
∑

N=0

cNz
N

≥
∞
∑

N=0

(βz)N

=
1

1− βz
,

which tends to +∞ as z tends to zc from below.

The construction of the infinite half-plane SAW relies on the following Proposition,

originally due to Kesten [Kesten1963]. The proof requires the notion of the span of a

self-avoiding walk, which we will define now.

Definition 2.1.18. The span of a self-avoiding walk ω ∈ SN is defined by

span(ω) = max
1≤j≤N

Im(ωj)− min
1≤j≤N

Im(ωj). (2.1.19)

The number of N -step SAWs beginning at the origin with span A will be denoted by

cN,A. We similarly define hN,A, bN,A, etc.

Proposition 2.1.20. B(zc) = ∞ and hence I(zc) = 1.

Before proceeding to the proof of Proposition 2.1.20, we first prove a useful lemma.
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Lemma 2.1.21. If ω ∈ HN , then ω can be written as ω = ω1 ⊕ (−ω2) ⊕ · · · ⊕
(−1)k−1ωK, where ωk ∈ B for all k = 1, . . . , K. Furthermore, if Ak = span(ωk), then

we have A1 > A2 > · · · > AK > 0.

Proof. Let ω ∈ HN . Define A1 = A1(ω) to be the maximum value that the imaginary

part of ω takes on. That is, A1 = max1≤j≤N Im(ωj).Then define n1 = n1(ω) to be the

last j, j = 1, . . . , N such that Im(ωj) = A1. Then, recursively define Ak by

Ak = max
nk−1≤j≤N

(−1)k−1
(

Im(ωj)− Im(ωnk−1
)
)

,

and nk is the last time that the imaginary part of ω reaches Ak. Then the de-

composition is obtained by taking ω1 = [ω0, ω1, . . . , ωn1
], and in general by taking

ωk = [ωnk−1
, . . . , ωnk

] for k = 1, . . . , K.

Proof of Proposition 2.1.20. The proof here follows what can be found in [MS1993]

and [DGKLP2011]. To begin, notice that every ω ∈ B can be written uniquely as

ω1 ⊕ ω2, where ω1 ∈ I and ω2 ∈ B. This leads us to

bn = δ0,n +

n
∑

m=1

λmbn−m, (2.1.22)

for all n. From (2.1.22) we have

B(z) = 1 + I(z)B(z),

from which we immediately conclude that

B(z) =
1

1− I(z)
. (2.1.23)

Thus, if we can show that B(zc) = ∞, the proof of the Proposition will be complete.

Given ω ∈ B, let h(ω) denote the height of the bridge. That is, h(ω) = maxk{Im(ωk)}.
Also, note that given ω ∈ S, if j is the largest integer less than or equal to |ω| such
that ωj = mink{Im(ωk)}, then ω1 = [ωj, ωj−1, . . . , ω0] and ω

2 = [ωj, ωj+1, . . . , ωN ] are

both half-plane SAWs. Here |ω| = N is the length of ω. This implies that

cn ≤
∞
∑

m=0

hmhn−m (2.1.24)
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Now, by Lemma 2.1.21, every ω ∈ HN can be decomposed into a sequence of K

bridges, each with mk number of steps, such that
∑

kmk = N . Furthermore, if the

bridge with length mk in the decomposition has span Ak, then we have A1 > A2 >

· · · > AK > 0. Since this transformation is one-to-one, we have

hN ≤
∑

(

K
∏

k=1

bmk ,Ak

)

, (2.1.25)

where the sum is over all positive integers K, all sequences of positive numbers

A1, . . . , AK such that A1 > A2 > · · · > AK > 0 and all integers mk ≥ 1 such

that
∑K

k=1mk = N . Therefore, we can see that

∞
∑

N=0

hNz
N ≤

∞
∏

A=1

(

1 +

∞
∑

m=1

bm,Az
m

)

,

which can be seen by comparing zN terms on both sides of the inequality and using

(2.1.25). Since 1 + x ≤ ex for all x, this leads to

H(z) ≤ exp

(

∞
∑

A=1

∞
∑

m=1

bm,Az
m

)

(2.1.26)

= e(B(z)−1). (2.1.27)

By (2.1.24), we can see that S(zc) = +∞ implies that H(zc) = +∞, and so conse-

quently, by (2.1.27), B(zc) = +∞. The result that I(zc) = 1 follows simply now from

(2.1.23).

From here on, given an integer j > 0, we will identify (ω1, . . . , ωj) ∈ Ij with the

concatenation ω1⊕· · ·⊕ωj. This is a one-to-one correspondence, so the identification

is well-defined. Then I∞ = I × I × · · · is the set of all concatenations of infinitely

many irreducible bridges beginning at 0. We will let H∞ denote the set of all infinite

length upper half-plane SAWs beginning at 0. Given ω1 ⊕ · · · ⊕ ωj ∈ Ij , we will let

H∞(ω1, . . . , ωj) denote the “cylinder” set of all ω ∈ H∞ such that ω = ω1⊕· · ·⊕ωj⊕ω̃,
where ω̃ ∈ H∞. We will define the infinite upper half-plane SAW as follows:
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• Let µI be the measure on I such that µI(ω) = β−|ω| for ω ∈ I.

• Let µIj be the measure on Ij defined by product measure, so µIj(ω1⊕· · ·⊕ωj) =

µI(ω
1) · · ·µI(ω

j). We will also write µIj for the extension of µIj to H with

µIj (H \ Ij) = 0. Here we are setting µIj(ω) = 0 if ω cannot be written as

ω = ω1 ⊕ · · · ⊕ ωj with ω1, . . . , ωj ∈ I.

• We define µI∞ on I∞ by extension. That is, we extend the measure µI to H∞

by defining µI(H∞(ω)) = µI(ω), and similarly with µIj . If ω ∈ H∞ cannot

be written as ω̃ ⊕ ω̂ for ω̃ ∈ I and ω̂ ∈ H∞, we define µI(ω) = 0. We then

define µI∞ by the Kolmogorov extension Theorem. If we write PH,∞ in place

of µI∞, then PH,∞ (H∞ \ I∞) = 0, and according to this definition, we have

PH,∞(H∞(ω1, . . . , ωj)) = β−m for ω1, . . . , ωj ∈ I, |ω1|+ · · ·+ |ωj| = m.

By Kesten’s relation,
∑

ω∈I

β−|ω| = 1. (2.1.28)

This was proven in Proposition 2.1.20, and shows that PH,∞ defines a probability

measure on infinite length SAWs in H beginning at 0. We take this to be the definition

of the infinite upper half-plane SAW. In [MS1993], this measure was referred to as

the infinite bridge measure, and this is perhaps a more intuitive name for PH,∞.

However, it has been shown that this measure is equivalent to other measures which

are, perhaps, more aptly referred to as the infinite upper half-plane self-avoiding walk.

For example, Lawler, Schramm and Werner showed in [LSW2002] that the weak

limit as N → ∞ on the uniform measures, PH,N , on N -step upper half-plane SAWs

exists and gives a measure onH∞. In particular, if we let H(ω1, . . . , ωj) denote the set

of ω ∈ H such that ω = ω1⊕· · ·⊕ωj⊕ ω̃, ω1, . . . , ωj ∈ I, ω̃ ∈ H, |ω1|+ · · ·+ |ωj| = m,

then [LSW2002] shows that

lim
N→∞

PH,N(H(ω1, . . . , ωj)) = β−m.
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Thus, limN→∞PH,N(H(ω1, . . . , ωj)) = PH,∞(H∞(ω1, . . . , ωj)), and this is the sense in

which we say that the uniform measure on N -step upper half-plane SAWs converges

weakly as N → ∞ to the infinite upper half-plane SAW.

There is also another equivalent way to define the infinite upper half-plane SAW

through a limiting process. If we weight each ω ∈ H by β−|ω|, then the total weight

of all such walks is infinite (see Proposition 2.1.20). However, if we weight each such

walk by x−|ω|, x > β, then the total weight becomes finite. The limit as x → β+ of

probability measures on H defined in such a way has been shown to exist and give

the same measure as PH,∞ (see [DGKLP2011]).

2.2 Conformal invariance and SLE

Most of the results in this paper are motivated by the conjecture that the infinite

upper half-plane SAW has a scaling limit which is conformally invariant. In Section

2.2.1, we briefly state some important results from complex analysis which we will be

using. In section 2.2.2, we will state precisely the conjectures that the SAW converges

to a scaling limit as the lattice spacing approaches zero and that this scaling limit be

conformally invariant. We will then briefly describe Schramm’s (chordal) SLEκ along

with a couple of very important properties it possesses.

2.2.1 Complex analysis

Since most of the probability measure we consider in this paper will be measures on

random curves or subsets of the complex plane, it will be useful to describe some

of the machinery from complex analysis which we will be using, including some re-

sults concerning complex Brownian motion. Important theorems here will be stated

without proof, though the proofs of these theorems can be found in many complex

analysis books, including [Lawler2008].
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If D is a domain in C, we will generally refer to a function f : D → C as analytic

or holomorphic if the complex derivative

f ′(z) = lim
w→z

f(w)− f(z)

w − z

exists at every z ∈ D. A curve in C will refer to a continuous function γ : [a, b] → C,

where [a, b] is a closed interval which can either be of finite length or infinite length.

The curve will be Ck or smooth if γ is Ck or infinitely differentiable.

If D, D′ are domains and f : D → D′ is holomorphic on D, one-to-one and onto

D′, then f is called a conformal transformation, or conformal mapping from D to D′.

A standard (one-dimensional) Brownian motion Bt with respect to the filtration

{Ft} on the probability space (Ω,F ,P) is a stochastic process satisfying:

(i) For each 0 < s < t, the random variable Bt−Bs is Ft-measurable, independent

of Fs, and has a normal distribution with mean 0 and variance t− s.

(ii) W.p.1 (with probability one), the mapping t 7→ Bt is a continuous function.

Brownian motion satisfies the following type of scaling, sometimes referred to as

Brownian scaling : If Bt is a standard one-dimensional Brownain motion, r > 0, then

Yt = r−1/2Brt is also a standard one-dimensional Brownian motion.

A complex Brownian motion with respect to Ft is a process Bt = B1
t + iB

2
t , where

B1
t , B

2
t are independent (one-dimensional) standard Brownian motions adapted to Ft.

Throughout this paper we will generally use Pz to denote the probability measure

associated to Bt with B0 = z. We will, however, generally write P for P0. Suppose

D is a domain and f : D → C is a non-constant holomorphic function.

τD = inf{t ≥ 0 : Bt /∈ D}.

Then a simple application of Itô’s formula yields what is referred to as the conformal

invariance of Brownian motion:
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Theorem 2.2.1. Suppose Bt is a complex Brownian motion starting at z ∈ D, and

define

St =

∫ t

0

|f ′(Br)|2 dr, 0 ≤ t ≤ τD.

Let σs = S−1
s , i.e.

∫ σs

0

|f ′(Br)|2 dr = s.

Then

Ys := f(Bσs), 0 ≤ s ≤ SτD ,

has the same distribution as that of a Brownian motion starting at f(z) stopped at

SτD .

This shows that the law of Brownian motion is invariant (up to reparametrization)

under conformal transformations. A more apt way of thinking about this for our

purposes is as follows: Let D be a simply connected domain in C such that ∂D is

smooth, and f : D → D′ be a conformal transformation. For z ∈ D, let µ#(D, z, ∂D)

be the probability measure on curves γ : [0, tγ] → D with γ(0) = z, γ(tγ) ∈ ∂D, where

we consider two curves to be the same (equivalent) if one can be obtained from the

other through a reparametrization, which is induced by complex Brownian motion

started at D and stopped the first time it reaches ∂D (for example, if A ⊂ D is a

sufficiently nice set with z /∈ A, then µ#(D, z, ∂D){γ[0, tγ] ∩A = ∅} = Pz{B[0, τD] ∩
A = ∅}). If f ◦ µ#(D, z, ∂D) denotes the image of the measure µ#(D, z, ∂D) under

f , then Theorem 2.2.1 tells us that

f ◦ µ#(D, z, ∂D) = µ#(D′, f(z), ∂D′) (2.2.2)

An especially useful notion will be that of harmonic measure, which requires the

notion of regular point

Definition 2.2.3. Suppose D is a domain with boundary ∂D. A point z ∈ ∂D is

called a regular point (for D) if

Pz{τ̃D = 0} = 1,
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where τ̃D = inf{t > 0 : Bt /∈ D}.

Definition 2.2.4. If D is a domain such that ∂D has at least one regular point

and z ∈ D, then harmonic measure in D from z is the probability measure on ∂D,

hm(z,D; ·), given by

hm(z,D;V ) = Pz{BτD ∈ V }.

We will say that ∂D is locally analytic if there exists a one-to-one analytic function

f : D → C with f(0) = z such that

f(D) ∩D = f({z ∈ D : Im(z) > 0}).

We will say that ∂D is piecewise analytic if ∂D is locally analytic, except perhaps at

a finite number of points.

Definition 2.2.5. If ∂D is piecewise analytic, then it has been shown that hm(z,D; ·)
is absolutely continuous with respect to Lebesgue measure (length). We call the

density of hm(z,D; ·) with respect to length the Poisson kernel, and denote it by

HD(z, w).

Thus, if u(z) is a harmonic function in the domain D with piecewise analytic

boundary, and boundary values u(z) = F (z) on ∂D, then a well known result is that

u(z) =

∫

∂D

F (w)HD(z, w) |dw|, (2.2.6)

where |dw| represents length measure.

A domain D ⊂ C is called simply connected if Ĉ \ D is a connected subset of

the Riemann sphere Ĉ. Equivalently, D is simply connected if and only if the region

bounded by every simple closed curve γ[a, b] → D is contained in D.

An important driving force behind the entire theory of conformally invariant pro-

cesses is the Riemann mapping Theorem:
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Theorem 2.2.7 (Riemann mapping Theorem). Let D be a simply connected domain

other than C and w ∈ D. Then there exists a unique conformal transformation

f : D → D with f(w) = 0, f ′(w) > 0.

A closed curve γ : [a, b] → C is called a Jordan curve if it is one-to-one on [a, b).

A bounded domain D is called a Jordan domain if ∂D is a Jordan curve. Jordan

domains are simply connected.

Proposition 2.2.8. If D,D′ are Jordan domains and z1, z2, z3 and z
′
1, z

′
2, z

′
3 are points

on ∂D,∂D′, respectively, oriented counterclockwise, then there is a unique conformal

transformation f : D → D′, that can be extended to a homeomorphism from D to D
′

such that f(z1) = z′1, f(z2) = z′2, f(z3) = z′3.

A compact hull K is a compact, connected subset of C larger than a single point

such that C \K is connected. For any compact hull K, there is a unique conformal

map FK : C \ D → C \ K such that limz→∞ FK(z)/z > 0. For example, if 0 ∈ K,

we define FK(z) = 1/fK(1/z), where fK is the conformal transformation from D

onto the image of C \ K under the map 1/z, with fK(0) = 0, f ′(0) > 0. We define

the (logarithmic) capacity, cap(K), by cap(K) = − log f ′
K(0) = log[limz→∞ FK(z)/z].

Thus, the capacity of a compact hull K is defined in such a way that FK(z) ∼ ecap(K)z

as z → ∞. We will call a bounded subset A ⊂ H a compact H-hull if A = H∩A and

H \ A is simply connected. From here on, we will denote the set of compact H-hulls

by A.

Proposition 2.2.9. For each A ∈ A, there is a unique conformal transformation

gA : H \ A→ H such that

lim
z→∞

[gA(z)− z] = 0.

Note that for each A ∈ A, gA has the expansion

gA(z) = z + b1z
−1 + · · · (2.2.10)
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near infinity.

Definition 2.2.11. If A ∈ A, the half-plane capacity (from infinity) hcap(A), is

defined by

hcap(A) = lim
z→∞

z[gA(z)− z].

In other words, the half-plane capacity is taken to be the b1 coefficient from the

expansion (2.2.10), i.e.

gA(z) = z +
hcap(A)

z
+O

(

1

|z|2
)

, z → ∞.

2.2.2 Scaling limit of SAW and SLEκ

As is stated previously, all of the results described throughout this paper are motivated

by the conjecture that SAW converges to a scaling limit which is conformally invariant

in the limit as the lattice spacing goes to zero. Although the idea of a conformally

invariant scaling limit might be something simple to grasp by looking at a picture, here

we will describe the process in full mathematical detail, stating conjectures precisely.

In the case of self-avoiding walk, this convergence to a scaling limit can be described

as follows: Let D be a bounded, simply connected domain in C, and let z, w ∈ ∂D.

We will consider self-avoiding walks on the lattice δZ2 = δZ + iδZ for δ > 0. Let

[z], [w] be the lattice sites which are the closest to z, w for a given δ > 0. Some

convention needs to be taken if there are more than one lattice sites at equal distance

from z, w. Any convention can be used.

Let S(D, z, w, δ) denote the set of all SAWs of any length beginning at [z] and

ending at [w], but otherwise staying inside of D. Let µSAW (D, z, w, δ) denote the

measure on S(D, z, w, δ) obtained by setting

µSAW (D, z, w, δ)[ω] = β−|ω|,
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for all ω ∈ S(D, z, w, δ). Note that the total weight of µSAW (D, z, w, δ) is given by

|µSAW (D, z, w, δ)| =
∑

ω∈S(D,z,w,δ)

β−|ω|,

which is finite for bounded, simply connected D. Thus we can talk about the proba-

bility measure

µ#
SAW (D, z, w, δ) =

µSAW (D, z, w, δ)

|µSAW (D, z, w, δ)| .

We think of each ω ∈ S(D, z, s, δ) as a continuous curve in D, connecting [z] to

[w], and of µ#
SAW (D, z, w, δ) as a probability measure on all such continuous curves,

which assigns measure 0 to curves not in S(D, z, w, δ). The following conjecture is

widely believed to be true, though a full proof remains elusive.

Conjecture 2.2.12 (Scaling limit of SAW). If D is a bounded, simply connected

domain, z, w,∈ ∂D, then there is a constant b > 0, referred to as the bound-

ary scaling exponent for self-avoiding walks, a function C(D, z, w), and a measure,

mSAW (D, z, w), on continuous curves γ : [0, tγ] → D such that γ(0) = z, γ(tγ) = w,

γ(0, tγ) ⊂ D, for which

lim
δ→0+

δ2bµSAW (D, z, w, δ) = mSAW (D, z, w),

where the convergence taking place is that of convergence in distribution. In other

words, if E is an event of simple curves in D from z to w, then the above equation

states that

lim
δ→0+

δ2bµSAW (D, z, w, δ)[E] = mSAW (D, z, w)[E].

Furthermore, we have

lim
δ→0+

δ2b|µSAW (D, z, w, δ)| = C(D, z, w).

By construction, C(D, z, w) is the total mass of mSAW (D, z, w).
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It is conjectured that the value of the boundary scaling exponent b is b = 5/8.

Note then, that Conjecture 2.2.12 can be stated in terms of the probability measure

µ#
SAW (D, z, w, δ). We have

lim
δ→0+

µ#
SAW (D, z, w, δ) = m#

SAW (D, z, w), (2.2.13)

where

m#
SAW (D, z, w) =

mSAW (D, z, w)

C(D, z, w)
.

z

w

z

w

δ → 0+

Figure 2.3. The self-avoiding walk in the domain D from z to w in the scaling limit
as δ → 0+.

We now precisely state what we mean when we say that measure µ#
SAW is con-

formally invariant. We state the conjecture in terms of general domains D, but it

has been shown in [KL2011] that the conjecture belows fails for many domains due

to lattice effects that persist in the scaling limit. However, it is believed that the

below conjecture is true, as stated, if we assume that the boundary of D consists of

horizontal and vertical lines.

Conjecture 2.2.14 (Conformal invariance of µ#
SAW (D, z, w)). The measure µSAW (D, z, w)

satisfies the following form of conformal covariance: If f : D → D′ is a con-

formal transformation with f(z) = z′, f(w) = w′, then the image of the measure
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mSAW (D, z, w) under f , denoted f ◦mSAW (D, z, w), satisfies

f ◦mSAW (D, z, w) = |f ′(z)|b|f ′(w)|bmSAW (D′, z′, w′). (2.2.15)

It follows then that the probability measure m#
SAW must be conformally invariant:

f ◦m#
SAW (D, z, w) = m#

SAW (D′, z′, w′).

Notice that we cannot use the above construction to find a scaling limit for SAW

in H connecting 0 to ∞, or in any other unbounded domain. However, we can find

the law in H from 0 to ∞ by first taking the limit on the uniform measures on N -step

upper half-plane SAWs as N → ∞, on δZ2, as in section 2.1.2, in order to obtain the

measure µ#
SAW (H, 0,∞, δ), and then by taking

lim
δ→0+

δ2bµ#
SAW (H, 0,∞, δ) = m#

SAW (H, 0,∞).

The most natural question to ask then, is if SAW converges to a scaling limit

which satisfies conformal invariance, is it possible to characterize this scaling limit? In

[LSW2002] it was shown that if SAW converges to a scaling limit which is conformally

invariant, then that scaling limit must be given by the Schramm-Loewner evolution,

SLEκ, with κ = 8/3. What we have described in this section is chordal SAW, i.e. self-

avoiding walks which start at a boundary point in D and end at another boundary

point in D. Thus, the scaling limit of chordal SAW is conjectured to be chordal

SLE8/3. Chordal SLEκ in H, from 0 to ∞ is defined by solving for Loewner chains

with the chordal Lowener differential equation, with Brownian motion as the driving

function. That is, one solves for the family of conformal maps gt by solving the initial

value problem
∂

∂t
gt(z) =

2

gt(z)−
√
κBt

, g0(z) = z,

where Bt is a standard one-dimensional Brownian motion. For 0 < κ ≤ 4, the

paths generated by chordal SLEκ are simple curves γ : [0,∞) → H with γ(0) = 0 and
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γ(0,∞) ⊂ H. The conformal maps gt(z) then take H\γ(0, t] onto H with gt(γ(t)) = 0

and

gt(z) = z +
b(t)

z
+O(

1

|z|2 ), z → ∞,

where b(t) = hcap(γ(0, t]). Thus, for 0 < κ ≤ 4, one can think of SLEκ as the random

chain of conformal maps gt (conformal analysts) or one can equivalently think of it

as the random measure on paths γ connecting 0 to ∞ in H (probabilists). For κ > 4,

SLEκ is still generated by paths γ, though the curves are not simple and SLEκ is

then thought of as a randomly growing set of compact H-hulls. To be more precise,

for each z ∈ H, there is a time τ = τ(z) ∈ [0,∞] such that the solution gt(z) exists

for t ∈ [0, τ ] and limt→τ− gt(z) =
√
κBτ if τ < ∞. The evolving hull of the Loewner

evolution is then defined to be Kt := {z ∈ H : τ(z) ≤ t}, t ≥ 0. Then Kt ∈ A and

one can show that gt is the unique conformal map H \ Kt → H with gt(z) ∼ z as

z → ∞. In the case of κ ≤ 4, Kt turns out to be a simple curve γ[0, t]. To say that Kt

is generated by a curve for 4 < κ ≤ 8 means that there is a curve γ : [0,∞) → H with

γ(0) ∈ R such that if Ht is the unbounded component of H\γ(0, t], then Kt = H\Ht.

We define SLEκ to be conformally invariant. That is, if D is a simply connected

domain (other than all of C), and z, w are distinct points on ∂D, let F : D → H

be a conformal transformation with F (z) = 0, F (w) = ∞. This map is not unique,

but any other such map can be written as rF for r > 0. We define chordal SLEκ

in D, from z to w to be the collection of maps ht(z) = F−1[gt(F (z))], where gt(z)

is chordal SLEκ in H from 0 to ∞. If F̂ = rF , for r > 0, then we would have

ĥt(z) = F̂−1[gt(F̂ (z))] = F−1[r−1gt(rF (z))] = F−1[ĝt/r2(F (z))], which is simply a

time change of SLEκ. Therefore, we consider SLEκ to be a measure on curves modulo

time changes.

