EXERCISES FOR *p*-ADIC HODGE THEORY

SERIN HONG

1. Introduction

1. Let *E* be an elliptic curve over \mathbb{Q} , defined by an equation

 $y^{2} = x^{3} + ax + b$ with $a, b \in \mathbb{Q}$ and $4a^{3} + 27b^{2} \neq 0$.

- (1) Show that every nonvertical line and E have three intersection points, counted with multiplicity.
- (2) The group law on E, written additively, is given by the following properties:
 - (i) The identity element O is the point at infinity.
 - (ii) Given a point P on E, the vertical line passing through it and E have the second intersection point at -P.
 - (iii) Given two points P, Q on E with distinct x-coordinates, the line passing through them and E have the third intersection point at -(P+Q).
 - (iv) Given a point P on E, the tangent line to E at P and E have the third intersection point at -(P+P).

Given two arbitrary points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ on E, derive a formula for their sum P + Q.

Remark. It is not obvious to verify that the group law on E defined above is indeed associative. For curious readers who attempt to verify this by themselves, there are two possible approaches as follows:

- (a) One can use the formula for the group law obtained here for a direct verification.
- (b) One can use Riemann-Roch theorem to show that the group law on E agrees with the group law on $Pic^{0}(E)$, the degree 0 part of the Picard group Pic(E).
- **2.** Let *E* be an elliptic curve over \mathbb{Q} and *n* be a positive integer.
 - (1) Show that $E[n](\overline{\mathbb{Q}})$ has n^2 elements.

Hint. Look at the degree of polynomials defining the multiplication by n.

(2) Establish an identification $E[n](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}).$

Hint. Apply the fundamental theorem for finitely generated abelian groups after observing that $E[d](\overline{\mathbb{Q}})$ has d^2 elements for each divisor d of n.

Remark. If we replace the base field \mathbb{Q} with another field, the conclusions of this exercise remains valid as long as n is invertible in the base field.

3. Let *E* be an elliptic curve over \mathbb{Q} and ℓ be a prime number.

S. HONG

- (1) Show that the ℓ -adic Tate-module $T_{\ell}(E)$ is a free \mathbb{Z}_{ℓ} -module of rank 2.
- (2) Show that $T_{\ell}(E)$ carries a natural action of $\Gamma_{\mathbb{Q}}$.

Hint. Show first that $E[\ell^v]$ carries a natural action of $\Gamma_{\mathbb{Q}}$ for each positive integer v.

4. In this exercise, we give a simple analogy between the complex conjugation and the *p*-adic cyclotomic character.

(1) Let μ_{∞} denote the group of roots of unity in \mathbb{C} . Show that the complex conjugation naturally induces a character

$$\tilde{\chi}: \Gamma_{\mathbb{R}} \longrightarrow \operatorname{Aut}(\mathbb{R}) \cong \mathbb{R}^{\times}$$

with $\gamma(\zeta) = \zeta^{\tilde{\chi}(\gamma)}$ for every $\gamma \in \Gamma_{\mathbb{R}}$ and $\zeta \in \mu_{\infty}$.

- (2) Let $\mu_{p^{\infty}}$ denote the group of *p*-power roots of unity in $\overline{\mathbb{Q}}_p$. Show that the *p*-adic cyclotomic character χ yields the relation $\gamma(\zeta) = \zeta^{\chi(\gamma)}$ for every $\gamma \in \Gamma_{\mathbb{Q}_p}$ and $\zeta \in \mu_{p^{\infty}}$.
- 5. This exercise requires some knowledge on the étale cohomology and the Hodge theory.
 - (1) Directly verify the Hodge-Tate decomposition theorem for \mathbb{P}^1 .
 - (2) Show that the *p*-adic de Rham comparison theorem fails if we replace B_{dR} by \mathbb{C}_p .
- 6. Deduce the identification (1.9) from Theorem 1.2.4 and Theorem 2.1.1.
- 7. Let ν_{∞} denote the valuations on B_{dR} and $\mathbb{C}((z^{-1}))$.
 - (1) Show the identity $\deg(f) = -\nu_{\infty}(f)$ for every $f \in \mathbb{C}(z)$.
 - (2) Define the *degree* of each $f \in B_{dR}$ to be $\deg(f) := -\nu_{\infty}(f)$. Prove the identity $\deg(fg) = \deg(f) + \deg(f)$ for any $f, g \in B_{dR}$.

