- 5. You and a friend plan to purchase cars in October. The initial value of your car will be \$34,000 and will depreciate 17% each year. The initial value of your friend's car will be \$16,500 and will depreciate 12% each year. You agree to exchange cars when their values are equal.
- A. How long do you need to wait? (Give an exact value and an approximate value to the nearest month.) What is the value of your car?

Friend's car

$$V_i(t) = 16500 (1-0.12)^{t}$$

 $V_i(t) = 16500 (0.88)^{t}$

B. What would your depreciation rate have to be in order for the values of the cars to match at the above end of 7 years? Assume your friend's car still depreciates 1207

$$16500 (0.88)^{t} = 34000 (1-r)^{t}$$

$$16500 (0.88)^{7} = 34000 (1-r)^{t}$$

$$(1-r)^{7} = \frac{16500 (0.88)^{7}}{34000}$$

$$(1-r) = \sqrt{\frac{16500 (0.88)^{7}}{34000}}$$

$$(\approx 0.20635)^{5}$$

my car would have to depreciate about 20.6% per year for the values to match at the end of seven years,

6. Prove that $y = \log_a(x)$ is proportional to $y = \log(x)$. What is the proportionality constant?

$$y = \log_{a} x$$

$$50 \quad a^{3} = x$$

$$\log_{a} x^{3} = \log_{a} x$$

$$y \log_{a} x^{3} = \log_{a} x$$

$$y = \frac{1}{\log_{a}} \log_{a} x$$

loga is a constant logax is proportional to logx and me constant of proportionality is loga