The statement of the previous paragraph relies on the following fact about SLEκ,

which we will use at certain points throughout the paper.

Proposition 2.2.16 (SLE scaling). Suppose gt is a chordal SLEκ and r > 0. Then
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ĝt(z) := r−1gr2t(rz) has the distribution of an SLEκ. Equivalently, if γ is an SLEκ

path, and γ̂(t) := r−1γ(r2t), then γ̂ has the distribution of an SLEκ path.

In Section 2.3, we will briefly discuss restriction measures, and explain why the

restriction property ensures that if SAW has a conformally invariant scaling limit,

then this limit must be given by SLE8/3.

2.3 Restriction Measures

If D is a simply connected domain, and z, w ∈ ∂D are distinct points, consider the

measure µ#
SAW (D, z, w, δ). If D′ ⊂ D is a subdomain of D and z, w ∈ ∂D′, then

µ#
SAW (D, z, w, δ) conditioned on the event that ω ⊂ D′ is simply µ#

SAW (D′, z, w, δ).

We refer to this as the restriction property. Therefore, if µ#
SAW (D, z, w, δ) has a con-

formally invariant scaling limit, we would expect it to satisfy the restriction property.

Let us consider the restriction property for SLEκ for 0 < κ ≤ 4. Then the SLEκ

curve γ(t) is simple with γ(0,∞) ⊂ H. Suppose A ∈ A is bounded away from 0. Let

ΦA(z) = gA(z)− gA(0) be the unique conformal transformation of H \A onto H with

ΦA(0) = 0, and ΦA(z) ∼ z as z → ∞. It can be shown [Lawler2008],[LSW2003] that

0 < P{γ[0,∞) ∩A = ∅} < 1 Let VA := {γ[0,∞) ∩A = ∅}. On the event VA, we can

consider the path ΦA ◦ γ(t). We say that SLEκ satisfies the restriction property if the

distribution of ΦA◦γ(t) conditioned on the event VA is the same as (a time change of)

SLEκ. Note that since SLEκ is a conformally invariant process, this definition of the

restriction property follows from the previous definition of the restriction property

in the half-plane case. Another application of conformal invariance then shows that

the restriction property for SAW is then the same as the restriction property for

SLEκ given that SLEκ satisfies the restriction property in the half plane. Thus, a

likely candidate for the scaling limit of SAW will be any SLEκ which satisfies the

restriction property. In fact, it can be shown that the only SLEκ which satisfies the

restriction property is SLE8/3 [Lawler2008],[LSW2003].
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If we are considering simple curves from 0 to ∞ modulo time changes, we can

specify where the curve visits by specifying those A ∈ A bounded away from 0 with

γ[0,∞)∩A = ∅. Thus, the distribution of SLEκ for κ ≤ 4 is given by specifying P(VA)

for each A ∈ A bounded away from 0. It has been shown [LSW2003],[Lawler2008],

that it suffices to consider those A ∈ A for which A ∩ R ⊂ (0,∞). It can also be

shown that it then suffices to specify these probabilities for smooth Jordan hulls. We

will present the next Lemma, complete with proof, since the proof is very short and

easy. It is the first step in showing that SLE8/3 is the only SLEκ which satisfies the

restriction property. The proof follows that which is found in [Lawler2008]

Lemma 2.3.1. Suppose κ ≤ 4 and there is an α > 0 such that P(VA) = Φ′
A(0)

α for

all A ∈ A bounded away from 0. Then SLEκ satisfies the restriction property.

Proof. Suppose P(VA) = Φ′
A(0)

α for all A ∈ A bounded away from 0, and let

A1, A ∈ A be bounded away from 0. Then

P{ΦA ◦ γ[0,∞) ∩ A1 = ∅|γ[0,∞) ∩ A = ∅} =
P{ΦA ◦ γ[0,∞) ∩ A1 = ∅, γ[0,∞) ∩ A = ∅}

P{γ[0,∞) ∩ A = ∅}

=
P(VA∪Φ−1

A (A1)
)

Φ′
A(0)

α
.

But ΦA∪Φ−1

A (A1)
= ΦA1

◦ ΦA, so the numerator is Φ′
A1
(0)αΦ′

A(0)
α.

The next Theorem is of special importance regarding SAW.

Theorem 2.3.2. SLE8/3 satisfies the restriction property. In fact, if γ is a chordal

SLE8/3 curve in H and A ∈ A is bounded away from 0, then

P{γ[0,∞) ∩ A = ∅} = Φ′
A(0)

5/8. (2.3.3)

This Theorem can be proved without relying on the converse of Lemma 2.3.1,

although the converse to that statement is important in the study to restriction

measures.
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Generally speaking, chordal restriction measures are measures defined on curves

in a domain D which go from boundary point to boundary point, which satisfy a more

general version of the restriction formula. That is to say, if D is a domain, z, w ∈ ∂D

are distinct, and if m(D, z, w) is a measure on curves γ : [0, tγ] → D with γ(0) = z,

γ(tγ) = w and γ(0, tγ) ⊂ D, then if D′ is a subdomain of D with z, w ∈ ∂D′, then

m(D, z, w) satisfies the restriction property if m(D, z, w), restricted to those curves

that lie in D′, is m(D′, z, w). Of course, if we want to study probability measures

which satisfy the restriction property, some normalization is involved.

Restriction measures have been studied extensively (see [LSW2003],[AC2010]),

and it turns out that the only restriction measure on simple curves is given by the

law of SLE8/3. To understand the behavior of general restriction measures, let us

restrict our attention to probability measures on unbounded hulls in H.

D ⊂ H is a right-domain if it is simply connected and ∂D∩R = [0,∞). Similarly,

a simply connected D ⊂ H is a left-domain if ∂D ∩ R = (−∞, 0]. Let J denote the

set of closed sets K such that K = K ∩H and such that H\K is the disjoint union of

a right-domain and a left-domain. An element K ∈ J is referred to as an unbounded

hull in H. We will sometimes refer to these as restriction hulls.

For example, suppose γ1, . . . , γn : (0,∞) → H are curves with limt→0+ γ
k(t) = 0,

limt→∞ γk(t) = ∞. Let D = H\ [γ1(0,∞)∪ · · ·∪γn(0,∞)]. Let D+ be the connected

component of D, the boundary of which contains the positive real axis, and let D− be

the connected component of D, the boundary of which contains the negative real axis.

Then D+ is a right domain and D− is a left domain. We call K = H\ (D+∪D−) ∈ J
the hull generated by γ1, . . . , γn.

If A ∈ A is bounded away from 0, let VA = {K ∈ J : K ∩ A = ∅}. We then let

V = {VA : A ∈ A is bounded away from 0}. It is easy to see that V is a π-system,

so that if two probability measures P and P′ agree on V, then P = P′ on σ(V).
Therefore, when we refer to a measure on J , we will really be referring to a measure

on σ(V).
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As before, if A ∈ A is bounded away from 0, let ΦA denote the unique conformal

tranformation from H \ A onto H such that ΦA(0) = 0 and ΦA(z) ∼ z as z → ∞. If

ν is a measure supported on VA, let ΦA ◦ ν denote the measure

ΦA ◦ ν(VA′) = ν{K : ΦA(K ∩H) ∩A′ = ∅}.

A measure ν on J will be called scale-invariant if ν(VrA) = ν(VA) for all A ∈ A
bounded away from 0. A probability measure P on J is a restriction measure if it

is scale-invariant and for every A ∈ A bounded away from 0,

ΦA ◦ νA = P,

where νA is the conditional probability distribution given VA.

Proposition 2.3.4. If P is a restriction measure on J , then there exists 0 ≤ α <∞
such that for each A ∈ A bounded away from 0,

P(VA) = Φ′
A(0)

α.

If such a restriction measure exists, we denote it by Pα.

Note that the above proposition shows that the measure on SLE8/3 curves is a

restriction measure. In fact, it is P5/8. The proof of other restriction measures is

complicated. One must construct the restriction measures carefully. It is done by

considering an SLEκ curve for 0 < κ ≤ 8/3 and an independent realization of the

Brownian bubble soup (see, e.g [Lawler2008]) with intensity parameter λ, where

κ =
6

2α + 1
, λ = (8− 3κ)α.

The Brownian bubble soup is a Poisson point process of closed loops which lie in

H. The restriction measure Pα is realized by considering the hull generated by the

union of the SLEκ curve with those (filled in) loops which intersect it. It should be

clear that these hulls are unbounded H-hulls, or restriction hulls, and that Pα is a
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measure on such hulls. In general, if we let (D, z, w) denote the triple consisting of a

Jordan domain D, and z, w ∈ ∂D, then we can define (chordal) restriction measures

on (D, z, w) through conformal transformation, much like we did with SLEκ. We will

denote restriction (probability) measures on (D, z, w) by P
(D,z,w)
α . Such restriction

measures are then essentially characterized by the following two properties:

• Restriction property. If D ⊂ D′ and ∂D,∂D′ agree in neighborhoods of z, w,

then P
(D,z,w)
α is P

(D′,z,w)
α , conditioned on the event that the hulls K lie in D.

• Conformal invariance. If f : D → D′ is a conformal transformation, then

f ◦ P(D,z,w)
α = P(D′,f(z),f(w))

α .

It is perhaps worth noting that one can uniquely define restriction measures which

are not probability measures and carry a unique total mass through conformal covari-

ance. Then the restriction property becomes one of actual restriction to a subdomain,

as opposed to one of a conditional probability. The conformal invariance property

then becomes a conformal covariance property. However, we will deal solely with the

probability measures in this paper.



40

Chapter 3

Conditioning restriction measures on bridge

heights

In Section 2.1.2 we developed an object called the infinite upper-half plane SAW, a

measure on infinite length self-avoiding walks staying in the upper half-plane for all

time > 0. We will say that ω ∈ H has a bridge point, or cut point, at height y ∈ N if

ω can be written ω = ω̃ ⊕ ω̂, where ω̃ ∈ B, ω̂ ∈ H, and h(ω̃) = y, where for a given

ω ∈ B, h(ω) denotes the height of ω, which in the case of a bridge coincides with

the span of ω. Geometrically speaking, this means that ω ∈ H has a bridge point at

height y if the horizontal line at height y − 1/2 intersects ω only once, where here

we are thinking of ω as a sequence of sites along with the nearest neighbor bonds

connecting those sites.

Let Sy := {z ∈ H : 0 < Im(z) < y} denote the strip of height y, for y ∈ δN. Let

∂S+
y := {z ∈ H : Im(z) = y} denote the upper boundary of the strip. For x ∈ δZ, let

µ#
SAW (S, 0, x+ iy, δ) be defined as in section 2.2.2, and define

µ#
SAW (Sy, 0, ∂S

+
y , δ) =

∑

x∈δZ µSAW (Sy, 0, x+ iy, δ)
∑

x∈δZ |µSAW (Sy, 0, x+ iy, δ)| ,

i.e. the probability measure on self-avoiding walks in the strip Sy, beginning at 0

and ending anywhere on the upper boundary. The following Theorem was proven in

[DGKLP2011]:

Theorem 3.0.1. Let y be a positive integer. If we condition PH,∞ on the event that

the walk has a bridge point at height y − 1 and only consider the walk up to height y,

then the resulting probability measure is µ#
SAW (Sy, 0, ∂S

+
y , 1).

The main purpose of this chapter is to show that this result still holds in the

(conjectured) scaling limit. We will show in section 3.1 that the same result holds for
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restriction measures of all restriction parameters α ∈ [5/8, 1). In section 3.2 we will

show that a more general version of the Theorem holds for restriction measures with

α ∈ [5/8, 1).

3.1 Conditioning on the event that a restriction measure has

a bridge point at a given point

In this section we will show that if one takes a restriction measure with restriction

parameter α (5/8 ≤ α < 1), conditions on the event that there is a bridge point at z =

x+iy, x, y ∈ R, and only considers the hull up to height y, then one obtains the law for

the restriction hull on the triple (Sy, 0, x+ iy), where Sy = {z ∈ H : 0 < Im (z) < y}.
The results of this section depend heavily on the results obtained in [AC2010],

where it is shown that for restriction measures Pα, with α ∈ [5/8, 1), bridge points

exist Pα-a.s. Here we define a bridge point for a restriction hull K on the triple

(H, 0,∞) to be a point z ∈ H such that the horizontal line y = Im(z) intersects

K in the singleton {z}. Throughout this section, we will let C = C(K) denote the

(random) set of bridge heights for a restriction hull K.

Given a simply connected domain D ⊂ C (not the entire complex plane), and

z, w ∈ ∂D, as before, we let P
(D,z,w)
α denote the law for the restriction hull with

parameter α ∈ [5/8, 1), on the triple (D, z, w). Recall that the measures P
(D,z,w)
α are

characterized by the following two properties:

• Conformal Invariance: If f : D → D′ is a conformal transformation from

D onto a simply connected domain D′, then if f ◦ P(D,z,w)
α denotes the image of

P
(D,z,w)
α under f then

f ◦ P(D,z,w)
α = P(D′,f(z),f(w))

α .

• Restriction: The conditional law of K on the triple (D, z, w), restricted to

those hulls K that lie in a subdomain D′ ⊂ D with z, w ∈ ∂D′, is distributed

according to the law P
(D′,z,w)
α .
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Given a triple (D, z, w), if A is such that A = A ∩D, D\A is simply connected and

z, w /∈ A, then the probability measure P
(D,z,w)
α is characterized by the values

P(D,z,w)
α {K ∩A = ∅}.

On the canonical triple (H, 0,∞), we can calculate the above probabilities using the

restriction formula:

Pα{K ∩ A = ∅} = Φ′
A (0)α ,

where, as in section 2.3, ΦA is the unique conformal transformation from H\A onto H

such that ΦA (0) = 0 and ΦA (z) ∼ z as z → ∞. Therefore, we see that on a general

triple (D, z, w), the restriction formula becomes

P(D,z,w)
α {K ∩A = ∅} = Φ′

f(A) (0)
α , (3.1.1)

where f is a conformal transformation from D onto H satisfying f (z) = 0 and

f (w) = ∞. We would like to define the conditional probability on the event that a

restriction hull has a bridge point at a given z ∈ H. Since this is an event of measure

zero, we define the conditioning as follows:

Pα{K ∩A = ∅|z ∈ C} = lim
ǫ→0+

Pα{K ∩A = ∅|K ∩ I(z, ǫ) = ∅}, (3.1.2)

where I(z, ǫ) = {w ∈ H : Im(w) = 1 : |w − z| ≥ ǫ}, i.e. the line y = Im(z) with a

gap of width 2ǫ centered at z removed. Let us now state the main theorem of this

section:

Theorem 3.1.3. Let K be a restriction hull under the law Pα := P
(H,0,∞)
α . Then

conditioning on the event that K has a bridge point at z = x+ iy and considering K

up to height y gives the law of a restriction hull K̂ on the triple (Sy, 0, x+ iy).

Proof. It suffices to prove the result in the case that z = x + i, and then the

general result will follow from scaling. Let S := S1 = {z ∈ H : 0 < Im (z) < 1}.
Let I (x+ i, ǫ) = {z ∈ H : Im (z) = 1, |z − (x+ i)| ≥ ǫ} be the horizontal line y = 1
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with a gap of width 2ǫ centered at x + i removed. Let A be such that A = S ∩ A,
S\A is simply connected and A is bounded away from 0, x+ i. We want to show that

Pα{K ∩ A = ∅|x+ i ∈ C} = P(S,0,x+i)
α {K ∩A = ∅}.

Since the event that x + i is in C is an event of measure 0, we must define the

conditional probability in terms of a limit:

Pα{K ∩ A = ∅|x+ i ∈ C} = lim
ǫ→0+

Pα{K ∩A = ∅|K ∩ I (x+ i, ǫ) = ∅}.

Let Eǫ = A ∪ I (x+ i, ǫ). Then the conditional probability can be written as

lim
ǫ→0+

Pα{K ∩A = ∅|K ∩ I (x+ i, ǫ) = ∅} = lim
ǫ→0+

Pα{K ∩ Eǫ = ∅}
Pα{K ∩ I (x+ i, ǫ) = ∅} .

In [AC2010], it is shown that

Pα{K ∩ I (x+ i, ǫ} = ∅} ∼ π2α

16α cosh2α (πx/2)
ǫ2α.

as ǫ→ 0+ . Thus, by the restriction formula (3.1.1), the problem reduces to showing

that

Pα{K ∩ Eǫ = ∅} ∼ π2α

16α cosh2α (πx/2)
ǫ2αΦ′

f(A) (0)
α , (3.1.4)

as ǫ → 0+, where f is the conformal transformation from S onto H such that

f (0) = 0, f (x+ i) = ∞. Given x′ ∈ (x− ǫ, x+ ǫ), we write fx′ for the confor-

mal transformation from S onto H with fx′ (0) = 0 and fx′ (x′ + i) = ∞. It is clear

that

Φ′
fx′(A) (0) ∼ Φ′

f(A) (0)

as ǫ → 0+. We will use the Brownian excursion method described in section 2.3 to

calculate Pα{K ∩ Eǫ = ∅}. That is, if B̂t is a complex Brownian motion conditioned

to stay in H for all t > 0, then we have [Virág2003]

P{B̂[0,∞) ∩A = ∅} = Φ′
A(0). (3.1.5)
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To that end, let B̂t = Xt + iŶt, t ≥ 0, be a Brownian excursion in H, starting at 0

and going to ∞. Then Xt is a standard one dimensional Brownian motion and Ŷt is a

Bessel-3 process. In [Virág2003], it is shown that the probability that the Brownian

excursion misses Eǫ is given by Φ′
Eǫ

(0) . Thus, we must show that

Φ′
Eǫ

(0) ∼ π2

16 cosh2 (πx/2)
ǫ2Φ′

f(A) (0) .

Given r > 0, let σ̂r = inf{t ≥ 0 : Ŷt = r} be the first time that the Brownian

excursion B̂t reaches height r.

In order for the Brownian excursion started at 0 to make it to ∞ without hitting

A or I (x+ i, ǫ), it must first make it to the line Im (z) = 1 while avoiding A, it

must hit the horizontal line y = 1 somewhere in the gap of width 2ǫ centered i, and

then it must make it to ∞ while avoiding I (x+ i, ǫ) and A. Starting at x + λǫ + i,

for some λ ∈ [−1, 1], in order to make it to ∞, it first must make it up to the line

Im (z) = 2 while avoiding A and I (x+ i, ǫ), and then must pass to infinity while still

avoiding the two sets. Upon integration over the starting points, these three events

are independent by the Strong Markov property, and therefore the probability that

B̂t misses Eǫ is given by the product of the three events, integrated over the starting

points. The first event is the event that B̂ (0, σ̂1) ∩ A = ∅ and Xσ̂1
∈ (x− ǫ, x+ ǫ).

This is simply the probability that a Brownian excursion in the unit strip, starting

at 0 and ending somewhere along the upper boundary of the strip avoids A and exits

somewhere along the gap. The exit density for B.E. on the line Im (z) = 1 is given

by π/4 · cosh−2 (πx/2) . Thus, the probability of the first event is

∫ ǫ

−ǫ

π

4 cosh2 (π (x− x′) /2)
Φ′

fx′(A) (0) dx
′ ∼ π

2 cosh2 (πx/2)
ǫΦ′

f(A) (0) .

Now, the second event is the event that B̂ (σ̂1, σ̂2) avoids A and I (x+ i) simultane-

ously, and hits the line Im (z) = 2 anywhere along the line. Since B̂σ̂1
lies somewhere

along the gap, we are looking at the event that the Brownian excursion, started at

x + λǫ + i, λ ∈ [−1, 1], hits the line of height 2 while avoiding I (x+ i, ǫ) and A.
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We argue that this is asymptotically the same as the event that B̂ (σ̂1, σ̂2) avoids

I (x+ i, ǫ) . Indeed, in order for this path to hit A while avoiding I (x+ i, ǫ), it must

go back underneath the gap and hit A, which is an event of order ǫ, and then it must

pass back through the gap and proceed to the line of height 2, which is an event of

order at most ǫ. Thus, the probability of such an event is at most O (ǫ2), and there-

fore doesn’t contribute asymptotically (The statement that passing back through the

gap and going to the line of height 2 is at most order ǫ is due to the argument that

follows).

Now, the probability that the path, started at x+ λǫ+ i, hits the line Im (z) = 2

while avoiding I (x+ i, ǫ), can be calculated asymptotically. The exit density along

the line y = 2 of a Brownian motion starting at x + λǫ + i in the region Sǫ,x :=

(R× [0, 2i]) \I (x+ i, ǫ) is asymptotically the same as the (translated) exit density

along the line y = 2i of a Brownian motion started at λǫ + i in the region Sǫ :=

(R× [0, 2i]) \I (i, ǫ) up to translation which, upon integration over the line y = 2,

is immaterial. Asymptotically, this is the same as the exit density of a Brownian

motion along the line y = 2, started at λǫ + i, conditioned to avoid the real axis,

in the same region. In other words, HSǫ(z
′, x+ iy) is the Radon-Nikodym derivative

of the probability measure µ#
Sǫ
(z′, ∂Sǫ), which is the probability measure on curves

starting at z′ and ending anywhere on ∂Sǫ, derived from Brownian motion started

at z′ and stopped at τSǫ . Then, asymptotically, the event that a Brownian motion

started at z′ = λǫ+ i goes back down through the gap of width 2ǫ a distance of order

1 is O(ǫ), and the probability that it then comes back up through the gap to exit Sǫ

in a region of x + iy is at least O(ǫ), for a combined probability of at least O(ǫ2),

which doesn’t contribute asymptotically. The above exit density, HSǫ(z
′, x + iy), is

given by [AC2010]

HSǫ (λǫ+ i, y + 2i) ∼ π
√
1− λ2

8 cosh2 (πy/2)
ǫ.

Therefore, the probability that B̂ (σ̂1, σ̂2) avoids I (x+ i, ǫ), is asymptotically given
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by

∫ 1

−1

∫ ∞

−∞

π
√
1− λ2

8 cosh2 (πy/2)
ǫdydλ =

π

8

π

2

4

π
ǫ

=
π

4
ǫ.

Putting together what we have so far, we see that the event that the Brownian

excursion reaches the line y = 2i while avoiding Eǫ is asymptotically given by

π2

8 cosh2 (πx/2)
ǫ2φ′

f(A) (0) .

Now we must calculate the probability that B̂ (σ̂2,∞) passes to infinity while avoiding

A and I (x+ i, ǫ). But the argument given above also shows that asymptotically, this

is the same as the probability that B̂ (σ̂2,∞) avoids I (x+ i, ǫ). But it is clear that this

is asymptotically the same as the event that B̂ (σ̂2,∞) passes to ∞ before returning

to the line y = i. However, this is simply the probability that a Bessel-3 process

started at 2 passes to ∞ before hitting 1. Recall that for a Bessel-d process, given

0 < x1 < x < x2, the probability that the process hits x2 before x1 is given by

φ0 (x; x1x2) =
x1−2a − x1−2a

1

x1−2a
2 − x1−2a

1

.

Here a and d are related by a = (d− 1) /2. Plugging in the appropriate values, and

taking the limit x2 → ∞, we see that the probability that the excursion goes to ∞
before hitting the line y = i is exactly 1/2. Multiplying with the above probability,

we obtain the desired result.

3.2 Conditioning on generalized bridge points

In this section, we will expand the result from section 3.1 to show that we can con-

dition on the event that a restriction hull has a more generalized type of “bridge

point”, to obtain restriction measures in domains other than the strip. We begin

by considering smooth curves γ : [a, b] → H, where we allow the possibility that
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a, b = ±∞, which disconnect H into two simply connected domains, H1 and H2,

where 0 ∈ H1. For example, given r > 0, one can take γ(t) = reiπt, 0 ≤ t ≤ 1. Then

H1 = rD+ := H ∩ rD and H2 = H \ rD.
We then consider the event that for a given z ∈ H, K∩γ[a, b] = {z} for restriction

hulls K under the law Pα. This should be an event of Pα-measure 0, but we argue

that by the appropriate limiting process, the Pα conditional law on this event is well

defined. In what follows, we will let Cγ denote the (random) set of generalized bridge

points ; that is, Cγ = {z ∈ H : K ∩ rγ[a, b] = {z}, r > 0}. Note that in this case,

a point z ∈ H is a generalized bridge point for the restriction hull K if K intersects

some dilation of γ[a, b] only at {z}.
Let X denote the set of all smooth curves γ : [a, b] → H which disconnect the

half-plane into disjoint, simply connected domains H1, H2, with 0 ∈ H1. It will be

useful to parametrize such curves by arc length. To that end. let X ∗ denote the set

of all γ ∈ X which are parametrized by arc length. Given γ ∈ X ∗, z ∈ γ[a, b], let

sz ∈ [a, b] be such that γ(sz) = z. For ǫ > 0, we define the sets

Iγ(z, ǫ) := γ[a, sz − ǫ] ∪ γ[sz + ǫ, b],

the curve γ[a, b] with a gap of arc length 2ǫ centered at z removed. We would like to

define the conditional probability, Pα{·|z ∈ Cγ}. Since for a given z ∈ H, the event

z ∈ Cγ has Pα-probability zero, we define this conditioning as follows:

Pα{·|z ∈ Cγ} = lim
ǫ→0+

Pα{·|K ∩ Iγ(z, ǫ) = ∅}.

Let us now state the main Theorem we would like to prove in this section.

Theorem 3.2.1. Let K be a restriction hull under the law Pα and let γ ∈ X ∗ be such

that Im(γ(z)) is bounded away from infinity, uniformly in z. Let τ = inf{t ≥ 0 : Kt ∈
rγ[a, b]}. Conditioning on the event {z ∈ Cγ} and considering K up to time τ gives

the law of a restriction hull Ĥ on the triple (H1, 0, z).



48

Note that Theorem 3.2.1 is a generalization of Theorem 3.1.3, since taking γ(s) =

s+ iy for fixed y > 0, and applying Theorem 3.2.1 gives Theorem 3.1.3.

Given a simply connected domain D, z, w ∈ ∂D, let H∂D(z, w) denote the bound-

ary Poisson kernel, defined by

H∂D(z, w) = lim
ǫ→0+

ǫ−1HD(z + ǫnz , w), (3.2.2)

where nz denotes the inward unit normal at z. If z ∈ ∂D, v ∈ D, we let HD(z, v)

denote the Poisson kernel. The distinction is given by the subscript and by whether

z, w, v are boundary points or interior points. Given γ ∈ X ∗ such that

maxz∈γ[a,b]{Im(γ(z))} ≤ M for some M > 0, let

Sγ,z,ǫ := {w ∈ H : 0 < Im(w) < M} \ Iγ(z, ǫ).

Before proving Theorem 3.2.1, we prove the following Proposition.

Proposition 3.2.3. Let K be a restriction hull under the law Pα. Suppose that

γ ∈ X ∗ is such that there exists M > 0 such that

max
w∈γ[a,b]

γ(w) ≤M.

Then there exists a constant c > 0 such that

Pα{K ∩ Iγ(z, ǫ) = ∅} ∼ cH∂H1
(0, z)αg(z)αǫ2α, (3.2.4)

as ǫ→ 0+, where g(z) = limM→∞

∫∞

−∞
HSγ,z,ǫ(z, x+ iM) dx.

Proof. Let B̂t be an H-excursion. That is, B̂t is a complex Brownian motion condi-

tioned to stay in the half-plane. Recall that

Φ′
Iγ(z,ǫ)(0) = P{B̂[0,∞) ∩ Iγ(z, ǫ) = ∅}.

Let γ ∈ X ∗ and let τγ = inf{t ≥ 0 : B̂t ∈ γ[a, b]}. In order for B̂ to reach ∞ while

avoiding Iγ(z, ǫ), we must have Bτ ∈ γ(sz − ǫ, sz + ǫ); B̂ must first hit the curve γ
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somewhere along the gap of length 2ǫ, and then, starting somewhere in the gap of

width 2ǫ, the H-excursion must proceed to infinity while still avoiding Iγ(z, ǫ). By the

strong Markov property, the probability that B̂[0,∞) avoids Iγ(z, ǫ) is the product

of the probability of these two events.

Suppose D is a simply connected domain in C other than all of C, and let z ∈ D

and Γ ⊂ ∂D be a smooth boundary arc. If Bt is a complex Brownian motion and

τD = inf{t ≥ 0 : Bt ∈ ∂D}, let µD(z, ∂D) be the measure on simple curves which start

at z, end anywhere along the boundary ofD, derived fromBt starting at z and stopped

at τD. Let µD(z,Γ) be µD(z, ∂D) restricted to curves that end somewhere along Γ.

If w ∈ ∂D is in a smooth neighborhood of ∂D, we can define µD(z, w) through a

limiting process by considering smooth boundary arcs Γǫ of length ǫ, normalizing the

measures by ǫ−1. Also, if z ∈ ∂D is in a smooth neighborhood of ∂D, we can define

µ∂D(z,Γ) by µ∂D(z,Γ) = limǫ→0+ ǫ
−1µD(z + ǫnz,Γ), where nz is the inward pointing

unit normal to ∂D at z. By applying the limiting process twice, we can define a

measure on simple curves from z to w, but otherwise staying in D, which is derived

from Brownian motion. We then define µ#
∂D(z, w) = µ∂D(z, w)/|µ∂D(z, w)|. In fact,

the measure µ#
∂D(z, w) is known as Brownian excursion measure in D from z to w.

Let us first consider the probability of the first event, P{B̂τγ ∈ γ(sz − ǫ, sz + ǫ)}.
We argue that this probability is asymptotically given by

P{B̂τγ ∈ γ(sz − ǫ, sz + ǫ)} ∼ c1H∂H1
(0, z)ǫ, (3.2.5)

as ǫ→ 0+. Consider the measure µ∂H1
(0, H+

1 ) as given above, where H+
1 is the upper

boundary of H1. That is, H
+
1 = γ[a, b]. Then we have

µ∂H1
(0, γ(sz − ǫ, sz + ǫ)) =

∫

γ(sz−ǫ,sz+ǫ)

µ#
∂H1

(0, z′)H∂H1
(0, z′)|dz′|,

where we use the superscript # notation to denote that we have normalized the

measure into a probability measure. It follows that the probability that a Brownian

excursion in H1 from 0 to a point on the curve γ[a, b] lands somewhere in the gap
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γ(sz − ǫ, sz + ǫ) is given by

µ#
∂H1

(0, ∂H+
1 ){γ̂(tγ̂) ∈ γ(sz − ǫ, sz + ǫ)} = c1

∫ sz+ǫ

sz−ǫ

H∂H1
(0, γ(s))γ′(s)ds

∼ c1H∂H1
(0, z)ǫ,

where c1 = 2[
∫

γ[a,b]
H∂D(0, z

′) |dz′|]−1, and we are using γ̂ to represent a curve from

the support of µ#
∂H1

(0, ∂H+
1 ).

Now we must show that this probability is the same as P{B̂τγ ∈ γ(sz − ǫ, sz + ǫ)}.
This follows from the conditioning used to obtain the measure µ#

∂H1
(0, ∂H+

1 ). We

start a complex Brownian motion at 0 and condition that it stays above the real axis

for all t > 0 through a limiting process, stopping it at the time it hits ∂H+
1 = γ[a, b].

But this is the same as the measure given by P{B̂τγ ∈ E}, where E is an event of

continuous curves in H1, starting at 0 and ending somewhere along the curve γ[a, b].

We now consider the probability P{B̂[τγ ,∞) ∩ Iγ(z, ǫ) = ∅}, the probability that

the H-excursion, started after the first time it hits the gap of length 2ǫ, passes to

infinity while avoiding Iγ(z, ǫ). We argue that this probability is asymptotically given

by

P{B̂[τγ,∞) ∩ Iγ(z, ǫ) = ∅} ∼ c2g(z)ǫ (3.2.6)

as ǫ → 0+, where g is as in the statement of Proposition and c2 is a positive constant.

Let τ̂M = inf{t ≥ 0 : Im(B̂t) =M}. For an H-excursion starting at z′ ∈ γ(sz − ǫ, sz +

ǫ), in order for the H-excursion to pass to infinity while avoiding Iγ(z, ǫ), it must first

reach height M while avoiding Iγ(z, ǫ). Then the probability that the H-excursion

started at z′ ∈ γ(sz−ǫ, sz+ǫ) passes to infinity while avoiding Iγ(z, ǫ) can be obtained

by considering the probability that B̂[τγ, τ̂M ]∩ Iγ(z, ǫ) = ∅ in the limit as M tends to

∞. Arguing as in the proof of Theorem 3.1.3, we have

P{B̂[τγ, τ̂M ] ∩ Iγ(z, ǫ) = ∅} ∼
∫

γ(sz−ǫ,sz+ǫ)

∫ ∞

−∞

HSγ,z,ǫ(z
′, x+ iM) dx |dz′|

∼ 2

(
∫ ∞

−∞

HSγ,z,ǫ(z, x+ iM) dx

)

ǫ
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as ǫ → 0+. Thus, setting g(z) = limM→∞

∫∞

−∞
HSγ,z,ǫ(z, x + iM) dx, we arrive at

(3.2.6). Combining this result with (3.2.5), we arrive at the conclusion of the propo-

sition.

We are now in a position to prove Theorem 3.2.1. Given a smooth curve γ ∈ X ∗

such that maxw∈γ[a,b] γ(w) ≤M for someM > 0, let A ⊂ H1 be such that A = A∩H1,

H1\A is simply connected and A is bounded away from 0 and z for a fixed z ∈ γ[a, b].

The measure P
(H1,0,z)
α is determined by the probabilities [Lawler2008],[LSW2003]

P(H1,0,z)
α {K ∩A = ∅},

for such A. Using conformal invariance, the above probabilities are given by

P(H1,0,z)
α {K ∩ A = ∅} = Φ′

f(A)(0)
α,

where f is a conformal transformation from H1 onto H such that f(0) = 0 and

f(z) = ∞. Let us now proceed to the proof of Theorem 3.2.1

Proof of Theorem 3.2.1. We prove the result in the case r = 1. Scaling will

then give the desired result. Let γ ∈ X ∗, M > 0, and A be as above. Define

Eγ,ǫ := Iγ(z, ǫ) ∪ A. Note that

Pα{K ∩ A = ∅|z ∈ Cγ} = lim
ǫ→0+

Pα{K ∩A = ∅|K ∩ Iγ(z, ǫ) = ∅}

= lim
ǫ→0+

Pα{K ∩A = ∅, K ∩ Iγ(z, ǫ) = ∅}
Pα{K ∩ Iγ(z, ǫ) = ∅}

= lim
ǫ→0+

Pα{K ∩ Eγ,ǫ = ∅}
Pα{K ∩ Iγ(z, ǫ) = ∅} .

Therefore, it suffices to show that, as ǫ→ 0+,

Pα{K ∩ Eγ,ǫ = ∅} ∼ Pα{K ∩ Iγ(z, ǫ) = ∅}P(H1,0,z)
α {K̂ ∩ A = ∅},

or, equivalently, that

Φ′
Eγ,ǫ

(0) ∼ Φ′
Iγ(z,ǫ)(0)Φ

′
f(A)(0), (3.2.7)
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where f : H1 → H is a conformal transformation with f(0) = 0, f(z) = ∞. For a

given ǫ > 0 and z′ ∈ γ(sz − ǫ, sz + ǫ), let fz′ : H1 → H be a conformal transformation

with fz′(0) = 0, fz′(z
′) = ∞. Note that, as ǫ→ 0+,

Φ′
fz′ (A)(0) ∼ Φ′

f(A)(0).

We proceed to show equation (3.2.7) holds by calculating the probabilities for an H-

excursion. To that end, let B̂t, t ≥ 0 be an H-excursion. In order for B̂t to pass from

0 to ∞ while avoiding Eγ,ǫ, it must first pass from 0 until it hits γ[a, b] somewhere

along the gap of length 2ǫ while avoiding A, and then it must pass from a point along

the gap to ∞, all while still avoiding Iγ(z, ǫ) and A. By the strong Markov property,

these two events are independent, and therefore the probability that B̂t passes from

0 to ∞ while avoiding Eγ,ǫ is the product of the probabilities of these two events. Let

us first consider the probability of the first event,

P{B̂[0, τγ] ∩ Eγ,ǫ = ∅} = P{B̂[0, τγ] ∩A = ∅, B̂τγ ∈ γ(sz − ǫ, sz + ǫ)}.

By an argument similar to that in the proof of Proposition 3.2.3, the probability of

this event is given by the law µ#
∂H1

(0, ∂H+
1 ), and we have

P{B̂[0, τγ] ∩ Eγ,ǫ = ∅} = µ#
∂H1

(0, ∂H+
1 ) ({γ̂[0, tγ ] ∩ Eγ,ǫ = ∅})

= c′1

∫

γ(sz−ǫ,sz+ǫ)

H∂H1
(0, z′)Φ′

fz′ (A)(0) |dz′|

∼ c1H∂H1
(0, z)Φ′

f(A)(0)ǫ

as ǫ→ 0+, where c1 is as in the proof of Proposition 3.2.3.

Let us now consider the probability of the second event. We argue that the

probability that, starting from a point along the gap of length 2ǫ, the H-excursion

passes to∞ while avoiding Iγ(z, ǫ) and A is asymptotically the same as the probability

that, starting from the gap of width 2ǫ, the H excursion passes to ∞ while avoiding

Iγ(z, ǫ). Indeed, by the proof of Proposition 3.2.3, there is an O(ǫ) probability that the

H-excursion passes below the gap a distance of O(1) to touch A, and then another
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O(ǫ) probability that it passes back up through the gap without touching Iγ(z, ǫ).

Overall, the probability of this event isO(ǫ2), which doesn’t contribute asymptotically.

Therefore, we have, as ǫ→ 0+,

P{B̂[τγ ,∞) ∩ Eγ,ǫ = ∅} ∼ P{B̂[τγ ,∞) ∩ Iγ(z, ǫ) = ∅}

∼ c2g(z)ǫ,

where c2 and g(z) are the same as in (3.2.6). Putting this together with the probability

of the first event, we have

P{B̂[0,∞) ∩ Eγ,ǫ = ∅} ∼ cH∂H1
(0, z)g(z)Φ′

f(A)(0)ǫ
2

∼ Φ′
Iγ(z,ǫ)(0)Φ

′
f(A)(0)

as ǫ→ 0+, which completes the proof of Theorem 3.2.1.

Remark 3.2.8. It is worth noting that Theorem 3.2.1 still holds if we remove the con-

dition that maxw∈γ[a,b] Im(γ(w)) ≤ M . For example, if γ ∈ X ∗ has unbounded imagi-

nary part, then there exists a sequence {γn} such that maxw∈γn[an,bn] Im(γn(w)) ≤ Mn

for all n, where each Mn > 0, and such that Φ′
Iγn (z,ǫ)(0) → Φ′

Iγ(z,ǫ)
(0) as n → ∞

[Lawler2008],[LSW2003].

We will now proceed to show that the same result holds for curves which are

constrained to lie within a given simply connected domain D. For such a simply

connected domain D and z, w ∈ ∂D, let XD be the set of all smooth γ : [a, b] → D

such that γ(a, b) ⊂ D, γ(a), γ(b) ∈ ∂D and γ[a, b] seperates D into two simply

connected components seperating z and w. Denote these two connected components

by D1 and D2, where z ∈ ∂D1 and w ∈ ∂D2. Let X ∗
D denote the set of all γ ∈ XD

which are parametrized by arc length. If K is a restriction hull under the law P
(D,z,w)
α ,

we will say that v ∈ D is a generalized bridge point on D if K ∩ γ[a, b] = {v}. Let

Cγ,D denote the (random) set of generalized bridge points on D. In this case, we must

concede that Cγ,D be either the empty set or a singleton. For our purposes, however,

this suffices.
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Corollary 3.2.9. Let D be a simply connected domain, z, w ∈ ∂D, and let γ ∈ X ∗
D.

Then if K is a restriction hull under the law P
(D,z,w)
α , conditioning on the event that

v ∈ Cγ,D and considering the hull K up until the first time it hits γ[a, b], one obtains

the law for a restriction hull K̂ on the triple (D1, z, v).

Proof. Let f : D → H be a conformal transformation with f(z) = 0, f(w) = ∞.

Let A ⊂ D1 be such that A = A ∩D1, D1 \A is simply connected and bounded away

from z, v. As before we define Iγ(v, ǫ) := γ[a, sv − ǫ] ∪ γ[sv + ǫ, b], where sv is such

that γ(sv) = v. We define the conditioning P
(D,z,w)
α {·|v ∈ Cγ,D} as

P(D,z,w)
α {·|v ∈ Cγ,D} := lim

ǫ→0+
P(D,z,w)
α {·|K ∩ Iγ(v, ǫ) = ∅}.

Now by conformal invariance,

P(D,z,w)
α {K ∩ A = ∅|v ∈ Cγ,D} = lim

ǫ→0+
P(D,z,w)
α {K ∩ A = ∅|K ∩ Iγ(v, ǫ) = ∅}

= lim
ǫ→0+

Pα{K̃ ∩ f(A) = ∅|K̃ ∩ f(Iγ(v, ǫ)) = ∅}

= Pα{K̃ ∩ f(A) = ∅|f(v) ∈ Cf(γ)}

= P(f(D1),0,f(v))
α { ˆ̃K ∩ f(A) = ∅}

= P(D1,z,v)
α {K̂ ∩ A = ∅}.
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Chapter 4

The infinite quarter-plane SAW

Here we conjecture the existence of an object called the infinite length quarter-plane

SAW on the lattice Z = Z + iZ. This is a probability measure on the space of

SAWs ω such that ω0 = 0, and ω stays in the quarter-plane Re z ≥ 0, Im z ≥ 0.

The construction is similar to that of the infinite upper half-plane SAW. The basic

requirements for such a construction are a notion of bridges and irreducibility, and

certain ratio limit theorems which can be derived from the pattern theorem.

The reason that the existence of the infinite quarter-plane SAW remains conjec-

ture is that a proof of Conjecture 4.1.19 remains elusive. Every other detail of the

construction has been seen to with full rigor. That is to say, if one takes Conjecture

4.1.19 as a given, then the full existence of the infinite quarter-plane SAW follows

immediately from what has been done here.

We begin by just stating some definitions and introducing the notations which

will be used for the remainder of the chapter.

Definition 4.0.1. As in Section 2.1, the number of N -step SAWs starting at the

origin will be denoted cN . The number of N -step half-plane bridges starting at the

origin will be denoted bN , and the number of N -step half-plane SAWs starting at

the origin will be hN . The set of all N -step SAWs beginning at the origin will be

denoted SN , while the set of N -step half-plane SAWs and half-plane bridges will be

respectively denoted by HN , BN . An N -step irreducible bridge is a bridge which

cannot be written as the concatenation of 2 or more (non-trivial) bridges. We will

denote the number of N -step irreducible bridges beginning at the origin by λN , and

the set of all such irreducible bridges by ΛN .

Now we need to define something called a quarter-plane walk, which is similar to
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a half-plane walk, although the definition requires us to allow the walk to touch the

real and imaginary axis at any point along the walk.

4.1 Bridges and the connective constant

Definition 4.1.1. An N -step quarter-plane self-avoiding walk ω in Z2, beginning at

0, is defined to be a SAW whose components satisfy the following inequalities:

• Re(ω0) ≤ Re(ωj) for all j = 1, . . . , N ,

• Im(ω0) ≤ Im(ωj) for all j = 1, . . . , N .

The number of N -step quarter-plane SAWs beginning at the origin will be denoted

qN . The set of all N -step quarter-plane SAWs ω with ω0 = 0 will be denoted by QN .

By convention, we take q0 = 1 (i.e. the trivial walk).

Let Q denote the closed quarter plane {z ∈ Z : Re(z), Im(z) ≥ 0}. This is some-

what of an abuse of notation, since in Chapter 5 we will use Q to denote the open

quarter plane, {z ∈ H : Re(z) > 0}. Given a lattice site z ∈ Z2, let Qz denote the

quarter plane translated to z, i.e.

Qz := Q+ z.

Definition 4.1.2. An N -step quarter-plane bridge ω, beginning at 0, is defined to

be an ω ∈ QN such that there exists z ∈ Z2 satisfying

∂Qz ∩ ω = {ωN} = {z} .

The number of N -step quarter-plane bridges ω beginning at 0 will be denoted ρN . By

convention, ρ0 = 1 (we think of this as the trivial walk, i.e. ω = {0}). We will let PN

denote the set of N -step quarter-plane bridges ω beginning at 0, so that ρN = |PN |.
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Note that the concatenation of two quarter-plane bridges is a quarter-plane bridge,

and therefore we have

ρNρM ≤ ρN+M ,

which means that the sequence (− log ρN ) is subadditive, and therefore the existence

of the constant

βQbridge = lim
N→∞

ρ
1/N
N = sup

N≥1
ρ
1/N
N

is guaranteed.

Since ρN ≤ qN for all N , this also gives us the existence of the constant βQuarter,

defined by βQuarter := limN→∞ q
1/N
N .

Since qN < hN < cN , we know that βQuarter ≤ β, and we would like to know that

βQuarter = β. We will prove something stronger. That is, we will show not only that

βQuarter = β, but that moreover, βQbridge = β. We will first state a theorem by Hardy

and Ramanujan (1917):

Theorem 4.1.3. For each integer A ≥ 1, let PD (A) denote the number of partitions

of A into distinct integers (i.e. the number of ways to write A = A1 + · · ·+Ak where

A1 > · · · > AK). Then

logPD (A) ∼ π

(

A

3

)1/2

as A→ ∞.

To begin, we will prove a proposition which bounds the number of quarter-plane

SAWs in terms of the number of quarter-plane bridges. We will proceed to bound

the number of half-plane SAWs in terms of the number of quarter-plane SAWs. We

will use these bounds to show that βQbridge = βQuarter = β. We first need a definition:

Definition 4.1.4. An N -step walk ω is called a bridge in the weak sense, or weak

bridge, if the imaginary components satisfy

• Im(ω0) ≤ Im(ωj) ≤ Im(ωN).
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The number of N -step weak bridges starting at the origin is denoted b̃N (as opposed

to bN , which is used to denote the number of N -step bridges beginning at the origin).

A weakly half-plane SAW is defined similarly. Note that bN ≤ b̃N ≤ cN , which implies

that

lim
N→∞

(

b̃N

)1/N

= β. (4.1.5)

Definition 4.1.6. The span of a SAW ω ∈ SN is defined to be

span(ω) := max
0≤j≤N

Im(ωj)− min
0≤j≤N

Im(ωj).

We let qN,A denote the number of ω ∈ QN with span A, and similarly ρN,A denotes

the number of ω ∈ PN with span A.

Proposition 4.1.7. For every N ≥ 1,

qN ≤ PD (N) ρN , (4.1.8)

where PD (N) is defined as in Theorem 4.1.3.

Proof. Let N ≥ 1, and let ω ∈ QN . Let n0 = 0, and for j = 1, 2, . . ., recursively

define nj (ω) and Aj (ω) such that

Aj (ω) = max
nj−1≤k≤N

(−1)j
(

Im(ωnj−1
)− Im(ωk

)

,

and nj (ω) is the largest value of k for which this maximum is attained. The recusrion

is stopped at the smallest integer J such that nJ = N . This means that AJ+1 (ω) and

nJ+1 (ω) are not defined. Then A1 (ω) is the span of ω (as well as the height of ω).

In general, Aj+1 (ω) is the span of
[

ωnj
, . . . , ωN

]

, which is either a weakly half plane

walk (which stays in the quarter plane) or a reflection of one. Moreover, each of the

subwalks
[

ωnj
, . . . , ωnj+1

]

is a bridge in the weak sense, or the reflection of one. Also,

we have A1 > A2 > · · · > AJ .

Now, given a set of J decreasing positive integers a1 > · · · > aJ , let QN [a1, . . . , aJ ]

denote the set of all quarter-plane SAWs ω ∈ QN with A1 (ω) = a1, . . . , AJ (ω) = aJ
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and nJ (ω) = N . Note then that QN [a] is the set of all weak bridges of span a

beginning at the origin which are also quarter-plane walks. Since each of these walks

is a quarter-plane bridge, but not every quarter-plane bridge is a weak bridge, we

have

|QN [a]| ≤ ρN,a, (4.1.9)

Then, given ω ∈ QN , we define a new walk ω̃ as follows. For 0 ≤ j ≤ n1 (ω),

let ω̃j = ωj and for n1 (ω) < j ≤ N , let ω̃j be the reflection of ωj about the line

Im(z) = A1 (ω). Then ω̃ ∈ QN [a1 + a2, . . . , aJ ], and since this transformation is one-

to-one, and since we can repeat the process until we end up with a weak bridge, we

have

|QN [a1, . . . , aJ ]| ≤ |QN [a1 + a2, . . . , aJ ]|

≤ |QN [a1 + · · ·+ aJ ]| .

Now, summing over all finite collections of decreasing integers a1 > · · · > aJ and

using (4.1.9), we have

qN =
∑

|QN [a1, . . . , aJ ]|

≤
∑

|QN [a1 + · · ·+ aJ ]|

≤
∑

ρN,a1+···+aJ ,

which in turn gives us that

qN ≤
∞
∑

A=1

PD (A) ρN,A

≤ PD (N)

∞
∑

A=1

ρN,A

= PD (N) ρN ,

as desired.
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We now proceed to state and prove a Theorem which will allow us to conclude one of

the major necessary results required in the construction of the infinite quarter-plane

SAW; we will show that

βQuarter = β.

follows as a Corollary to the following Theorem.

Theorem 4.1.10. For any constant B > π (1/3)1/2, there exists an N0 (B) such that

hN ≤ qNe
BN1/2

for all N ≥ N0. (4.1.11)

The proof that we present for this theorem relies on the following unfolding process

depicted in Figure 4.1, which transforms half-plane SAWs into quarter-plane SAWs.

Proof. We first fix B > π (1/3)1/2 and choose ǫ > 0 such that B − ǫ > π (1/3)1/2.

Then by Theorem 4.1.3, there exists a positive constant K ′ such that

PD (A) ≤ K ′ exp
[

(B − ǫ)A1/2
]

for all A. (4.1.12)

Let ω ∈ Hn. Let Ã1 = mink Re(ωk) and let m̃1 be the first k for which Re(ωk) =

Ã1. Notice that if Ã1 = 0, then we have ω ∈ Qn. Then we let

B̃1 (ω) = max
0≤k≤m̃1(ω)

Re(ωk)

and ñ1 (ω) is the first k for which Re(ωk) = B̃1 . We then recursively define, for

j = 2, . . . N

Ãj (ω) = min
0≤k≤ñj−1

Re(ωk)

and m̃j (ω) is the first k such that Re(ωk) = Ãj. Similarly,

B̃j (ω) = max
0≤k≤m̃j

Re(ωk)

and ñj (ω) is the first k for which Re(ωk) = B̃j. The recursion stops for the first J at

which either ÃJ+1 (ω) = 0 or B̃J (ω) = 0. If the recursion stops when ÃJ+1 = 0, then
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ωn1

ωn2

ωn3

ωn4

ωn5

ωn6

Figure 4.1. A SAW ω ∈ H262[256, 204, 148, 92, 45, 10]. The sequence of folding
times are marked. Here, the recursion stops at n7, which we take to be undefined.

ÃJ+1 and B̃J+1 are of thought of as undefined. If the recursion stops when B̃J = 0,

then both B̃J and ÃJ+1 are thought of as undefined. One might notice that the case

where A1 and B1 are undefined is a special case (that is, ω is already a quarter-plane

SAW), which will have to be taken into consideration in our calculations. We then

define the sequence of positive integers nj (ω) to be the folding times n1 (ω) = m̃1 (ω) ,

n2 (ω) = m̃1 (ω), n3 (ω) = m̃2 (ω), etc. In general, we define n2j (ω) = ñj (ω) and

n2j−1 (ω) = m̃j (ω), where either j = 1, . . . , 2J or j = 1, . . . , 2J − 1.

Now, given a positive integer J and a sequence of J positive integers a1 > a2 >

· · · > aJ > 0, let HN [a1, . . . , aJ ] be the set of all ω ∈ HN such that ω0 = 0,

n1 (ω) = a1, . . . , nJ (ω) = ak (hence nJ+1 is undefined) . Note that for a given integer

a > 0, HN [a] is the set of all quarter plane SAWs reflected across the imaginary axis

with ω0 = 0 and a the smallest integer such that Re(ωa) = mink Re(ωk).

Given an N -step SAW ω inHN [a1, . . . , aJ ], define a new SAW ω[1] as follows: First

we define a translation of ω[1], which we denote by ω̃[1]; For j > a1, define ω̃
[1]
j = ωj.
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For j ≤ a1, define ω̃
[1]
j to be the reflection of ωj about the line Re(z) = Re(ωa1). We

then define ω[1] to be the horizontal translation of ω̃[1] such that ω
[1]
0 = 0. Repeating

this process J times, we see that ω[J ] is in QN . Furthermore, this transformation is

one-to-one, since given ω ∈ QN which can be obtained through a sequence of such

transformations from a half-plane SAW, and the sequence of folding times (a1, . . . , aJ),

a1 > · · · > aJ > 0, we can easily reproduce the half-plane SAW as follows: define a

new SAW ω(1) by first defining ω̃(1) by ω̃
(1)
k = ωk for k > aJ and by defining ω̃

(1)
k to

be the relfection of ωk across the line Re(z) = Re(ωaJ ) for k ≤ aJ , and then defining

ω(1) to be the horizontal translation of ω̃(1) such that ω
(1)
0 = 0. We then repeat this

process, i.e. we define ω
(j)
k = ω

(j−1)
k for k ≤ aJ−j+1 and ω

(j)
k to be the reflection

across the line Re(z) = Re(ω
(j−1)
aJ−j+1

). Then ω(k) ∈ HN [a1, . . . , aJ ], and we see that

the unfolding process is a one to one transformation. Therefore, summing over all

sequences of positive decreasing integers a1 > · · · > aJ > 0, we have

hN =
∑

|HN [a1, . . . , aJ ]|+ qN

≤
N
∑

A=1

PD (A) qN + qN

≤ PD (N)
N
∑

A=1

qN + qN

= (NPD (N) + 1) qN .

In other words, what we have just shown is that there exists a constant C > 0 such

that for sufficiently large N ,

hN ≤ CNPD (N) qN (4.1.13)

Now, combining with (4.1.12), we have (for sufficiently large N),

hN ≤ KNqN exp
[

(B − ǫ)N1/2
]

Therefore, there exists N0 (B) such that

hN ≤ qNe
BN1/2

for all N > N0. (4.1.14)
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Corollary 4.1.15. βQuarter = β.

Proof. This fact is immediate from (4.1.14), since (4.1.14) implies that for sufficiently

large N ,

hNe
−BN1/2 ≤ qN ≤ hN ,

and consequently,

β = lim
N→∞

q
1/N
N .

Corollary 4.1.16. βQbridge = β.

Proof. The inequality (4.1.8), combined with (4.1.12), tell us that for sufficiently

large N , we have

qN ≤ ρNe
BN1/2

,

and following a similar argument to that in the proof of Corollary 4.1.15, we see that

β = lim
N→∞

ρ
1/N
N . (4.1.17)

Definition 4.1.18. The generating function for the number of quarter-plane bridges

is denoted P (z), and is given by

P (z) =
∑

ω∈P

z|ω| =
∑

N≥0

ρNz
N ,

where P =
⋃∞

N=0PN is the set of all quarter-plane bridges ω with ω0 = 0 of any

length.

Notice that equation (4.1.17) tells us that the radius of convergence of P (z) is zc =

β−1. We will now state the conjecture that the rest of the construction hinges upon.
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As mentioned previously, a proof of the conjecture remains elusive, though we believe

it to be true. The natural thing to attempt might be to try to recreate the proof of

Proposition 2.1.20 in this context, though it appears that there is no decomposition of

quarter-plane SAWs into quarter-plane bridges analogous to that utilized in the proof

of Proposition 2.1.20, nor is there any such one-to-one decomposition of half-plane

SAWs into quarter-plane bridges. We leave it open as conjecture with the awareness

that, should a proof be found, then the construction of the infinite quarter-plane SAW

would be complete.

Conjecture 4.1.19.

lim
zրzc

P (z) = +∞;

that is,

P (zc) =
∑

ω∈P

β−|ω| =

∞
∑

N=1

ρNβ
−N = +∞. (4.1.20)

4.2 Irreducible bridges and a renewal equation.

Definition 4.2.1. Given ω ∈ PN , we will say that ω is a reducible bridge if there

exist ω̃ ∈ Pn, ω
′ ∈ Pm, n +m = N , n,m 6= 0 such that ω = ω̃ ⊕ ω′. A quarter-plane

bridge which is not reducible will be called irreducible.

We will let ΥN denote the set of all irreducible quarter-plane bridges beginning

at the origin, and υN := |ΥN |. It is going to be useful to consider the generating

function for irreducible quarter-plane bridges:

Definition 4.2.2. The generating function, Υ (z), for irreducible quarter-plane bridges,

is defined to be

Υ (z) =
∑

ω∈Υ

z|ω| =
∞
∑

N=1

υNz
N ,

where the first sum is taken over the set of all irreducible quarter-plane bridges,

Υ =
⋃∞

N=1ΥN .
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Proposition 4.2.3.

lim
zրzc

Υ (zc) = 1,

where, as above, zc = β−1. In other words,

∑

ω∈Υ

β−|ω| =
∞
∑

N=1

υNβ
−N = 1. (4.2.4)

Proof. The proof of this proposition is the same as the proof of Proposition 2.1.20 ,

and essentially only relies on the notion of irreducibility, along with equation (4.1.20).

We will prove it in full detail for the sake of clarity. The idea is as follows: Given

ω ∈ PN , let s (ω) be the smallest integer j (1 ≤ j ≤ N) such that

ω = ω̃ ⊕ ω′,

where ω̃ = [ω0, . . . , ωj] ∈ Pj , ω
′ = [0, ωj+1 − ωj, . . . , ωN − ωj] ∈ PN−j . Then, by the

minimality of s, we see that ω̃ ∈ ΥN and it follows that

ρN =
N
∑

s=1

υsρN−s + δN,0. (4.2.5)

Multiplying both sides by zN , and then summing N from 0 to ∞ yields

Q (z) = Υ (z)Q (z) + 1,

and thus

Q (z) =
1

1−Υ (z)
. (4.2.6)

Now, since the radius of convergence of Q (z) is zc = β−1, we see that for 0 ≤ z < zc,

we must have 0 ≤ Υ (z) < 1, and by (4.1.20), we immediately see that

lim
z→zc−

Υ (zc) = 1, (4.2.7)

as desired.
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We will most commonly write the result (4.2.7) as

∑

ω∈Υ

β−|ω| = 1,

or
∞
∑

N=1

υNβ
−N = 1. (4.2.8)

It is not difficult to see that equation (4.2.8) gives rise to a renewal equation. In

fact, it is a standard result for irreducible half-plane bridges, and the same result

holds for irreducible quarter-plane bridges. If we let (for k ≥ 1)

pk = υkβ
−k

and

aN = ρNβ
−N ,

for N ≥ 1, then multiplying both sides of (4.2.5)by β−N yields

aN =
N
∑

k=1

pkaN−k. (4.2.9)

We can interpret this probabilistically as follows: Suppose we have a sequence of

identically distributed random variables X1, X2, . . . on a probability space (P,Ω) such

that P {Xj = k} = pk for every j. Then (4.2.9) tells us that

aN = P {X1 + · · ·+Xk = N for some k ≥ 0} .

In other words, aN is the probability that there is a “renewal” at “time” N . Equation

(4.2.9) is called a renewal equation, and this probabilistic interpretation will fuel the

construction of the infinite length quarter-plane SAW.

4.3 The pattern theorem and the ratio limit theorems

4.3.1 The Pattern Theorem

The final ingredient required in the construction of the infinite length quarter-plane

SAW is going to be Kesten’s pattern theorem, applied to quarter-plane SAWs. Briefly,
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a pattern is a short SAW which can occur as part of a longer SAW. Kesten’s pattern

theorem, as originally stated, says that if a given pattern can occur many times on

a SAW, then the probability that the pattern occurs less than aN time on an N -

step SAW, for some a > 0, decays exponentially in N as N → ∞. Kesten’s pattern

theorem was originally stated and proved for full plane SAWs [Kesten1963], and has

been checked to be valid for half-plane SAWs [LSW2002], half-plane bridges, and

SAWs with a given initial point and terminal point [MS1993]. We will state and fully

prove the theorem in the case of the quarter-plane SAWs. With this, we will be able

to prove a version of Kesten’s ratio limit theorems for quarter-plane SAWs, and this

will be the final ingredient for our construction of the infinite length quarter-plane

SAW.

Let us begin by defining explicitly what we mean by a pattern.

Definition 4.3.1. A pattern P = [p0, . . . , pn] is said to occur at the j-th step of the

SAW ω = [ω0, . . . , ωN ] if there exists a vector v ∈ Z2 such that ωj+k = pk + v for

k = 0, . . . , n. It is clear that v must be defined by v = ωj − p0.

But the story is slightly more complicated. The pattern theorem is not going to

hold for general patterns, since these patterns can take on very pathological shapes.

We must, in turn, make explicit what we mean when we say that a pattern can occur

several times on a SAW. We will limit our attention to the case that ωQN .

Definition 4.3.2. For k ≥ 0 and P a pattern, let qN [k, P ] (respectively ρN [k, P ])

denote the number of ω ∈ QN (respectively, ω ∈ PN) such that the pattern P occurs

no more than k times on ω. Let GN [P ] (respectively JN [P ]) denote the subset of

QN (respectively PN) for which P occurs at the 0-th step. We will say that P is a

proper front pattern if GN [P ] (respectively JN [P ]) is nonempty for all sufficiently

large N . We will not make any attempt to linguistically distinguish between proper

front patterns for quarter-plane SAWs and proper front patterns for quarter-plane
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bridges. It should be clear from context which we shall be referring to. We will say

that P is a proper front pattern if for all k ≥ 1, there exists an N ≥ 1 and a SAW

ω ∈ QN (respectively ω ∈ PN) such that P occurs at least k times for ω. Once again,

we will make no attempt to distinguish between proper internal patterns for ω ∈ QN

and ω ∈ PN , and leave it up to context to distinguish to which we are referring.

With these definitions in hand, we can properly state Kesten’s pattern theorem.

The theorem states that if P is any proper internal pattern, then there exists an a > 0

such that

lim sup
N→∞

(qN [aN, P ])1/N < β. (4.3.3)

It is disputable whether it is clear that (4.3.3) gives you the probabilistic statement

mentioned at the beginning of the section. To see this, observe that (4.3.3) implies

the existence of an ǫ > 0 such that

lim sup
N→∞

(qN [aN, P ])1/N < β (1− ǫ) ,

and therefore for all sufficiently large N , we have

qN [aN, P ] ≤ (β (1− ǫ))N .

Also, since β = limN→1 q
1/N
N , we see that there exists for all sufficiently large N ,

qN ≤ (β (1 + ǫ))N .

Therefore, we see that the probability that a given N step quarter-plane SAW ω with

ω0 = 0 has no more than aN occurences of the pattern P satisfies

qN [aN, P ]

qN
≤
(

1− ǫ

1 + ǫ

)N

for all sufficiently large N .

Let us now state some equivalent characterizations of proper internal patterns

which will help us throughout the proof of the pattern theorem.
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Proposition 4.3.4. Let P be a pattern. The following are equivalent:

(a) P is a proper internal pattern;

(b) There exists a cube Q = {x ∈ Z2 : 0 ≤ xi ≤ b} and a SAW φ such that: P

occurs at some step of φ, φ is contained in Q, and the two endpoints of φ are corners

of Q;

(c) There exists a SAW ω such that P occurs at three or more steps of ω.

One should note that here we are using the more vague terminology of SAW as

opposed to being explicit about which type of SAW to which we are referring. We will

use SAW here to refer to either quarter-plane SAWs or quarter-plane bridges. Also,

in the definition of the cube Q = {x ∈ Z2 : 0 ≤ xi ≤ b}, we are using the subscripts i

to denote the real and imaginary parts of x; x1 = Re(x), x2 = Im(x).

It will also be useful to notice that if (b) above holds for a pattern P , then it will

always be possible to take

b = 2 +max {||u− v||∞ : u and v are sites of P} .

The proof that (a) =⇒ (c) is clear, as well as the proof that (b) =⇒ (c) and (b)

=⇒ (a). It is more difficult to show that (c) implies both (a) and (b), though one

can find a proof of this in Hammersley and Whittington.

We will now add some notation that will help us along in our quest to prove the

pattern theorem.

Definition 4.3.5. A cube is any set of the form

Q =
{

x ∈ Z2 : ai ≤ xi ≤ ai + b for all i = 1, 2
}

,

where a1, a2 and b are integers and b > 0. Each cube has 22 = 4 corners. If Q is a

cube as above, then let Q denote the cube which is two units larger in all directions;

Q =
{

x ∈ Z2 : ai − 2 ≤ xi ≤ ai + b+ 2 for all i = 1, 2
}

;
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and let ∂Q denote the set of points which are in Q but not in Q;

∂Q = Q\Q.

An outer point of ∂Q is a point of ∂Q which has at least one nearest neighbour

which is not in Q.

Definition 4.3.6. Suppose that Q is a cube and that P is an n-step pattern such that

p0 and pn are corners of Q, and pi ∈ Q for all i = 0, . . . , n (in particular, P is a proper

internal pattern). We say that (P,Q) occurs at the j-th step of the SAW ω if there

exists a v ∈ Z2 such that ωj+k = pk + v for every k = 0, . . . , n and ωi is not in Q for

i < j or for i > j + n. For every k ≥ 0, let qN [k; (P,Q)] (respectively ρN [k; (P,Q)])

denote the number of ω ∈ QN (respectively PN ) for which (P,Q) occurs at no more

than k different steps of ω.

We are now ready to state Kesten’s Pattern Theorem in its full generality:

Theorem 4.3.7 (Pattern Theorem). (a) Let Q be a cube and P be a pattern as in

definition 19. Then there exists an a > 0 such that

lim sup
N→∞

(qN [aN, (P,Q)])1/N < β. (4.3.8)

(b) For any proper internal pattern P , there exists an a > 0 such that

lim sup
N→∞

(qN [aN, P ])1/N < β. (4.3.9)

We will remark here that (4.3.8) is a stronger statement than (4.3.9). To see

this, suppose that P is a proper internal pattern. Then there exists a φ and Q as in

Proposition 4.3.4. Then, since P occurs on φ, any walk for which (φ,Q) occurs for m

different steps must contain m or more occurences of P . Therefore, we have

qN [k, P ] ≤ qN [k, (φ,Q)]
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for every k ≥ 0, which shows that (a) is a stronger statement than (b). Therefore, in

order to prove Theorem 4.3.7, it suffices to prove part (a).

We will now prove a lemma which will serve as the first fundamental ingredient

in our proof. In part (a), we will construct a pattern which completely fills a cube.

In part (b), we will show that it is possible to splice a given pattern onto a SAW by

first deleting the portion of the walk contained within the enlarged cube Q, and then

replacing that portion with the pattern we will construct in the lemma.

Lemma 4.3.10. (a) Let Q be a cube in Z2. Then there exists a SAW ω, whose

endpoints are corners of Q, which is entirely contained in Q and visits every point in

Q (it should be noted here that the number of steps in ω is one less than the number

of points in Q).

(b) Let P = [p0, . . . , pk] be a pattern contained in the cube Q, whose endpoints are

corners of Q. Let x and y be two distinct outer points of ∂Q. Then there exists a

SAW ω′ with the following properties: its initial point is x and its terminal point is

y; it is entirely contained in Q; there is an integer j such that ω′
j+i = pi for every

i = 0, . . . , k, ωi ∈ ∂Q for every i < j and every i > j+k. In particular, (P,Q) occurs

at the j-th step of ω′.

We will prove the result for SAWs on the lattice Zd, as opposed to Z2. The reason

for this is that the proof of part (a) relies on inducting on the dimension d, and

although the proof will hold for Z2, there is no reason here to avoid a more general

result for Zd for this particular geometric lemma.

Proof. As stated above, we will prove (a) by induction on the dimension. For d = 1,

the result is obvious. Suppose that the result holds for d− 1. For simplicity, assume

that

Q =
{

x ∈ Zd : 0 ≤ xi ≤ b for all i = 1, . . . , d
}

,

where b is a positive integer. Notice then that the intersection of Q with each of the
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hyperplanes xd = l, l = 0, . . . , b is a d−1 dimensional cube, which we will call Ql. By

the inductive hypothesis, there exists a SAW ω[0] which begins at the origin, whose

endpoints are corners of Q0, is entirely contained in Q0 and which entirely fills up Q0.

Since each corner of Ql is a nearest neighbour of Ql+1, it follows that we can obtain

the desired SAW by simply filling up each Ql in turn.

(b) First we choose a SAW ω[1] which goes from x to p0 and contains only outer

points of ∂Q (except for, necessarily, the last two steps). We then choose a SAW

ω[2] which goes from pk to y and which is entirely contained in ∂Q (to do this, we

simply avoid outer points until the very last step of ω[2]). Then the desired SAW is

ω′ = ω[1] ⊕ P ⊕ ω[2].

We should remark here that in the proof of (a), choosing such a Q does not inhibit

our ability to perform such an operation for quarter-plane SAWs. In fact, the SAW

obtained in (a) is indeed a quarter-plane SAW. Similarly, for part (b), so long as

the enlarged cube, Q, is entirely contained in the quarter plane, we can perform this

operation as many times as we would like for quarter-plane SAWs. This will be useful,

because when we combine parts (a) and (b), we will be able to splice patterns which

completely fill up cubes onto quarter-plane SAWs.

We will now need to expand our plethora of notation even further, creating some

subtle ambiguities that can easily lead to some confusion. However, this seems neces-

sary since it allows us to make arguments which would otherwise have to be repeated.

We begin by fixing a certain “radius,” r, a positive integer. For a given N -step

SAW (in particular, quarter-plane SAWs or quarter-plane bridges), ω, we will extend

the definition of cube to that of cubes centered at some step of the walk ω. For

j = 0, . . . , N , let

Q (j) =
{

x ∈ Z2 : |xi − πiωj| ≤ r for all i = 1, 2
}

,

Q (j) =
{

x ∈ Z2 : |xi − πiωj| ≤ r + 2 for all i = 1, 2
}

,

∂Q (j) = Q (j) \Q (j)
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where πi denotes projection onto the i-th component. We will say that E∗ occurs at

the j-th step of ω if ω visits every site of the cube Q (j). For a given integer k ≥ 1, we

will say that Ek occurs at the j-th step of ω if ω visits at least k sites of the enlarged

cube Q (j). We will say that Ẽk occurs at the j-th step of ω if either E∗ or Ek (or

both) occur there.

In what follows, we will use E to denote either E∗, Ek or Ẽk. If m is a positive

integer, we say that E (m) occurs at the j-th step of ω if E occurs at the m-th step

of the 2m-step SAW [ωj−m, . . . , ωj, ωj+1, . . . , ωj+m]. It is clear that this definition

requires some modifying if j − m < 0 or j + m > N (N the number of steps in

ω). If j −m < 0, we say that E (m) occurs at the j-th step of [ω0, . . . , ωj+m], and if

j+m > N , we say that E (m) occurs at the j-th step of ω if E occurs at the m-th step

of [ωj−m, . . . , ωN ]. In particular, if E (m) occurs at the j-th step of ω, then E occurs

at the j-th step of ω. For every k ≥ 0, let qN [k, E] (respectively, qN [k, E (m)]denote

the number of quarter-plane SAWs ω in QN such that E occurs at no more than k

steps of ω. Note that for fixed k and N , qN [k, E (m)] is a non-increasing function of

m, since occurences of E (m) become more frequent as m increases.

The next lemma essentially just says that if E occurs on most quarter-plane SAWs,

then E (m) occurs quite often on most quarter-plane SAWs (quite often in the sense

that the probability that it occurs less than aN times decays exponentially fast in

N).

Lemma 4.3.11. If

lim inf
N→∞

(qN [0, E])1/N < β, (4.3.12)

then there exists a1 > 0 and an integer m such that

lim sup
N→∞

(qN [a1N,E (m)])1/N < β. (4.3.13)

Proof. Observe first that qN [0, E] = qN [0, E (N)], so there exists an ǫ > 0 and a
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positive integer m such that

qm [0, E (m)] < (β (1− ǫ))m (4.3.14)

and

qm < (β (1 + ǫ))m . (4.3.15)

To see this, observe that (4.3.12) implies that there exists an ǫ > 0 such that

infn≥N (qn [0, E (n)])1/n < β (1− ǫ) for all N ≥ 1. Also, since β = limN→∞ q
1/N
N ,

there exists an integer m1 > 0 such that qn < (β (1 + ǫ))n for all n ≥ m1. then, since

infn≥m1
(qn [0, E (m)])1/n < β (1− ǫ) , it follows that there exists m ≥ m1 such that

qm [0, E (m)] < (β (1− ǫ))m, and thus we have established (4.3.14) and (4.3.15).

Now, let ω ∈ QN and let M = xN/my. Now, for a given 0 ≤ k ≤ M , if E (m)

occurs at most k times in ω, then E (m) occurs in at most k of theM m-step subwalks

[ω(i−1)m, ω(i−1)m+1, . . . , ωim], i = 1, . . . ,M . Crudely counting the number of ways in

which E (m) can occur at k or fewer of these subwalks (and remembering to count

the last N −mM steps of ω, we arrive at the (rough) bound

qN [k, E (m)] ≤
k
∑

j=0

(

M
j

)

qjm (qm [0, E (m)])M−j qN−mM (4.3.16)

< βmMqN−mM

k
∑

j=0

(

M
j

)(

1 + ǫ

1− ǫ

)jm

(1− ǫ)mM .

Now, it suffices to show that there exists ρ > 0 and a positive t < 1 such that

qN [ρM,E (m)] < tβm (4.3.17)

for all sufficiently large M , since if that is true, for 0 < a1 < ρ/m, we have

qN [a1N,E (m)]1/M ≤ q [ρM,E (m)]1/M < tβm,

for all sufficiently largeM , (and thus, for all sufficiently large N), and by taking m-th

roots, we obtain the existence of δ > 0 such that

qN [a1N,E (m)]1/N < (1− δ) β



75

for all sufficiently large N , which gives (4.3.15). But if ρ is a sufficiently small positive

number, we obtain

∑ρM
j=0

(

M
j

)

(

1+ǫ
1−ǫ

)jm
(1− ǫ)Mm (4.3.18)

≤ (ρM + 1)

(

M
ρM

)

(

1+ǫ
1−ǫ

)ρMm
(1− ǫ)Mm .

Here we use ρM on the sum instead of xρMy for readability. Using Stirling’s formula,

one can show that as M → ∞, the M-th root of the right hand side of (4.3.18)

converges to
1

ρρ (1− ρ)1−ρ

(

1 + ǫ

1− ǫ

)ρm

(1− ǫ)m ,

which is less than 1 whenever 0 < ρ < ρ0 for some sufficiently small ρ0. Therefore,

by (4.3.16), we see that (4.3.17) holds whenever 0 < ρ < ρ0 and M is sufficiently

large.

It is worth remarking that the previous Lemma holds if we replace qN with ρN wher-

ever we see qN . The initial argument for the existence of such an ǫ, m requires only

a slight modification, but is essentially the same.

The next Lemma is referred to as the heart of the proof of the pattern Theorem.

It is merely the statement that the hypothesis of Lemma 4.3.11 always holds in the

case that E is E∗. That is, it says that almost all walks fill a cube of some fixed

radius.

Lemma 4.3.19. lim infN→∞ qN [0, E∗]1/N < β.

Proof. Begin by assuming that the lemma is false. That is, assume that

lim
N→∞

qN [0, E∗]1/N = β. (4.3.20)

We must now make some very basic observations. First, notice that qN

[

0, Ẽk

]

is a

nondecreasing function of k, since if Ẽk does not occur on a given quarter-plane SAW,

then Ẽk+1 surely does not. Also, if E∗ does not occur on a given quarter-plane SAW,
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then it is clear that Ẽ(2r+5)2 cannot occur either (in order for Ẽ(2r+5)2 to occur, the

enlarged cube, Q (j), must be entirely filled up, which cannot happen if Q (j) never

gets entirely filled up). These two observations lead us to the inequality

qN [0, E∗] ≤ qN

[

0, Ẽ(2r+5)2

]

≤ qN . (4.3.21)

Thus, combining (4.3.21) with (4.3.20), and using the fact that limN→∞ q
1/N
N = β, we

see that

lim
N→∞

qN

[

0, Ẽ(2r+5)2

]1/N

= β. (4.3.22)

It is also not difficult to see that (for our fixed integer r > 0), we have qN

[

0, Ẽr+3

]

= 0.

This is because the first r+3 steps of any quarter-plane SAW must lie in Q (0). The

fastest way for the walk to escape from Q (0) is to make r + 3 consecutive steps in

the vertical direction or in the horizontal direction. But this observation means that

there must exist some constant K such that r + 3 ≤ K < (2r + 5)2 such that

lim inf
N→∞

qN

[

0, ẼK

]1/N

< β (4.3.23)

and

lim
N→∞

qN

[

0, ẼK+1

]1/N

= β. (4.3.24)

Lemma 4.3.11, along with (4.3.23) then guarantee the existence of an a1 > 0 and an

integer m such that

lim sup
N→∞

qN

[

a1N, ẼK (m)
]1/N

< β. (4.3.25)

Now, define the set TN to be the set of quarter-plane SAWs ω ∈ QN such that ẼK

never occurs and such that EK (m) occurs at least a1N times. That is,

TN =
{

ω ∈ QN : ẼK+1 never occurs, EK (m) occurs at least a1N times
}

. (4.3.26)

In (4.3.26), we were able to replace ẼK (m) with EK (m), because requiring that ẼK+1

cannot occur forces E∗ to not occur. Now, observe that the number of quarter-plane

SAWs in TN must satisfy

|TN | ≥ qN

[

0, ẼK+1

]

− qN

[

a1N, ẼK (m)
]

. (4.3.27)
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This is easy to see. When substracting the number of ω ∈ QN such that ẼK (m)

occurs no more than a1N times, we must also count those same walks for which

ẼK+1 occurs, and therefore the number of walks in TN exceeds this difference. Then,

by (4.3.23), (4.3.24) and (4.3.27), we see that

lim
N→∞

|TN |1/N = β. (4.3.28)

We can interpret this result to mean that there is some number K such that

it is not unusual to find cubes with exactly K points covered and absolutely no

cubes with K + 1 points covered. For the rest of the proof, we will utilize Lemma

4.3.10, which states that we can splice patterns into quarter-plane SAWs by deleting

enlarged cubes and replacing them with patterns which cover an entire cube. Given

a walk ω ∈ TN , we will consider the collection of all cubes that have exactly K points

covered. We will then proceed to remove the patterns inside a particular subcollection

of these cubes and replace them with patterns which entirely fill the same cubes. This

transformation is not one to one, and the length of the resulting walk will not be the

same, but we can still arrange it so that the number of resulting walks is bigger than

|TN | by an exponential factor, and this will contradict (4.3.20).

Suppose that ω ∈ QN is such that ẼK+1 never occurs and such that EK (m)

occurs at the j1-th, j2-th, . . ., js-th steps of ω (here we allow for EK (m) to occur at

more than these steps, but we assume that EK (m) occurs at at least these steps).

Furthermore, assume that

0 < j1 −m, js +m < N, and jl +m < jl+1 −m for all l = 1, . . . , s− 1 (4.3.29)

and

Q (j1) , . . . , Q (js) are pairwise disjoint. (4.3.30)

The first condition (4.3.29) tells us that the first occurence of EK (m) we consider

occurs after m steps and that the last occurence of EK (m) we consider occurs at

least m steps before the end of the walk. This allows us to not have to deal with
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the different cases in which the definition of EK (m) would have to be modified. The

second condition of (4.3.29) tells us that the bounded intervals in which each EK (m)

occurs are completely seperated. Condition (4.3.30) will allow us to perform our

splicing operation without running into any technical difficulties.

For l = 1, . . . , s, let

σl = min
{

i : ωi ∈ Q (jl)
}

and τl = max
{

i : ωi = Q (jl)
}

be the entrance and exit times, respectively, of ω in the enlarged cube Q (jl). By

our construction, since EK (m) occurs at the jl-th step of ω and ẼK+1 does not, this

implies that there are exactly K sites of Q (jl) covered by ω, and that these sites

must lie between ωjl−m and ωjl+m on the walk. Therefore, we have jl − m ≤ σl <

jl < τl ≤ jl + m for every l. Consider all possible ways of replacing [ωσl
, . . . , ωτl]

with a subwalk which stays completely inside of Q (jl) and completely covers Q (jl).

The existence of such subwalks is guaranteed by Lemma 4.3.10. We can perform this

operation simultaneously for all subwalks [ωσl
, . . . , ωτl] (every l = 1, . . . , s), since we

have guaranteed that there be no overlap between subwalks and between the enlarged

cubes. Furthermore, we can always choose j1, . . . , js in such a way that the resulting

SAW is a quarter-plane SAW ψ with ψ0 = 0, and such that E∗ occurs s times and

such that the length, N ′, of ψ satisfies

N ′ < N + s (2r + 5)2 . (4.3.31)

This is easy to see, since s (2r + 5)2 is the total number of sites in Q (j1) , . . . , Q (js).

Now, consider all triples (ω, ψ, J) where ω ∈ TN , J = {j1, . . . , js} is some subset

of {1, . . . , N} such that (4.3.29), (4.3.30) hold, EK (m) occurs at each jl ∈ J , and

s = xδNy (here δ is some small number to be defined later); and such that ψ can

be obtained from ω by the above procedure. We shall provide rough estimates for

the number of such triples from above and below in order to obtain a contradiction.

In both cases, we will use the observation that each cube Q (j) intersects exactly
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V := (4r + 9)2 cubes of radius 2 + r. This is because the cube Q (j) intersects the

cube of radius r centered at x if and only if ||ω (j)− x||∞ ≤ 2 (r + 2), and a simple

count shows that there are exactly (2 (2 (r + 2)) + 1)2 = (4r + 9)2 such sites x.

First, the number of triples is at least the cardinality of TN times the number

of possible ways of choosing a set J for walks ω ∈ TN . Each ω ∈ TN contains

at least a1N occurences of EK (m), so we may choose h1 < · · · < hu, where u =

xa1N/ (2m+ 2) V y − 2 such that (i) EK (m) occurs at the hl-th step of ω for each

l = 1, . . . , u, (ii) 0 < h1−m, hu+m < N , hl +m < hl+1−m for each l = 1, . . . , u− 1

and (iii) Q (h1) , . . .Q (hu) are pairwise disjoint. This shows why we can choose this

number for u; We divide a1N by (2m+ 2)V in the above expression to ensure no

overlap between the subwalks in each of the Q (hl), and we subtract 2 at the end in

order to ensure that the subwalks don’t occur at the beginning of the walk.

Then, it is clear that any subset of {h1, . . . , hu} which has cardinality xδNy is a

possible choice for J . Therefore, we can see that if we set ρ = a1/ ((2m+ 2) V ), then

(dropping the x·y from the notation), we obtain the bound

number of triples ≥ |TN |
(

ρN − 2
δN

)

. (4.3.32)

For an upper bound, consider a triple (ω, ψ, J). It is clear that E∗ occurs at least

|J | = xδNy times on ψ, though it may occur more than xδNy times since making a

change in a cube Q (jl) can produce occurences of E∗ in some of the cubes of radius

r+2 which intersect Q (jl). But since E
∗ never occurs on ω, we see that E∗ occurs at

most V |J | times on ψ. Therefore, given ψ, we see that there are at most

(

V δN
δN

)

possibilities for the locations of the cubes Q (jl) ,l = 1, . . . , |J |. Also, given ψ and

the locations of the cubes Q (jl), l = 1, . . . , |J |, each such cube determines a subwalk

of ψ that has replaced some subwalk of ω. Since each of the subwalks which were

replaced by subwalks of ψ has at most 2m steps, we see that the total number of

possibilites for ω, if we are given ψ and the locations of the cubes, is bounded from

below by
(
∑2m

i=0 ci
)δN

. Finally, if we know ω and the locations of the cubes, then J is
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uniquely determined. Defining Z =
∑2m

i=0 ci, and using the elementary counting fact

that

(

V δN
δN

)

≤ 2V δN ,along with (4.3.31), we see that

number of triples ≤ 2V δNZδN

N+(2r+5)2δN
∑

i=0

ci. (4.3.33)

This is clearly a very rough estimate, but it will suffice to give us the contradiction

we desire. If we combine (4.3.31) and (4.3.32), take N -th roots and let N → ∞, using

Stirling’s formula once again, along with (4.3.28), we see that

β
ρρ

δδ (ρ− δ)ρ−δ
≤ 2V δβ1+(2r+5)2δZδ.

Thus, setting Y = 2V β(2r+5)2Z and t = δ/ρ gives

1 ≤
(

tt (1− t)1−t Y t
)ρ
.

We can see from elementary calculus that the function f (t) = tt (1− t)1−t Y t is less

than 1 for sufficiently small t > 0, since limt→0+ f (t) = 1 and limt→0+ f
′ (t) = −∞.

Therefore, we obtain a contradiction and the Lemma is thus proved.

We can now proceed to finally prove the pattern theorem. The final proof is essentially

the same as the proof of lemma 23. All of the heavy lifting has essentially been done.

Proof of Theorem 4.3.7. . First, assume without loss of generality that the cube

in the statement of the theorem is

Q =
{

x ∈ Z2 : |xi| ≤ r, i = 1, 2
}

.

As in the proof of Lemma 4.3.19, we will proceed by contradiction. That is, assume

that the theorem is false; then for every a > 0,

lim sup
N→∞

qN [aN, (P,Q)]1/N = β. (4.3.34)

We introduce one more quick bit of notation. We shall say that E∗∗ occurs at the

j-th step of ω if the enlarged cube Q (j) is completely covered by ω. Now, by Lemmas
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4.3.11 and 4.3.19 we obtain the existence of an a′ > 0 and a positive integer m′ such

that

lim sup
N→∞

qN [a′N,E∗∗ (m′)]
1/N

< β. (4.3.35)

Let a > 0 be some unspecified small number, and let HN denote the following set of

ω ∈ QN such that (P,Q) occurs at most aN times on ω and E∗∗ (m′) occurs at least

a′N times on ω. Then as in the proof of Lemma 4.3.19, the cardinality of HN satisfies

|HN | ≥ qN [aN, (P,Q)]− qN [a′N,E∗∗ (m′)] ,

and thus, by (4.3.34) and (4.3.35), we have

lim
N→∞

|HN |1/N = β. (4.3.36)

Now, once again, let δ be a small positive number which will be specified at the

end of the proof. This time, consider all triples (ω, v, J) such that: ω is in HN ;

J = {j1, . . . , js} is a subset of {1, . . . , N} such that E∗∗ (m′) occurs at the jl-th step

of ω, and the conditions in (4.3.29) hold with m replaced by m′, and s = xδNy; and v

is a quarter-plane SAW beginning at 0 that is obtained by replacing each occurrence

of E∗∗ (m′) by an occurence of (P,Q), analogously to the method described in the

proof of Lemma 4.3.19. In this case, σl and τl are defined in the same way, and we use

part (b) of Lemma 4.3.10 in order to be able to splice (P,Q) into the walk. Arguing

in the same way as for (4.3.32), we see that

number of triples ≥ |HN |
(

ρN − 2
δN

)

, (4.3.37)

where now ρ = a′/ (2m′ + 2) (we need not multiply (2m′ + 2) by V , since we are not

requiring that the enlarged cubes be disjoint. There is no need for this, since the

occurence of E∗∗ (m′) at each of the cubes ensures that the cubes be disjoint).

For the upper bound, we use the fact that v now has at most aN + 2m′V δN

occurences of (P,Q) (this allows for (i) at most aN occurences of (P,Q) on ω, and

(ii) the maximum number of possibles ways that new occurences of (P,Q) could have
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been introduced, by either creating new occurences of (P,Q) or by vacating sites of

other cubes. This is especially obvious if one sees that the number 2m′V δN can be

thought of as follows: there are δN cubes onto which we splice an occurence of (P,Q);

each one of the δN cubes is contained in a subwalk which has 2m′ steps, and for each

site in the original subwalk, the enlarged cube centered at that site intersets exactly

V cubes of radius r+2). It is also clear that since we are deleting portions of ω that

fill an entire cube, then the resulting v has at most N steps. Therefore, the analogue

of (4.3.33) is

number of triples ≤ 2aN+2m′V δNZ ′δN

N
∑

i=0

ci, (4.3.38)

where Z ′ =
∑2m′

i=0 ci. We now combine (4.3.37) and (4.3.38), put a = δ, take N -th

roots, let N → ∞, and using Stirling’s formula once again, by (4.3.36), we have

β
ρρ

δδ (ρ− δ)ρ−δ
≤ 2δ+2m′V δZ ′δβ.

Once again, as in the proof of lemma 23, this leads to a contradiction for sufficiently

small δ, and so the theorem is proven.

4.3.2 The Ratio limit theorem

The pattern Theorem is perhaps the most fundamental result about many types of

SAWs. However, it will not be used directly in our construction of the infinite length

quarter-plane SAW. Instead, we use it as something of a preliminary result to prove

the following ratio limit formula:

lim
N→∞

qN+2

qN
= β2. (4.3.39)

(4.3.39) is the fundamental tool derived from the pattern theorem that will be used

directly in the construction of the infinite length quarter-plane SAW. The following

Lemma gives three conditions which together are sufficient for (4.3.39) to hold. The

first two are very easy to verify, given what we have already done. The third is a

little more complicated.
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Lemma 4.3.40. Let {aN} be a sequence of positive numbers and let φN = aN+2/aN .

Assume that

(i) limN→∞ a
1/N
N = β,

(ii) lim infN→∞ φN > 0, and

(iii) there exists a constant D > 0 such that

φNφN+2 ≥ (φN)
2 − D

N

for all sufficiently large N . Then

lim
N→∞

φN = β2.

This theorem is proved in full generality in Madras and Slade [MS1993], and is

merely a statement about sequences of numbers. Therefore, we will skip the proof

here and leave it to the interested reader to explore it in Madras and Slade.

It is clear that (i) holds in the case that aN = qN . Also, it is not hard to see that

for sufficiently large N , we have

qN+2 ≥ qN ,

which can be seen by taking an ω ∈ QN and considering the last time it reaches its

right most excursion. One can simply splice on a piece that extends it to the right

by one unit and increases the length of the SAW by 2. This gives property (ii) in the

case that aN = qN . It is left to show that property (iii) holds for aN = qN , and this

is given by the following theorem:

Theorem 4.3.41. There exists a constant D > 0 such that

φNφN+2 ≥ (φN)
2 − D

N

for all sufficiently large N , where φN is defined by φN = qN+2/qN .

The proof of this is exactly the same as that of Theorem 7.3.2 in [MS1993].
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4.4 The infinite quarter plane SAW

We will now construct the infinite quarter-plane SAW on Z2. To begin, we define the

uniform measure on n-step quarter-plane SAWs ω ∈ QN to be the measure Pn such

that for any ω ∈ QN , we have

Pn (ω) =
1

qn
.

Let Q :=
⋃

n Qn, and extend Pn to Q by defining Pn (ω) = 0 whenever ω ∈ Qm,

m 6= n. As before, let Υ =
⋃

nΥn be the set of all irreducible quarter-plane bridges

beginning at the origin. Then given ω1, . . . , ωl ∈ Υ, we define the cylinder set

Q
(

ω1, . . . , ωl
)

by

Q
(

ω1, . . . , ωl
)

=
{

ω ∈ Q : ω = ω1 ⊕ · · · ⊕ ωl ⊕ ω̃, ω̃ ∈ Q
}

. (4.4.1)

That is, Q
(

ω1, . . . , ωl
)

is the set of all quarter-plane SAWs beginning at the ori-

gin which begin with the concatenation of the l irreducible quarter-plane bridges

ω1, . . . , ωl. If |ω1|+ · · ·+
∣

∣ωl
∣

∣ = m, then by the definition of the uniform measure, we

have, for n > m,

Pn
(

Q
(

ω1, . . . , ωl
))

=
qn−m

qn
. (4.4.2)

As in Section 2.1, we begin by constructing the measure which we will refer to

as the infinite quarter-plane SAW. As in the case of the infinite half-plane SAW, our

construction would be better named the infinite quarter-plane bridge. We will then

show that this construction “makes sense” by showing the existence of the measure,

P∞, as the limit in distribution of the uniform measures Pn as n→ ∞. This is more

aptly referred to as the infinite quarter-plane SAW, but we will show that it gives

the same distribution as our constructed measure on infinite quarter-plane SAWs. In

particular, we will prove that

lim
n→∞

Pn
(

Q
(

ω1, . . . , ωl
))

= β−m, (4.4.3)

and we will show how this can be used to construct the measure on infinite quarter-

plane SAWs. It is worth noting that (4.4.3) would easily follow from (4.4.2) if we had
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the preliminary result

lim
n→∞

qn+1

qn
= β.

To begin, observe that Conjecture 4.1.19 implies that Υ(zc) = 1. Thus, a natural

probability measure is induced on irreducible quarter-plane bridges which assigns

weight β−|ω| to each irreducible quarter-plane bridge ω starting at 0. Let νΥ denote

this probability measure. Then, for l ≥ 1, we define the probability measure νΥl

on the cartesian product Υl according to product measure. Here, we identify the

cartesian product Υl to the space of all l concatenated irreducible bridges, the first

of which begins at 0, by
(

ω1, . . . , ωl
)

↔ ω1 ⊗ · · · ⊗ ωl, and thereby obtain a measure

on the space of l concatenated irreducible quarter-plane bridges. To reiterate, given

ω1, . . . , ωl ∈ Υ, we define

νΥl

(

ω1 ⊕ · · · ⊕ ωl
)

= νΥ
(

ω1
)

· · · νΥ
(

ωl
)

(4.4.4)

= β−
∑l

i=1|ωi|.

We also write νΥl for the extension to Q given by νΥl

(

Q\Υl
)

= 0, and for the measure

on P given by (4.4.4) whenever ω1, . . . , ωl ∈ Υ, and such that νΥl (ω) = 0 if ω ∈ P is

not of the form ω = ω1 ⊕ · · · ⊕ ωl, ω1, . . . , ωl ∈ Υ.

Finally, we define νΥ∞ on Υ∞ = Υ × Υ × · · · according to the Kolmogorov con-

sistency theorem, and it should be thought of as a measure on infinite self-avoiding

paths (in fact, it is, a priori, a measure on infinite quarter-plane bridges). One should

note that the consistency conditions are built into the definition of νΥl, and thus there

are no problems in defining such a measure. Then, if Q∞
(

ω1, . . . , ωl
)

denotes the set

of all infinite length quarter-plane SAWs beginning with ω1 ⊕ · · · ⊕ ωl, and we have

|ω1|+ · · ·
∣

∣ωl
∣

∣ = m, then

νΥ∞

(

Q∞
(

ω1, . . . , ωl
))

= β−m,

and this is indeed a probability measure by (4.2.8).
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We will show that the uniform probability measures Pn converge to νΥ∞ in distri-

bution by proving (4.4.3). We will first need the following lemma:

Lemma 4.4.5.

lim
n→∞

qn+1

qn
= β.

Proof. The proof follows that given in [LSW2002]. Given a quarter-plane SAW

ω ∈ Qn, let s (ω) denote the least renewal time; that is, s (ω) is the first k such that

ω can be written as ω = ω′ ⊕ ω̃, where ω′ ∈ Υk and ω̃ ∈ Qn−k. Then observe that

qn = |Qn| ≥ |{ω ∈ Qn : s (ω) = m}| =
m
∑

k=1

υkqn−k.

Therefore, dividing by qn, we have

1 ≥
∑

0<k<m/2

(

υ2k
qn−2k

qn
+ υ2k−1

qn−2k+1

qn−1

qn−1

qn

)

.

Now, taking the lim sup as n→ ∞, we obtain

1 ≥
∑

0<k<m/2

(

υ2kβ
−2k + υ2k−1β

−2k+2 lim sup
n→∞

qn−1

qn

)

,

or

1 ≥
∑

0<k<m/2

(

υ2kβ
−2k + υ2k−1β

−2k+1 lim sup
n→∞

βqn−1

qn

)

.

Taking the limit m→ ∞, and using the fact (4.2.8), we arrive at

∞
∑

k=1

υkβ
−k ≥

∞
∑

k=1

(

υ2kβ
−2k + υ2k−1β

−2k+1 lim sup
n→∞

βqn−1

qn

)

.

Now, subtracting
∑∞

k=1 υ2kβ
−2k from both sides, we have

∞
∑

k=1

υ2k−1β
−2k+1 ≥

∞
∑

k=1

υ2k−1β
−2k+1 lim sup

n→∞

βqn−1

qn
,

or equivalently,

0 ≥
∞
∑

k=1

υ2k−1β
−2k+1

(

lim sup
n→∞

βqn−1

qn
− 1

)

,
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and since
∑∞

k=1 υ2k−1β
−2k+1 > 0, this implies that

lim sup
n→∞

qn−1

qn
≤ β−1.

This together with (4.3.39) proves the lemma.

Corollary 4.4.6. If ω1, . . . , ωl ∈ Υ with |ω1|+ · · ·+
∣

∣ωl
∣

∣ = m, then

lim
n→∞

Pn
(

Q
(

ω1, . . . , ωl
))

= β−m.

Proof. Take the limit as n→ ∞ in 4.4.2.

If we denote P∞ := limn→∞ Pn, where the limit is taken in distribution, as in the

proof of Corollary 4.4.6, then the distributions of P∞ and νΥ∞ coincide. This shows

that the definition of the infinite quarter-plane SAW is a “good” definition.
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Chapter 5

Restriction measures in the quarter plane

In chapter 4 we used Q denote the set of all z ∈ C such that Re(z) ≥ 0 and Im(z) ≥ 0.

Here we will use the same symbol to denote the interior of this set. That is, let

Q := {z ∈ C : Re(z) > 0 : Im(z) > 0}.

Here we will show the existence of quarter plane bridges for restriction measures

P
(Q,0,∞)
α for α ∈ [5/8, 1). Recall that restriction measures are measures on restriction

hulls, and that a restriction hull, K, is a stochastic process taking values in the space of

unbounded hulls in H connecting 0 to ∞. An unbounded hull K connecting 0 to ∞ is

a closed connected subset K ⊂ C such that K∩H = {0} and H\K consists of exactly

two connected components. Furthermore, we are able to parametrize these hulls in

order to obtain a growing family of hulls {Kt} such that K0 = {0} and K∞ = K. In

this section we will be considering restriction hulls on the triple (Q, 0,∞), the law for

which can be obtained by the law for restriction hulls on (H, 0,∞) through conformal

transformation. What we show in this section is a consequence of the restriction

property and conformal invariance, which essentially characterize restriction measures

(see Sections 2.3 and 3.1)

In [AC2010], it was shown that for restriction hulls under the law Pα = P
(H,0,∞)
α ,

bridge points exist Pα-a.s. This was achieved by showing that the Hausdorff dimension

for the set of bridge points of a restriction hull K under the law Pα is equal to 2−2α.

In this chapter we prove a similar result for restriction hulls on the triple (Q, 0,∞).

In section 5.1, we state the general Theorem, provide important definitions and prove

that the Hausdorff dimension of the set of quarter-plane bridge points is constant

P
(Q,0,∞)
α -a.s. In section 5.2, we prove that the Hausdorff dimension of the set of

quarter-plane bridge points is equal to the maximum of 2− 8/3α and 0, P
(Q,0,∞)
α -a.s.
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Note that the cutoff value of α for quarter-plane bridge points to exist is different

than the cutoff value for half-plane bridge points. That is, in the half-plane, bridge

points exist almost surely for 5/8 ≤ α < 1. In the quarter, plane, bridge points cease

to exist at the critical value α = 3/4. In other words, quarter-plane bridge points

exist for 5/8 ≤ α < 3/4. The α = 3/4 case remains unknown.

5.1 Definitions and initial machinery

Recall that we refer to the triple (H, 0,∞) as the canonical triple. The law for

a general triple (D, z, w) can then be obtained from the canonical triple through

conformal invariance. Given z ∈ Q, let Qz = ∂Q + z. If K is a restriction hull

under the law P
(Q,0,∞)
α , we will say that z ∈ Q is a quarter-plane bridge point for K

if K ∩ Qz = {z}. Let C denote the set of quarter-plane bridge points. We can then

state our main theorem as follows:

Theorem 5.1.1. P
(Q,0,∞)
α -almost surely, the Hausdorff dimension of C is equal to

max (2− 8/3α, 0).

Given a restriction hull K and 0 ≤ t ≤ s, we define Λt,sK to be the future hull

between times t and s. We then define θt,sK = Λt,sK − γ(t), where γ(t) is the SLEκ

curve generated by the hull K. Consider then the filtration Ft = σ(Ks : 0 ≤ s ≤ t).

According to this filtration, the restriction measures satisfy the following domain

Markov property:

The conditional law of ΛtK, given Ft, is P
(H\γ[0,t],γ(t),∞)
α ,

where here ΛtK = Λt,∞K. Recall that restriction measures on the canonical triple

satisfy the following restriction formula:

Pα{K ∩ A = ∅} = Φ′
A(0)

α, (5.1.2)
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where A is a hull in H bounded away from 0 and ΦA is a conformal map from H \A
onto A such that ΦA(z) ∼ z as z → ∞. For general triples (D, z, w), the restriction

formula is

P(D,z,w)
α {K ∩ A = ∅} = Φ′

f(A)(0)
α, (5.1.3)

where A is a hull in D not containing z and w and f is a conformal map from D onto

H such that f(z) = 0 and f(w) = ∞.

The proof of Theorem 5.1.1 relies on Proposition A.2.4. However, the one point

and two point bounds alone are not enough to conclude the result of Theorem 6.2.1.

In addition, we will need a 0-1 law, the argument of which will use the Blumenthall

0-1 law in order to conclude that the Hausdorff dimension of C is constant P
(Q,0,∞)
α -a.s.

Proposition 5.1.4. The Hausdorff dimension of C is constant P
(Q,0,∞)
α -a.s.

The proof of this theorem will mostly follow the method of the proof in [AC2010]

Proof. To begin, for 0 ≤ t ≤ s, let Ct(s) = {quarter-plane bridge points of Ks} ∩Kt

and for fixed d > 0, define the event Wt(s) = {dimH Ct(s) ≥ d}. It suffices to show

that P
(Q,0,∞)
α {W∞(∞)} = 0 or 1, for then there must exist some d0 ≥ 0 such that

P
(Q,0,∞)
α {W∞(∞)} = 0 for d < d0 and P

(Q,0,∞)
α {W∞(∞)} = 1 for d ≥ d0, from which

one could conclude that P
(Q,0,∞)
α {dimH C = d0} = 1.

Note that Ct(s) is the set of bridge points of Ks that are also bridge points of Kt.

Thus, it is easy to see that for fixed s, Ct(s) is increasing in t, and thus Wt(s) as

well. Similarly, for fixed t, increasing s only allows for the possibility of the future

hull coming down and destroying bridge points of Kt, and therefore Ct(s) and Wt(s)

are decreasing in s for fixed t. For fixed s, set

Vs =

∞
⋂

n=1

W s
n
(s) = {dimH Ct(s) ≥ d for all 0 < t ≤ s}, (5.1.5)

and then it follows that Vs is also decreasing in s. Now, for fixed s, consider K ∈
Vs \V∞. Since K ∈ Vs, it follows that dimHCt(s) ≥ d for all 0 < t ≤ s. Since K /∈ V∞,
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it follows that there exists t0 ∈ (0,∞) such that dimH Ct0(∞) < d, and thus, since

Ct(s) is increasing in t, it follows that dimH Ct(∞) < d for all t < t0. Notice then,

that one can take such a t0 to satisfy 0 < t0 ≤ s, and it follows that for such t0,

dimH Ct(∞) < d ≤ dimH Ct(s), (5.1.6)

for all 0 < t ≤ t0. But the only way that this can happen is if the future hull

ΛsK wipes out bridge points of the hull Kt, and since this must be true for all

0 < t ≤ t0, it follows that the future hull ΛsK must come arbitrarily close to either

the real axis or the imaginary axis or both, all of which are measure zero events.

Therefore, we have P
(Q,0,∞)
α (Vs \ V∞) = 0 for all s > 0, and since P

(Q,0,∞)
α (Vs) =

P
(Q,0,∞)
α (V∞) + P

(Q,0,∞)
α (Vs \ V∞), we have P

(Q,0,∞)
α (Vs) = P

(Q,0,∞)
α (V∞) for all s, and

hence

P(Q,0,∞)
α

(

∞
⋂

n=1

V 1

n

)

= P(Q,0,∞)
α (V∞). (5.1.7)

It is clear that
⋂∞

n=1 V 1

n
∈ F0+, and therefore it simply remains to show that F0+ is

independent of itself. In the case of SLE 8/3, this is true by the Blumenthal 0-1 law

for Brownian motion, since SLE 8/3 is the pushforward of Weiner measure under the

Loewner equation. For general α > 5/8, the same property holds by a standard argu-

ment. Indeed, the Domain Markov property assures that ΦKt (ΛtK) is a restriction

hull independent of Ft, and therefore if A ∈ F0+, it follows that for a bounded con-

tinuous function f on hulls (continuous with respect to the Carathedory topology),

we have

E(Q,0,∞)
α [f (ΦKt (ΛtK)) 1A] = E(Q,0,∞)

α [f (ΦKt (ΛtK))]P(Q,0,∞)
α (A) . (5.1.8)

Then, taking a limit of both sides of (5.1.8) as t → 0+, using the fact that f is

continuous on hulls, that Kt → {0} so that ΦKt goes continuously to the identity, we

get
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E(Q,0,∞)
α [f (K) 1A] = E(Q,0,∞)

α [f (K)]P(Q,0,∞)
α (A) , (5.1.9)

which shows that A is independent of all elements of F∞, and therefore of itself.

Now we use Proposition A.2.4 to prove Theorem 6.2.1. We define our thickened

sets as follows:

Definition 5.1.10. For z ∈ Q and ǫ > 0, let J(z, ǫ) be the set Qz with an ǫ-corner

removed. That is, let

J(z, ǫ) := {w ∈ Q : Im w = Im z,Re (w−z) ≥ ǫ}∪{w ∈ Q : Re w = Re z, Im (w−z) ≥ ǫ}.
(5.1.11)

Define the random set Cǫ by

Cǫ = {z ∈ Q : K ∩ J(z, ǫ) = ∅}. (5.1.12)

With this definition, the following is true P
(Q,0,∞)
α -a.s.:

Proposition 5.1.13.
⋂

ǫ>0

Cǫ = C (5.1.14)

Proof. By the definition of C, z ∈ C if and only if K ∩ Qz = {z}. But this easily

implies that z ∈ Cǫ for all ǫ > 0. For the converse, suppose that z ∈ Cǫ for all ǫ > 0.

Then it is clear that z is the only possible element of K ∩ Qz. But the set K ∩ Qζ

is nonempty for all ζ ∈ Q since restriction hulls are connected and connect 0 to ∞
P
(Q,0,∞)
α -a.s. Therefore, with P

(Q,0,∞)
α -probability 1, the set K ∩Qz = {z}.
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5.2 Hausdorff measure of the set of quarter-plane bridge

points

Now, to prove the one and two point bounds from Proposition A.2.4, we use the

following version of the restriction formula (5.1.3): Given a hull A ⊂ Q such that A is

bounded away from 0, Q \A is simply connected, let φA denote the conformal trans-

formation Φf(A), where f(z) = z2, and Φf(A) is the unique conformal transformation

from H \ f(A) onto H such that Φf(A)(0) = 0, Φf(A)(∞) = ∞ and Φf(A)(z) ∼ z as

z → ∞.

P(Q,0,∞)
α (K ∩A = ∅) = Φ′

A (0)α . (5.2.1)

In fact, it can be shown (See [Lawler2008]) that formula (5.2.1) holds for unbounded

A as well. Therefore, we can calculate the probability that, for a restriction hull in

Q, starting at 0 and ending at ∞, the point z is in the set Cǫ by the equation

P(Q,0,∞)
α {z ∈ Cǫ} = P(Q,0,∞)

α {K ∩ J(z, ǫ) = ∅} = φ′
J(z,ǫ)(0)

α. (5.2.2)

Similarly, we can get the two point estimate according to

P(Q,0,∞)
α {z, w ∈ Cǫ} = P(Q,0,∞)

α {K∩(J(z, ǫ)∪J(w, ǫ)) = ∅} = φ′
J(z,ǫ)∪J(w,ǫ)(0)

α. (5.2.3)

In order to calculate the above probabilities (5.2.2),(A.2.3), we will use the following

result due to Bálint Virág [Virág2003]

Theorem 5.2.4. Let D be a domain and let a, z be points on ∂D\A in a neighborhood

of which the boundary is differentiable, where A is a hull in D not containing a, z.

Let f be the conformal map which takes D \ A to D and fixes a, z. Then

P{B̂(a, z,D) avoids A} = f ′(a)f ′(z), (5.2.5)
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where B̂(a, z,D) is the path of a Brownian excursion in D starting at a and ending

at z.

We use the following version of this theorem to calculate φ′
J(z,ǫ)(0):

Corollary 5.2.6. Let B̂t be a Brownian excursion in Q starting at 0 and ending at

∞, and let A be a compact quarter-plane hull; a set A ⊂ Q such that A = A ∩Q,

Q \ A is simply connected and A is bounded away from 0. Then

P{B̂[0,∞) ∩ A = ∅} = φ′
A(0). (5.2.7)

We are now in a position to prove the following:

Proposition 5.2.8.

φ′
J(z,ǫ)(0) ≍ ǫ8/3, (5.2.9)

Proof. We will prove the result for the case when z = x + i, x ∈ R. We can

then obtain the full result from the scaling rule. For notational convenience, we will

continue to write z as opposed to x + i. Let B̂t be a Brownian excursion in Q.

That is, B̂t is a complex Brownian motion conditioned to stay in the quarter plane

for all time t > 0. Let Υ denote the infinite corner strip Υ = {w ∈ Q : Im(w) <

1} ∪ {w ∈ Q : Re(w) < x}. We begin by calculating the asymptotics as ǫ → 0+ for

the probability, p1, that B̂t exits Υ along the ǫ-corner gap Γǫ = {w ∈ Q : Im(w) =

1,Re(w) ∈ [x, x + ǫ)} ∪ {z ∈ Q : Re z = x, Im z ∈ [1, 1 + ǫ)}. Let τ be the first

time B̂t hits Qz. We then calculate the asymptotics as ǫ → 0+ of the probability,

p2, that, starting somewhere in the gap Γǫ, B̂[0,∞) avoids J(z, ǫ). And then by the

Strong Markov property, the probability P
(Q,0,∞)
α {K ∩ J(z, ǫ) = ∅} is asymptotically

given by the product of these two events, integrated along the starting positions of

the Brownian excursion stopped at the corresponding stopping times.

We begin computing the asymptotics as ǫ → 0+ of p1 by finding a conformal

transformation sending H onto Υ. Since Υ is a polygon with four infinite vertices,
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there exists a Schwartz-Christoffel transformation f : H → Υ. Let z1, . . . , z4 ∈ R

be the prevertices of the map f and let w1, . . . , w4 be the corresponding vertices

with respective angles πα1, . . . , πα4. In our case we have w1 = 0, w3 = x + i and

w2 = w4 = ∞. Without loss of generality, we may assume z4 = ∞, and then f takes

the form

f(z) = A+ C

∫ z

z1

(ζ − z1)
α1−1 (ζ − z2)

α2−1 (ζ − z3)
α3−1 dζ. (5.2.10)

We can then choose f so that f(z1) = 0, in which case we have A = 0. The condition

on the αk is that

α1 + α2 + α3 + α4 = 2. (5.2.11)

It is clear that we must have α1 = 1/2, α3 = 3/2. By choosing an appropriate

sequence of increasing polygons Υn, such that Υn → Υ as n→ ∞ in the Carethadory

topology (i.e. choose them such that the angles παn
2 = παn

4 for all n), we can see that

we must have α2 = α4 = 0. Therefore, equation 5.2.10 takes the form

f(z) =

∫ z

z1

(ζ − z1)
−1/2 (ζ − z2)

−1 (ζ − z3)
1/2 dζ. (5.2.12)

Let B̃t be a Brownian excursion in H starting at 0 and conditioned to leave H along

the line segment Γ = (z2,∞). Let τ̃ = inft≥0{B̃t ∈ Γ}. Let H∂H(0, x
′), x′ ∈ Γ be the

boundary Poisson kernel for paths in H, starting at 0 and ending somewhere on the

line segment Γ. The probability that B̃t ends somewhere along the gap of width 2ǫ,

(z3 − ǫ, z3 + ǫ), is given by

P{B̃τ̃ ∈ (z3 − ǫ, z3 + ǫ)} = c

∫ z3+ǫ

z3−ǫ

H∂H(0, x) dx (5.2.13)

∼ 2cH∂H(0, z3)ǫ. (5.2.14)
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We can use (5.2.13), along with the conformal invariance of Brownian excursion,

to calculate the probability p1. We want to find a power s1 ≥ 0 such that p1 ≍ ǫs1 .

Therefore, for our purposes it is sufficient to calculate the asymptotics as ǫ → 0+ of

the probability that B̂τ lands in the slit Γǫ. We proceed by looking at the image of

the interval (z3 − ǫ, z3) under the transformation f . To that end, observe that

f(z3 − ǫ) = C

∫ z3−ǫ

z1

(ζ − z1)
−1/2 (ζ − z2)

−1 (ζ − z3)
1/2 dζ (5.2.15)

∼ C(z3 − z1)
−1/2(z3 − z1)

−1

∫ z3−ǫ

z1

(ζ − z3)
1/2 dζ. (5.2.16)

Now let γ denote the upper half of semicircle of radius (z3 − ǫ − z1)/4 centered at

(z3 − ǫ− z1)/2, oriented clockwise. An elementary computation then yields

∫ z3−ǫ

z1

(ζ − z3)
1/2 dζ =

∫

γ

(ζ − z3)
1/2 dζ (5.2.17)

= const ǫ3/2. (5.2.18)

Therefore, using the conformal invariance of Brownian excursion under the map f−1,

we can conclude that

p1 = P{B̂τ ∈ Γǫ} ≍ ǫ2/3. (5.2.19)

as ǫ→ 0+. Let z′ ∈ Γǫ. We now proceed to calculate the asymptotics for

p2 = P{B̂[τ,∞) ∩ J(x+ i, ǫ) = ∅} (5.2.20)

as ǫ→ 0+.

First note that B̂t can be realized as the stochastic process Xt + iYt, where Xt, Yt

are independent Bessel-3 processes. Therefore, Re(B̂t), Im(B̂t) → ∞ as t → ∞ a.s.

Given R > 0, let QR := QRx+iR. Let Bt = B1
t + iB2

t be a complex Brownian motion
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and let τR = inf{t ≥ 0 : Bt ∈ QR}. Let η = inf{t ≥ 0 : Bt ∈ ∂B(z, ǫ)}, and let β

be the upper rightmost quarter-circle of ∂B(z, ǫ). That is, β can be parametrized by

β = z + ǫeit, 0 ≤ t ≤ π/2.

If z′ ∈ Γǫ with Im(z′) = 1, then we have

Pz′{B̂[0,∞) ∩ J(z, ǫ) = ∅} = lim
R→∞

Pz′{B[0, τR] ∩ J(z, ǫ) = ∅|B[0, τR] ⊂ Q} (5.2.21)

= lim
R→∞

Pz′{B[0, τR] ⊂ Q \ J(z, ǫ)}
Pz′{B[0, τR] ⊂ Q} (5.2.22)

Let us consider the denominator in (5.2.22). Starting at z′, in order for B[0, τR] ⊂ Q,

either B1 must reach xR before 0 while B2 ≥ R, or vice versa. It is also possible that

both B1 and B2 reach xR or R, respectively, before hitting 0 without touching QR,

and then Bt proceeds to touch QR without moving a distance O(1) away from QR.

We can obtain a lower-bound on Pz′{B[0, τR] ⊂ Q} by throwing out the curves which

do this and then come back and get arbitrarily close to ∂Q without touching it, and

then go back and get close to QR. We also throw out all of the curves that do this

more than once. Let τ 1R = inf{t ≥ 0 : B1
t = xR} and let τ 2R = inf{t ≥ 0 : B2

t = R}.
In each case we are considering, we must have τ 1R < τ 10 , τ

2
R < τ 20 , and so Gambler’s

ruin gives us our lower bound:

Pz′{B[0, τR] ⊂ Q} ≥ c−
1

R2
, (5.2.23)

where c− is a positive constant. In order to obtain our upper bound for this proba-

bility, we must take into account all of the events that we threw away to achieve our

lower bound. Note that the event {B[0, τR] ⊂ Q} can be written as {τR < τ0}, and
this event can be broken down into the disjoint union of the events A1 = ∪j{τ 1R <

τ 10 , τ
2
R < τ 20 , τ

j
R = τR} and A2 = ∪j{τ 1R < τ 10 , τ

2
R < τ 20 , τ

j
R < τR < τ0}. The event A2

consists of curves which pass the line Re(w) = xR and the line Im(w) = R and then

proceed to touch QR before touching ∂Q. But this event consists of a multitude of

curves, those which touch QR before moving a distance O(1) away from QR, and those

which move a distance O(1) away from QR and then come back to QR, and those
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which move a distance O(1) away from QR and come back any multiple of times

before touching QR. However, the same Gambler’s ruin estimate given in (5.2.23)

shows that the event that the Brownian motion moves a distance O(1) away from

QR and then comes back to touch QR doesn’t contribute asymptotically to the event

{τR < τ0} since there is at most an O(R−3) chance that this happens. Also, note that

the event that τ 1R < τ 10 , τ
2
R < τ 20 and τ0 < τR does not contribute asymptotically to

the event ∪j{τ 1R < τ 10 , τ
2
R < τ 20 , τ

j
R = τR} ∪ {τ 1R < τ 10 , τ

2
R < τ 20 , τ

1
R 6= τ 2R 6= τR} by the

same Gambler’s ruin estimate. Thus, asymptotically, the event {τ 1R < τ 10 , τ
2
R < τ 20 }

dominates Pz′{τR < τ0}, and our upper bound on the denominator in (5.2.22) is given

by

Pz′{B[0, τR] ⊂ Q} ≤ c+
1

R2
,

where c+ > c− is a positive constant, which might depend on x, and we can conclude

c−
1

R2
≤ Pz′{B[0, τR] ⊂ Q} ≤ c+

1

R2
(5.2.24)

as R → ∞.

The numerator in (5.2.22) is a bit more complicated, but comes down to the

same Gambler’s ruin estimate as that used to derive the strong approximation of the

denominator. As before, let η = inf{t ≥ 0 : Bt ∈ ∂B(z, ǫ)}. Starting at a point on

Γǫ, with strictly positive probability, we will have Bη ∈ β. Starting at a point w ∈ β,

the Brownian motion can either travel to QR before returning back down into the

ǫ-corner, or it can go back through the epsilon corner and then come back out any

number of times. To achieve our lower bound, we can assume that the Brownian

motion travels up and touches QR before passing back down through the gap. This

is a weak estimate, but it will serve our purposes. Suppose that w = z + δ1 + iδ2,

where 0 < δ1, δ2 < ǫ. By an argument similar to that used to find the upper and

lower bounds of the denominator in (5.2.22), the Gambler’s ruin estimate, along with
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the strong Markov property applied at η gives us the lower bound

Pz′{B[0, τR] ⊂ Q \ J(z, ǫ)} ≥ C−
ǫ2

(R− 1)2
,

where C− is a positive constant.

To obtain the upper bound, we need to consider the curves which, starting at

w ∈ β, dip back down below the ǫ-corner and then come back up through to touch

QR. To begin, notice that starting at a point z′ ∈ Γǫ, the probability that the

Brownian motion exits B(z, ǫ) at a point along β is bounded above by 1/2. Let

η1 = η, τ1 = τ , and for j = 2, 3, . . ., let nj = inf{t ≥ τj : Bt ∈ ∂B(z, ǫ)} and

τj = inf{t ≥ ηj−1 : Bt ∈ Γǫ}. On the event Bηj ∈ β, the probability that the

Brownian motion goes back up to touch QR while staying in Q\J(z, ǫ) can be broken

down into those curves which go up to touch QR without coming back down through

the ǫ-corner, and those curves which come back down through the ǫ corner and then

proceed to go up and hit QR. Also, on the event Bηj ∈ β, it suffices to ignore the

event that the Brownian motion dips back down a distance of O(1) in the south-west

direction of the corner, since this event doesn’t contribute asymptotically. Indeed,

if the Brownian motion travels through the ǫ-corner a distance of O(1), it has an

O(ǫ2/3) chance up making it back up through the gap, and then an O(ǫ2) chance of

making it a distance O(1) to the north-east of the ǫ-corner, and this doesn’t contribute

asymptotically. The reason that the probability of making it a distance of O(1) to

the north-east of the Γǫ is O(ǫ
2) will be discussed below.

Since each time the Brownian motion makes it back down to Γǫ from β, the

probability that it makes it back up to β is bounded above by 1/2, following a similar

argument to the one used to obtain the upper bound in the numerator for (5.2.22),
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we can bound Pz′{B[0, τR] ⊂ Q \ J(z, ǫ} from above by

Pz′{B[0, τR] ⊂ Q \ J(z, ǫ} ≤ C

∞
∑

j=1

2−jPw{τ 1R < τ 10 , τ
2
R < τ 20}

≤ C+
ǫ2

(R− 1)2
,

where C,C+ are positive constants. This leads to

C−
ǫ2

(R− 1)2
≤ Pz′{B[0, τR] ⊂ Q \ J(z, ǫ)} ≤ C+

ǫ2

(R− 1)2
. (5.2.25)

Combining this with (5.2.24), and taking lim supR→∞ on the one hand, and lim infR→∞

on the other hand, we arrive at

Pz′{B̂[0,∞) ∩ J(z, ǫ) = ∅} ≍ ǫ2,

which implies that p2 ≍ ǫ2. Therefore, we have shown that

Φ′
J(z,ǫ)(0) ≍ ǫ8/3,

and we can conclude that

P(Q,0,∞)
α {K ∩ J(z, ǫ) = ∅} ≍ ǫ8α/3.

Remark 5.2.26. We derived the bound P
(Q,0,∞)
α {K ∩ J(z, ǫ) = ∅} ≍ ǫ8/3 in the case

z = x + i. It is easy to see that for arbitrary z (that is, take r > 0 and consider

z = r(x+ i) for some x ∈ R), that the scaling rule implies that we can improve the

bound slightly to

P(Q,0,∞)
α {K ∩ J(z, ǫ) = ∅} ≍

(

ǫ

|z|

)8/3

.

And it is easy to show that this gives the desired decay of ǫ8/3 as ǫ→ 0+.

Let us now proceed to prove the following:
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Proposition 5.2.27. Let z, w ∈ Q such that |z| < |w| and J(z, ǫ) ∩ J(w, ǫ) = ∅.
Then

P(Q,0,∞)
α {K ∩ (J(z, ǫ) ∪ J(w, ǫ)) = ∅} ≤ C|z − w|−8α/3ǫ16α/3.

Proof. To prove this Proposition, it suffices to show that

Φ′
J(z,ǫ)∪J(w,ǫ)(0) ≍ |w − z|−8/3ǫ16/3. (5.2.28)

Let B̂t be a Brownian excursion in Q starting at 0 and ending at ∞. Then the

left hand side of (5.2.28) is the probability that B̂[0,∞) avoids J(z, ǫ) and J(w, ǫ).

First, the excursion needs to pass through Qz along the ǫ-corner described in the

proof of Proposition 5.2.8. Then starting at a point in the ǫ-corner of z, it must then

pass through the ǫ-corner at w and then travel up to infinity. These two events are

independent, by the strong Markov property. Note that the probability of passing

through the first gap, by Proposition 5.2.8, is O((ǫ/|z|)8/3), and that after temporarily

shifting z to 0, and applying the conditioning in the proof of Proposition 5.2.8, the

probability of the second event is O((ǫ/|w − z|)8/3). Therefore, we see that

Φ′
J(z,ǫ)∪J(w,ǫ)(0) ≍

ǫ16/3

(|z||z − w|)8/3 ,

as ǫ→ 0+, from which it is easy to see that the two point estimate A.2.3 is satisfied.

Let us now prove the main Theorem of this chapter, that dimH(C) = 2− 8/3α.

Proof of Theorem 5.1.1. Conditions 1 and 3 of Proposition A.2.4 have already

been shown (Propositions 5.2.8 and 5.2.27). Now, notice that if z + iǫ/2 ∈ Cǫ and

z + ǫ/2 ∈ Cǫ, then z ∈ C2ǫ. Let B be the open quarter disk of radius ǫ/2 subtending

an angle of π/2 from the line Re(w) = Re(z), i.e. ∂B can be parametrized by

∂B = z + ǫ/2eit, 0 ≤ t ≤ π/2. It is easy to see that

P(Q,0,∞)
α {B ⊂ Cǫ} ∼ P(Q,0,∞)

α {z + ǫ/2, z + iǫ/2 ∈ Cǫ}
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as ǫ→ 0+. It is clear that the event on the right-hand side is larger. It can possibly

contain hulls K which pass up in between the two vertical or the two horizontal lines

of J(z, 2ǫ) and J(z + ǫ/2, ǫ) and J(z + iǫ/2, ǫ). However, the event that this happens

is asymptotically insignificant. For example, the probability of the event of passing

up through the line segment, l, connecting z + i3ǫ/2 and z + ǫ/2 + iǫ is of O(ǫα)

(see [AC2010]), and then the event of then coming back down (without hitting the

vertical lines extending from the points z + ǫ/2 + i and z + i3ǫ/2) and then passing

through the ǫ/2-corner to escape to infinity is at most O(ǫ8α/3+α), leaving an overall

chance of at most O(ǫ14α/3) that the hull passes through the line segment l, doesn’t

touch the vertical lines, returns back through l, and then exits through the ǫ/2-corner.

This doesn’t contribute asymptotically to the above probability. This, along with the

implication that if z+ iǫ/2 ∈ Cǫ and z+ ǫ/2 ∈ Cǫ, then z ∈ C2ǫ, and Propositions 5.2.8

and 5.2.27, gives the following:

P(Q,0,∞)
α {B ⊂ Cǫ|z ∈ C2ǫ} ∼ P(Q,0,∞)

α {z + ǫ/2, z + iǫ/2 ∈ Cǫ|z ∈ C2ǫ}

≥ P
(Q,0,∞)
α {z + iǫ/2, z + ǫ/2 ∈ Cǫ}

P
(Q,0,∞)
α {z ∈ C2ǫ}

≥ c
ǫ−8α/3ǫ16α/3

ǫ8α/3

= c > 0

for some positive constant c. This gives condition 2 of Proposition A.2.4, which, along

with Propositions 5.2.8 and 5.2.27, is enough to conclude that

dimH(C) = max(2− 8α/3, 0) P(Q,0,∞)
α -a.s.
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Chapter 6

The fixed irreducible bridge ensemble for

self-avoiding walk.

Here we run an i.i.d sequence of n irreducible bridges under the measure on irre-

ducible bridges which gives weight β−|ω| to each irreducible bridge starting at 0. We

concatenate the n irreducible bridges and then scale by the reciprocal of the height of

the resulting bridge. This gives us a curve in the unit strip {z ∈ H : 0 < Im(z) < 1}
which starts at 0 and ends at some point along the upper boundary of the strip. If

we take n → ∞, this gives us a scaling limit on curves in the unit strip from 0 to a

point along the upper boundary. We conjecture a relationship of this scaling limit to

that of SLE8/3 in the unit strip. We provide a heuristic argument for this conjecture

as well as numerical evidence in support of the conjecture. Our evidence allows us to

give an estimate for the boundary scaling exponent related to self-avoiding walk.

6.1 Introduction

Consider the set of all infinite upper half-plane SAWs on the lattice Z2 = Z + iZ

rooted at 0, denoted H∞, under the distributional limit of the uniform measure on

HN . This measure is defined in Chapter 2, and we denote this measure by PH,∞.

Given ω ∈ H∞, ω can be decomposed into the concatenation of an i.i.d. sequence

of irreducible bridges ω1, ω2, . . . ∈ I. Let Yn = Yn(ω) denote the height of the n-th

irreducible bridge in the concatenation, that is Yn = Im ω(|ω1 ⊕ · · · ⊕ ωn|)− Im(ω0)

for ω ∈ H∞. We conjecture that there exists σ > 0 such that,

lim
n→∞

Yn
nσ

= Y, (6.1.1)
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where the limit is taken in distribution, and Y has the distribution of a stable random

variable. Now take ω ∈ H∞ and let ω̂ ∈ In denote the concatenation of the first n

irreducible bridges in ω. Scale ω̂ by 1/Yn(ω) and take n → ∞. This gives a scaling

limit of curves in the unit strip S := {z ∈ H : 0 < Im(z) < 1} starting at 0 and

ending anywhere along the upper boundary of the strip. We refer to this as the fixed

irreducible bridge scaling limit, or fixed irreducible bridge ensemble. It is then natural

to look for some relationship between the fixed irreducible bridge scaling limit and

chordal SLE 8/3.

The simplest relationship would be the following. Take a curve γ sampled from

the fixed irreducible bridge scaling limit. This gives a probability measure on curves

in the unit strip. Since these curves can end anywhere along the upper boundary

of the unit strip, it is necessary to integrate along the upper boundary of the strip

against the conjectured exit density for the scaling limit of SAW in the strip using

SLE partition functions. Let ρ(x) be the conjectured exit density for the scaling limit

of SAW in the strip. Chordal SLE 8/3 gives a probability measure on curves in the

unit strip starting at the origin and ending at some prescribed point along the upper

boundary. Thus, it might be reasonable to ask whether γ has distribution given by

chordal SLE 8/3, from 0 to x + i, integrated along the density ρ(x). In this paper,

we argue that it turns out that the answer to the above question is no, but that this

process of scaling the walk to obtain a curve in the unit strip gives chordal SLE 8/3

integrated over ρ(x) if we weight each of the scaled walks ω̂/Yn(ω), ω̂ ∈ In, by Yn(ω)
p

before taking the limit n → ∞, where the power p is conjectured to be −1/σ for σ

defined according to (6.1.1).

6.1.1 Scaling limits and SLE partition functions

In this section we review some conjectured scaling limits of self-avoiding walk, along

with SLE partition functions, which we will use in what is to come. One, which we
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have already discussed, is the fixed irreducible bridge ensemble, obtained by consider-

ing infinite length self-avoiding walks in the upper half plane starting at 0 and ending

at ∞, under the measure PH,∞ scaling by 1/Yn(ω), and letting n→ ∞.

The next two scaling limits we consider are examples of the Schramm-Loewner

evolution, introduced by Oded Schramm in [Schramms2000]. Let D ⊂ C be a

bounded,simply connected domain (other than C) and let z, w ∈ ∂D be boundary

points and v ∈ D be an interior point. Given δ > 0, let [z], [w], [v] denote the lattice

points on δZ2 which are a minimum distance from z, w and v, respectively. One can

then consider all SAWs ω in δZ2 beginning at [z] and ending at [w], constrained to

stay in D. We weight each walk by β−|ω|. The total weight of all such walks is then

Zδ(D, z;w) =
∑

ω⊂D:z→w

β−|ω|. (6.1.2)

We then define a probability measure on all such walks ω in D from [z] to [w] by

assigning probability β−|ω|/Zδ(D, z;w) to each such walk. The scaling limit as δ → 0+

is believed to exist and be equal to chordal SLE8/3 in D from z to w. We will denote

the chordal SLE8/3 measure supported on curves γ : [0, tγ] → D such that γ(0, tγ) ⊂
D, γ(0) = z, γ(tγ) = w by Pchordal

D,z,w . Of particular interest to us will be the chordal

SLE8/3 defined as above where D is the unit strip S := {z ∈ H : 0 < Im z < 1},
z = 0, and w = x + i, where x ∈ R. We will denote this probability measure by

Pchordal
S,0,x+i.

One can also consider self-avoiding walks starting at a boundary point [z] and

ending at an interior point [v]. The resulting scaling limit is thought to be radial

SLE8/3. However, we will not be concerned with radial SLE8/3 in this paper.

In the case that D = H, z = 0, and w = ∞, in order to obtain the scaling limit,

one must first find a way to define infinite length SAWs in H. This was done in

[LSW2002] and is how the measure PH,∞ was originally defined. The scaling limit of

PH,∞ as δ → 0+ is then conjectured to be Pchordal
H,0,∞ . It is worth mentioning, however,
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that one can also obtain the probability measure PH,∞ by a method that is similar

in spirit to the method for obtaining the scaling limit for SAW in bounded domains.

If we consider the set of all finite length SAWs in H starting at 0 and weight each

such walk ω by β−|ω|, then the total weight of all such walks is infinite. If, instead,

we weight each such ω by x−|ω| for x > β, then the total weight is finite. The limit as

x→ β+ has been shown to exist and to give the same measure on infinite half-plane

SAWs as the weak limit on the uniform measures [DGKLP2011].

Finally, let us consider how the normalization factor (6.1.2) depends on the bound-

ary points z, w ∈ ∂D. It is conjectured that there exists a boundary scaling exponent

b > 0 and a function H(∂D, z, w) such that as δ → 0+,

Zδ(D, z, w) ∼ δ2bH(∂D, z, w), (6.1.3)

and H(∂D, z, w) is thought to satisfy the following form of conformal covariance. If

Φ is a conformal transformation from D onto D′, with Φ(z) = z′, Φ(w) = w′, then

H(∂D, z, w) = |Φ′(z)|b|Φ′(z)|bH(∂D, z′, w′). (6.1.4)

See [LSW2002, Lawler2009, Lawler]. Note that in [LSW2002], the boundary scaling

exponent is denoted by a, whereas we are denoting it by b.

Recently, it has been shown that there are lattice effects which should persist

in the scaling limit for general domains D (see [KL2011]). Therefore, one cannot

expect equations (6.1.3) and (6.1.4) to provide a full description of the scaling limit

for general domains D ⊂ C. However, we will be restricting our attention to curves

in the domains H and S, for which there are no lattice effects expected to persist in

the scaling limit.

In section 6.3 we will use equation (6.1.4) to derive the predicted exit density for

the scaling limit of self-avoiding walks in the unit strip beginning at the origin and

ending anywhere along the upper boundary. We will denote the density by ρ(x),

where we are assuming that each walk exits the strip at some point x+ i with x ∈ R.
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In section 6.2 we state our conjecture about how to obtain chordal SLE8/3 from

the fixed irreducible bridge ensemble precisely and provide a heuristic argument. The

conjecture involves the stability parameter, σ, defined according to (6.1.1). In order

to test this conjecture (section 6.4), we require a definite value for σ. We conjecture

that σ = 4/3. In the appendix, we give a heuristic argument in support of this.

6.2 The conjecture

6.2.1 Statement of the conjecture

In order to precisely state our conjecture, we first recall some notations introduced in

section 6.1. PH,N denotes the probability measure on N -step upper-half plane SAWs

beginning at 0 defined on the lattice Z2, and PH,∞ denotes the probability measure

on infinite length SAWs in the upper half plane beginning at 0 and ending at ∞,

defined on the lattice Z2. Pchordal
S,0,x+i denotes chordal SLE8/3 measure in the unit strip

S := {z ∈ H : 0 < Im(z) < 1} on curves beginning at 0 and ending at x + i, and

ρ(x) denotes the conjectured exit density along the upper boundary Im(z) = 1 of the

scaling limit for SAW in the unit strip S, starting at 0 and ending anywhere along

the upper boundary, which can be derived using SLE partion functions (see Section

6.3.1). Then the conjecture can be stated as follows:

Conjecture 6.2.1. The fixed irreducible bridge scaling limit of the SAW and chordal

SLE8/3 in the unit strip S are related by

lim
n→∞

EH,∞

[

Yn(ω)
−1/σ1 (ω̂/Yn(ω) ∈ E)

]

EH,∞ [Yn(ω)−1/σ]
=

∫ ∞

−∞

dxρ(x)Pchordal
S,0,x+i(E), (6.2.2)

where E is an event of simple curves in the strip beginning at 0 and ending anywhere

along the upper boundary of the strip, ω ∈ H∞, and ω̂ is ω considered up to its n-th

bridge height Yn(ω).
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So, in practice, we can generate chordal SLE8/3 in the unit strip by generating

N -step SAWs ω in the half-plane for very large values of N , considered up to height

Yn(ω) for large n, scaling them to get a curve in the unit strip from 0 to the upper

boundary of the strip, and then weighting them by Yn(ω)
−1/σ. The conjectured value

of σ is 4/3 (See Appendix A.2)

6.2.2 The derivation

In order to derive Conjecture 6.2.1, we fix two heights y1 and y2, y1 < y2, which we

think of as order 1, and a large real number L > 0. We will then only consider curves

which have a bridge point in the region A = {z ∈ H : y1L ≤ Im(z) ≤ y2L}. Let

In = I ×· · ·×I (n times) be the set of all ω ∈ H∞ such that ω = ω1⊕· · ·⊕ωn, with

ω1, . . . , ωn ∈ I, i.e. the set of all concatenations of n irreducible bridges beginning at

the origin. Recall that if ω̂ ∈ In and H∞(ω̂) denotes the set of all ω ∈ H∞ such that

ω = ω̂ ⊕ ω̃ with ω̃ ∈ H∞, then we have

PH,∞ (H∞(ω̂)) = β−|ω̂|.

Therefore, the total weight of all SAWs in H∞ with a bridge pont in A is

Z(A) =
∞
∑

n=0

∑

ω̂∈In

β−|ω̂|1 (Yn(ω) ∈ [y1L, y2L]) . (6.2.3)

Now let E be an event of simple curves in the unit strip S starting at 0 and ending

anywhere along the upper boundary of the strip. We define the probability of the

event E to be N(E,A)/Z(A), where

N(E,A) =

∞
∑

n=0

∑

ω̂∈In

β−|ω̂|1 (Yn(ω) ∈ [y1L, y2L]) 1 (ω̂/Yn(ω) ∈ E) . (6.2.4)

According to the definition of PH,∞, we have

N(E,A) =
∞
∑

n=0

EH,∞ [1 (Yn(ω) ∈ [y1L, y2L]) 1 (ω̂/Yn(ω) ∈ E)] . (6.2.5)
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. Since we have fixed L to be a very large number, this forces each term in the

above sum to be zero other than those corresponding to very large values of n. Then,

according to 6.1.1, if we fix N ∈ N large enough, N−σYN should have approximately

the same distribution as n−σYn for all n sufficiently large. Therefore, the condition

Yn(ω) ∈ [y1L, y2L] can be replaced with the condition (for very large fixed N)

y1Ln
−σNσ ≤ YN(ω) ≤ y2Ln

−σNσ. (6.2.6)

Furthermore, since for large values of n, the distribution of ω̂/Yn(ω) approaches the

distribution of a curve pulled from the fixed irreducible bridge ensemble, the condition

ω̂/Yn(ω) ∈ E can be replaced with the condition ω̂/YN(ω) ∈ E. This, along with

(6.2.5) and (6.2.6) lead to

N(E,A) ≈
∞
∑

n=0

EH,∞

[

1

(

(

Nσ y1L

YN(ω)

)1/σ

≤ n ≤
(

Nσ y2L

YN(ω)

)1σ
)

1 (ω̂/YN(ω) ∈ E)

]

.

(6.2.7)

Now we move the sum on n inside the expectation and consider

∞
∑

n=0

1

(

(

Nσ y1L

YN(ω)

)1/σ

≤ n ≤
(

Nσ y2L

YN(ω)

)1/σ
)

.

This sum is easily approximated.

∞
∑

n=0

1

(

(

Nσ y1L

YN(ω)

)1/σ

≤ n ≤
(

Nσ y2L

YN(ω)

)1/σ
)

≈ NL1/σYN(ω)
−1/σ(y

1/σ
2 − y

1/σ
1 )

= cNL1/σYN(ω)
−1/σ,

where c = y
1/σ
2 − y

1/σ
1 . The factor of cNL1/σ will cancel out of both numerator and

denominator, and then taking the limit of N(E,A)/Z(A) as N → ∞, we are left with

lim
N→∞

N(E,A)

Z(A)
= lim

n→∞

EH,∞

[

Yn(ω)
−1/σ1 (ω̂/Yn(ω) ∈ E)

]

EH,∞ [Yn(ω)−1/σ]
. (6.2.8)

Next, we decompose N(E,A) by the value of the bridge heights. Given a SAW

ω ∈ H∞, let D = D(ω) be the set of bridge heights. That is, D(ω) is the set of all
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integers y ≥ 0 such that there exists n = 0, 1, . . . such that Yn(ω) = y. Then we have

N(E,A) =

∞
∑

n=0

∑

ω̂∈In

β−|ω̂|1 (ω̂/Yn(ω) ∈ E) 1 (Yn(ω) ∈ [y1L, y2L])

=
∑

y∈Z∩[y1L,y2L]

∞
∑

n=0

∑

ω̂∈In

β−|ω̂|1(ω̂/y ∈ E)1(Yn = y)

=
∑

y∈Z∩[y1L,y2L]

PH,∞(ω̂/y ∈ E, y ∈ D)

=
∑

y∈Z∩[y1L,y2L]

PH,∞(ω̂/y ∈ E|y ∈ D)PH,∞(y ∈ D).

Similarly, we find that

Z(A) =
∑

y∈Z∩[y1L,y2L]

PH,∞(y ∈ D).

In [DGKLP2011], it was shown that conditioning on the event that a SAW ω ∈ H∞

has a bridge height at y and considering the walk up to height y gives the law for

self-avoiding walk in the strip {z ∈ H : 0 < Im z < y}. Therefore, by taking y

large enough, and scaling the walk by 1/y, one should expect to get a distribution

approaching that of SAW in the unit strip S starting at 0 and ending anywhere

along the upper boundary of the strip, in the scaling limit. It follows that if we sum

PH,∞(ω̂/y ∈ E|y ∈ D) over all y ∈ Z ∩ [y1L, y2L], then take the limit L→ ∞, which

is effectively the same as taking the limit N → ∞ in 6.2.8, N(E,A)/Z(A) should

converge to the law for SLE8/3 in the unit strip, starting at 0 and ending at x + i,

x ∈ R, integrated over the density ρ(x). In other words, we have

lim
L→∞

N(E,A)

Z(A)
= lim

L→∞

∑

y∈Z∩[y1L,y2L]
PH,∞(ω̂/y ∈ E|y ∈ D)PH,∞(y ∈ D)

∑

y∈Z∩[y1L,y2L]
PH,∞(y ∈ D)

(6.2.9)

≈ lim
L→∞

cPH,∞(ω̂/L ∈ E|L ∈ D)PH,∞(L ∈ D)

cPH,∞(L ∈ D)
(6.2.10)

=

∫ ∞

−∞

dxρ(x)Pchordal
S,0,x+i(E). (6.2.11)

This completes the derivation of conjecture 6.2.1.
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6.3 SLE predictions of random variables

Here we will derive a conjecture for the exit density ρ(x), and use this conjecture, along

with SLE8/3 theory in order to derive a conjecture for the cumulative distribution

function for the right most excursion of SAW in the unit strip S := {z ∈ H : 0 <

Im(z) < 1}, beginning at 0 and ending anywhere along the upper boundary, in the

scaling limit. The calculations found in this section were carried out in the paper

[DGKLP2011], but we include them for the purpose of self-containment.

6.3.1 The density function ρ(x)

In this section we will use SLE partition functions to derive a conjecture for the

exit density, ρ(x), for the scaling limit of self-avoiding walk defined on the unit strip,

along the upper boundary. Recall that for a simply connected domain D and points

z, w ∈ ∂D, the SLE partition function H(D, z, w) satisfies the conformal covariance

property (6.1.4). It was predicted in [LSW2002] that the boundary scaling exponent

for SAW is b = 5/8. Using this value, the conformal covariance property takes the

following form: If Φ is any conformal transformation, then

H(D, z, w) = |Φ′(z)Φ′(w)|5/8H(Φ(D),Φ(z),Φ(w)). (6.3.1)

This defines H(D, z, w) up to specifying it for a particular choice of domain D and

boundary points z and w. The convention we follow is of taking H(H, 0, 1) = 1.

First note that if we take Φ to be a dilation Φ(z) = xz, for x ∈ R \ {0}, then by

(6.3.1), we have

H(H, 0, x) =

(

1

x2

)5/8

=
1

x5/4
. (6.3.2)

Therefore we can calculate H(S, 0, x+i) by considering the conformal map f : S → H

such that f(0) = 0, f(x+ i) = −eπx−1, given by f(z) = eπz−1. We have |f ′(0)| = π
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and |f ′(x+ i)| = πeπx. Thus,

H(S, 0, x+ i) = |f ′(0)|5/8 |f ′(x+ i)|5/8H(H, 0,−eπx − 1)

=

[

π2eπx

(1 + eπx)2

]5/8

=

[

π2

cosh2(πx/2)

]5/8

.

According to (6.1.3), this shows that the probability density function ρ(x) should be

given by

ρ(x) = c
[

cosh
(πx

2

)]−5/4

, (6.3.3)

where c is a normalization constant.

6.3.2 The right-most excursion

Given a SAW ω defined in the unit strip S with lattice spacing δ, let X(ω) =

maxj Re ω(j) denote the rightmost excursion of ω, i.e. the right-most point on the

SAW in the strip. Based on the results of Section 6.3.1, we conjecture that, in the

scaling limit, X has distribution given by

lim
δ→0+

P (X < ξ) =

∫ ∞

−∞

Pchordal
S,0,x+i

(

max
t

Re γ(t) < ξ
)

ρ(x) dx, (6.3.4)

where γ(t) is an SLE8/3 curve in the unit strip, starting at 0 and ending at x+ i, and

ρ(x) is given by (6.3.3). To calculate Pchordal
S,0,x+i (maxt Re(γ(t)) < ξ), we use the following

form of conformal invariance: If D is a simply connected domain, z, w ∈ ∂D, and

f : D → D′ is a conformal transformation,

Pchordal
D,z,w (γ[0,∞) ∩A = ∅) = Pchordal

D′,f(z),f(w) (γ̃[0,∞) ∩ f(A) = ∅) , (6.3.5)

where Pchordal
D,z,w denotes chordal SLE8/3 measure in D, starting at z and ending at w,

Pchordal
D′,f(z),f(w) denotes chordal SLE8/3 measure in D′, starting at f(z) and ending at

f(w), and A is a closed set such that A ⊂ D, z, w /∈ A, A ∩ D ⊂ ∂D and D \ A is

simply connected.
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Conformal invariance is built into the definition of every SLEκ measure. However,

SLE8/3 measure also satisfies the following restriction property: If D is a simply

connected domain, z, w ∈ ∂D, and D′ ⊂ D is another simply connected domain with

z, w ∈ ∂D′, then

Pchordal
D,z,w (γ[0,∞) ∩ A = ∅|γ[0,∞) ⊂ D′) = Pchordal

D′,z,w (γ̃[0,∞) ∩ A = ∅) , (6.3.6)

where A is as in (6.3.5), along with the assumption that A ⊂ D′. Recall that for the

family of restriction measures Pα, we have the following restriction formula:

Pα (K ∩ A = ∅) = Φ′
A(0)

α, (6.3.7)

for some real number α, where K is a restriction hull and ΦA is the unique conformal

transformation mapping H \ A onto H with ΦA(0) = 0, ΦA(∞) = ∞, and ΦA(z) =

z + o(1) as z → ∞.

In the case of SLE8/3, it is known that α = 5/8, and therefore we have

Pchordal
H,0,∞ (γ[0,∞) ∩ A = ∅) = Φ′

A(0)
5/8. (6.3.8)

It is also well known that the map f(z) = eπx defines a conformal transformation

from the unit strip to the half-planeH satisfying f(0) = 1, f(x+i) = −eπx. Therefore,
the map

Ψx(z) =
eπz − 1

eπz + eπx
(6.3.9)

defines a conformal transformation from S onto H with Ψx(0) = 0 and Ψx(x+i) = ∞.

It follows then from (6.3.5) that if x < ξ,

Pchordal
S,0,x+i

(

max
t

Re(γ(t)) < ξ
)

= Pchordal
S,0,x+i (γ[0,∞) ∩ {z ∈ S : Re(z) ≥ ξ} = ∅)

= Pchordal
H,0,∞ (γ̃[0,∞) ∩Ψx ({z ∈ S : Re(z) ≥ ξ}) = ∅) .

Let A = Ψx ({z ∈ S : Re(z) ≥ ξ}). Then we can write A = {z ∈ H : |z−c(x, ξ)| ≤
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a(x, ξ)}, where

c(x, ξ) =
1

2

(

eπξ + 1

eπξ − eπx
+

eπξ − 1

eπξ + eπx

)

a(x, ξ) =
1

2

(

eπξ + 1

eπξ − eπx
− eπξ − 1

eπξ + eπx

)

.

In this case we can write down ΦA explicitly. We have

ΦA(z) = (z − c(x, ξ)) +
a(x, ξ)2

z − c(x, ξ)
. (6.3.10)

Evaluating the derivative of (6.3.10) at 0 and using (6.3.8), we find that

Pchordal
S,0,x+i

(

max
t

Re(γ(t)) < ξ
)

= Φ′
A(0)

5/8

=

[

1−
(

a(x, ξ)

c(x, ξ)

)2
]5/8

.

Therefore, we can calculate the distribution of the right most excursion of SAW

in the strip in the scaling limit by

lim
δ→0+

P (X < ξ) =

∫ ξ

−∞

[

1−
(

a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx,

where ρ(x) is given by (6.3.3). Thus, by our Conjecture, 6.2.1, we should have

lim
n→∞

EH,∞

[

Yn(ω)
−1/σ1(maxj ωj/Yn(ω) < ξ)

]

EH,∞ [Yn(ω)−1/σ]
=

∫ ξ

−∞

[

1−
(

a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx.

(6.3.11)

6.4 Simulations

The pivot algorithm provides us with a fast Monte Carlo algorithm for simulating

the self-avoiding walk in the full plane or the half-plane. It has also recently been

shown in [DGKLP2011] that the pivot algorithm can be used to simulate self-avoiding

walks in the strip S. Taking lattice effects into account (see [KL2011]), it should

also be possible to simulate the self-avoiding walk in other domains using the pivot
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algorithm. Recently, Nathan Clisby has developed a very fast implementation of

the pivot algorithm, [Clisby2010], and that is the algorithm that we use for our

simulations.

We use the pivot algorithm to generate self-avoiding walks in the half-plane with

number of steps N = 1000K. Each iteration of the algorithm is highly correlated, so

there is no point in sampling each iteration. Instead, we sample every 100 iterations.

In this way, we generated 144, 000K samples.

We first test the conjectured density ρ(x) given by (6.3.3) against the sampled

data. We take n = 100, sample self-avoiding walks in the half-plane, considering

them up to their 100th bridge point, and then scale them by 1/Yn to get a curve

in the unit strip. To test the exit density of these curves against ρ(x), we split the

interval [−3, 3] into 600 equal parts of length dx = 0.01. We then plot a histogram (see

Figure 6.1) by summing the weights Y
−1/σ
n for each curve γ sampled which satisfies

x ≤ Re(ω(s)/Yn) < x+ dx, divided by the sum of the weights Y
−1/σ
n for every curve

sampled. Here we are using s to denote the time at which ω reaches height Yn. We

have also plotted a histogram of the exit density of the curves in the strip obtained

from our samples by normalizing by the number of samples generated instead of the

sum of the weights Y
−1/σ
n in order to show that we do not get the conjectured exit

density ρ.

Next we test the conjecture by making a prediction for the scaling exponent b in

(6.1.3) and (6.1.4). We do this by plotting the log of EN [Y
−1/σ
n 1(x ≤ Re(ω(s)/Yn) <

x + dx)] versus the log of cosh−2(π(x + dx/2)/2). We take evenly spaced values of

the interval [−1.90, 1.90] with spacing dx = 0.01. By Conjecture 6.2.1, we should

have

log
(

EN [Y
−1/σ
n 1(x ≤ Re(ω(s)/Yn) < x+ dx)]

)

= b log
(

cosh−2(π(x+ dx/2)/2)
)

+const.

(6.4.1)

Therefore, the data points should lie on a line. The slope of the line should be b,
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Figure 6.1. Histogram of exit points with the appropriate weighting along the upper
boundary of the strip for the fixed irreducible bridge ensemble. The conjectured
density ρ(x) is represented by the solid curve, while the histogram is represented by
the data points.

which is conjectured to be 5/8 = 0.625.

The line shown in Figure 6.3 is a least-squares fit to the data, the slope of which

is 0.625303. If we let b denote the slope of our least-squares fit, then comparing b

with the conjectured value, we have

b− 5/8 = 0.000303. (6.4.2)

We have also plotted a log-log graph of the expected value of 1(x ≤ Re(ω(s)/Yn) <

x + dx) versus cosh−2(π(x + dx/2)/2 by calculating the expected value through

the number of samples as opposed to summing the weights Y
−1/σ
n . This should be

compared to Figure 6.3. The slope of the least-squares fit in this case is 0.444367. We

don’t expect this to mean anything, since if the log-log plot of the sample points were

linear, it would imply that the exit density of the fixed irreducible bridge ensemble

is harmonic measure raised to some power, and we do not expect this to be true. In
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Figure 6.2. Histogram of exit points along the upper boundary of the strip obtained
by normalizing by the number of samples generated, as opposed to normalizing by
the sum of the weights Y

−1/σ
n . Once again ρ(x) is represented by the solid curve.

fact, a careful observation of Figure 6.4

Next, we perform numerical tests on the rightmost excursion, which we are denot-

ing by X . After generating our self-avoiding walks in the half-plane with N = 1000K

steps, and considering them up to their 100th bridge point (i.e. taking n = 100), we

scale the walks by 1/Yn and weight the probability measure by Y
−1/σ
n . We denote the

probability obtained in this manner by PN,n. Of course this depends on the number

of steps in the walk, as well as the value of n. But for large enough values of N, n,

this measure should look very close to the fixed irreducible bridge measure. Conjec-

ture 6.2.1 then states that limN,n→∞PN,n = Pchordal
S,0,x+i, integrated against ρ(x). Given

ξ ≥ 0, by equation (6.3.11), we should have

PN,n(X < ξ) ≈
∫ ξ

−∞

[

1−
(

a(x, ξ)

c(x, ξ)

)2
]5/8

ρ(x) dx. (6.4.3)

We use numerical integration to calculate the right hand side of (6.4.3). Figure 6.5
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Figure 6.3. log-log plot of EN [Y
−1/σ
n 1(x ≤ Re(ω(s)/Yn) < x + dx)] versus

cosh−2(π(x+ dx/2)/2). The slope of the least-squares fit is 0.625303.

shows a plot of the cumulative distribution function for X under the measure PN,n

obtained from our simulations, along with the conjectured cumulative distribution

function for X given by the right hand side of (6.4.3), for values of ξ between 0 and

5. In the scale of the figure, the two curves look almost identical. In Figure 6.6, we

plot the difference between the simulated cdf for X and the conjectured cdf for X .
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Figure 6.4. log-log plot of EN [1(x ≤ Re(ω(s)/Yn) < x+ dx)] versus cosh−2(π(x+

dx/2)/2). Without taking the weights Y
−1/σ
n into account, the slope of the least-

squares fit is 0.444367.
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Figure 6.5. Plot of the conjectured cdf for the rightmost excursion of SAW in the
strip in the scaling limit as δ → 0+ and the simulated rightmost excursion for SAW
in the fixed irreducible bridge ensemble. The conjectured cdf is colored in red, while
the simulated cdf is colored in green. In the scale of the image, it is difficult to see
the difference.
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Figure 6.6. Plot of the difference in values for the conjectured cdf for the rightmost
excursion and the simulated cdf for the rightmost excursion.
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Appendix A

All the material that could not make it into

the main text

A.1 A subadditivity result

We give here a self-contained proof of a standard result about subadditivity which

we use frequently throughout the main text, especially in section 2.1. This result can

also be found in [MS1993] and [Lawler2008]

Proposition A.1.1. Let (an)
∞
n=1 be a sequence of real numbers which is subadditive,

that is, an + am ≤ an+m. Then the limit limn→∞ an exists in [−∞,∞) and is equal to

lim
n→∞

an
n

= inf
k≥1

ak
k
. (A.1.2)

Proof. It suffices to show that

lim sup
n→∞

an
n

≤ ak
k

(A.1.3)

for all k ≥ 1. For then, taking the lim infn→∞ of both sides of (A.1.3) gives the desired

result.

Given k ≥ 1, let Ak = max1≤r≤k ar. For a fixed n ∈ N and k with 1 ≤ k ≤ n, let

j be the largest integer less than or equal to n/k. Then we can write

n = jk + r for 1 ≤ r ≤ k.

Subadditivity then gives

an ≤ jak + ar ≤
n

k
ak + Ak. (A.1.4)

Dividing (A.1.4) by n and taking the lim supn→∞ then gives the desired result.
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A.2 Hausdorff dimension of random sets in C

Let m denote Lebesgue measure on C. Suppose (Cǫ)ǫ>0 is a collection of random

subsets of the complex plane under some probability measure P, and that for ǫ < ǫ′,

we have Cǫ ⊂ Cǫ′. Then if C =
⋂

Cǫ, define the following conditions (where we

use the notation f(ǫ) ≍ g(ǫ) to mean that there are positive constants c1 and c2,

independent of epsilon, z, and w, such that c1f(ǫ) ≤ g(ǫ) ≤ c2f(ǫ)):

(i) For all z ∈ C,

P{z ∈ Cǫ} ≍ ǫs (A.2.1)

(ii) There exists c > 0 such that for all z ∈ C,

P{m(Cǫ ∩ B(z, ǫ)) ≥ cǫ2|z ∈ Cǫ} ≥ c > 0 (A.2.2)

(iii) There exists c > 0 such that for all z, w ∈ C,

P{z, w ∈ Cǫ} ≤ cǫ2s|z − w|−s (A.2.3)

Proposition A.2.4. If conditions (i) and (ii) hold, then a.s. dimH(Cǫ) ≤ 2 − s. If

conditions (i) and (iii) hold, then with some strictly positive probability, dimH(Cǫ) ≥
2− s.

Proof. It suffices to show that the result holds in [0, 1]2 = [0, 1] + i[0, 1]. For the

upper bound, we create a covering of the box [0, 1]2 by open balls of radius ǫ. To

that end, let (Bi) be a collection of 4ǫ−2 open balls of radius ǫ which cover [0, 1]2. By

condition (i), the probability that the center of ball Bi is in Cǫ is bounded above by

a constant times ǫs. Let zi denote the center of Bi Then

P{Cǫ ∩ Bi 6= ∅} ≤ C ′ǫs (A.2.5)
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for some constant C ′ > 0. Thus, if we let N(ǫ) denote the (random) number of balls

of radius ǫ required to cover Cǫ, (A.2.5) then gives us

E[N(ǫ)] =
4ǫ−2

∑

i=1

P{Cǫ ∩ Bi 6= ∅}

≤ Cǫs−2

for a positive constant C. Therefore, by Chebyshev’s inequality, for all η > 0, we

have

P{N(ǫ) ≥ ǫs−2−η} ≤ Cǫη.

Now fix n ∈ N and set ǫ = 2−n. Since the sequence 2−nη is summable, it follows by

the Borel-Cantelli lemma that a.s., there exists n0 such that, for all n ≥ n0, we have

N2−n ≤ 2(2−s+η)n.

Since the family (Cǫ) is decreasing, any covering of Cǫ is also a covering of C. The

previous estimate then says that a.s., for all n large enough, it is possible to cover C

with at most 2(2−s+η)n balls of radius 2−n. Therefore, the box dimension of C is a.s.

not greater than 2− s+ η. Letting η → 0+, we obtain, with probability 1, that

dimH C ≤ dimbox C ≤ 2− s.

We have shown that if conditions (i) and (ii) hold, then a.s., the Hausdorff dimension

of C is less than or equal to 2−s. We omit the proof of the other part of the theorem,

that conditions (i) and (iii) hold, then the Hausdorff dimension of C is greater than

or equal to 2− s with strictly positive probability.

A.3 Heuristic derivation of σ

In chapter 6, it was conjectured that there exists a constant σ > 0 such that n−σYn

converges in distribution to that of a stable random variable, where Yn is the n-th

bridge height of an infinite length SAW in H. Here we give a derivation for the
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conjecture that σ = 4/3. The argument given is originally due to Tom Kennedy via

private communication.

To begin, let Bh(z) be the generating function for bridges in a strip of height

height h starting at 0. That is, if we let h(ω) denote the height of ω ∈ B. That is,

Bh(z) =
∑

ω∈B

z|ω|1(h(ω) = h).

Based on [LSW2002], Bh(z) should decay like h−1/4. The argument is essentially that

if we constrain the bridge to end at a fixed point along the upper boundary, Bh(z)

decays like h−2b, where b = 5/8. The number of endpoints that contribute to Bh(z)

is of order h, and we are left with a decay of Bh(z) ≍ h−1/4.

We will derive a relationship between Bh(z) and the cumulative distribution of

the height of an irreducible bridge. We run an i.i.d. sequence of irreducible bridges

until the total height of the concatenation strictly exceeds L. This happens with

probability 1, so

1 =

∞
∑

n=1

∑

ω1,...,ωn∈I

β−
∑n

j=1
|ωj |1(

n
∑

j=1

h(ωj) > L)1(

n−1
∑

j=1

h(ωj) ≤ L)

=
L
∑

h=0

∞
∑

n=1

∑

ω1,...,ωn∈I

β−
∑n

j=1
|ωj |1(

n−1
∑

j=1

h(ωj) = h)1(
n
∑

j=1

h(ωj) > L)

=

L
∑

h=0

∞
∑

n=1

∑

ω1,...,ωn−1∈I

β−
∑n−1

j=1
|ωj |1(

n−1
∑

j=1

h(ωj) = h)
∑

ωn∈I

β−|ωn|1(h+ h(ωn) > L).

Next we use
∑

ω∈I

β−|ω|1(h+ h(ω) > L) = P(h(ω) > L− h),

where P denotes the probability measure on irreducible bridges which assigns prob-

ability β−|ω| to each ω ∈ I. Now, we have

1 =
L
∑

h=0

∞
∑

n=1

∑

ω1,...,ωn−1∈I

β−
∑n−1

j=1
|ωj |1(

n−1
∑

j=1

h(ωj) = h)P(h(ω) > L− h)

=

L
∑

h=0

Bh(β
−1)P(h(ω) > L− h).
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Let us now assume that Bh(β
−1) ≍ h−1/4 and P(h(ω) > h) ≍ h−p for some power

p. We will split the above identity into two sums: one from 0 to L/2 − 1, and one

from L/2 to L. In the first sum, L− h/2 is at the least L/2, and so P(h(ω) > L− h)

is (up to multiplicative constants) L−p. So the first sum behaves like

L/2−1
∑

h=0

h−1/4L−p ≍ L−p+3/4.

In the second sum, h ≥ L/2, and so Bh(β
−1) is (up to multiplicative constants),

L−1/4. So the second sum behaves like

L
∑

L/2

L−1/4(L− h)−p =

L/2
∑

0

L−1/4h−p ≍ L3/4−p,

so both sums behave like L3/4−p. As L → ∞, the identity says that this cannot

diverge or go to zero, and therefore we should have p = 3/4.

In conclusion, P(h(ω) > h) decays like

P(h(ω) > h) ≍ h−3/4.

This tells us which stable process the sum of n irreducible bridges converges to in

distribution. Let Yn denote the n-th bridge height. We want to find σ so that Yn

grows like nσ. The cdf F (h) of the irreducible bridge heights converges to 1 like

1 − h−3/4 as h → ∞. If there are n irreducible bridges, the largest one will roughly

have height h, so F (h) ≈ 1− 1/n. Thus, h ∼ constn4/3, i.e. σ = 4/3.
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