8. In this exercise, we provide a precise description of the Fargues-Fontaine curve X as a scheme that glues $\operatorname{Spec}(B_e)$ and $\operatorname{Spec}(B_{\mathrm{dR}}^+)$ along $\operatorname{Spec}(B_{\mathrm{dR}})$; in other words, we prove that the topological space obtained by gluing $\operatorname{Spec}(B_e)$ and $\operatorname{Spec}(B_{\mathrm{dR}}^+)$ along $\operatorname{Spec}(B_{\mathrm{dR}})$; in aturally a scheme. We define the degree function on B_{dR} as in Exercise 7.

(1) Under the identification $\mathbb{A}^1_{\mathbb{C}} = \mathbb{P}^1_{\mathbb{C}} - \infty$, prove that $\mathcal{O}_{\mathbb{P}^1_{\mathbb{C}}}$ is given by

$$\mathcal{O}_{\mathbb{P}^{1}_{\mathbb{C}}}(U) = \begin{cases} \mathcal{O}_{\mathbb{A}^{1}_{\mathbb{C}}}(U) & \text{for any open } U \subseteq \mathbb{P}^{1}_{\mathbb{C}} \text{ with } \infty \notin U, \\ \mathcal{O}_{\mathbb{A}^{1}_{\mathbb{C}}}(U-\infty)^{-} & \text{for any open } U \subseteq \mathbb{P}^{1}_{\mathbb{C}} \text{ with } \infty \in U \end{cases}$$

where we set $\mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}}(U-\infty)^- := \left\{ f \in \mathcal{O}_{\mathbb{A}^1_{\mathbb{C}}}(U-\infty) : \deg(f) \le 0 \right\}.$

(2) Let us set $X^{\circ} := \text{Spec}(B_e)$ and denote by ∞ the special point of $\text{Spec}(B_{dR}^+)$. Prove that X is indeed a scheme with the structure sheaf given by

$$\mathcal{O}_X(U) = \begin{cases} \mathcal{O}_{X^\circ}(U) & \text{for any open } U \subseteq X \text{ with } \infty \notin U, \\ \mathcal{O}_{X^\circ}(U - \infty)^- & \text{for any open } U \subseteq X \text{ with } \infty \in U \end{cases}$$

where we set $\mathcal{O}_X(U-\infty)^- := \{ f \in \mathcal{O}_{X^\circ}(U-\infty) : \deg(f) \le 0 \}.$

 $\mathbf{2}$

9. Deduce properties (i), (ii) and (iv) in Theorem 2.1.2 from the original construction of the Fargues-Fontaine curve X, given by gluing Spec (B_e) and Spec (B_{dR}^+) along Spec (B_{dR}) , and the fact that B_e is a principal ideal domain.

2. Foundations of *p*-adic Hodge theory

1. For affine group schemes introduced in Example 1.1.8, verify the descriptions of their comultiplication, counit, and coinverse.

- **2.** In this exercise, we study homomorphisms between the group schemes \mathbb{G}_a and \mathbb{G}_m .
 - (1) Show that every homomorphism from \mathbb{G}_m to \mathbb{G}_a is trivial.
 - (2) If R is reduced, show that every homomorphism from \mathbb{G}_a to \mathbb{G}_m is trivial.
 - (3) If R contains a nonzero element α with $\alpha^2 = 0$, construct a nonzero homomorphism from \mathbb{G}_a to \mathbb{G}_m .
- **3.** Assume that R = k is a field of characteristic p.
 - (1) Show that the k-algebra homomorphism $k[t] \to k[t]$ which sends t to $t^p t$ induces a k-group homomorphism $f : \mathbb{G}_a \to \mathbb{G}_a$.
 - (2) Show that $\ker(f)$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- 4. Prove that an *R*-group is separated if and only if its unit section is a closed embedding.

Hint. One can identify the unit section as a base change of the diagonal morphism and conversely identify the diagonal morphism as a base change of the unit section.

- **5.** Assume that R = k is a field of characteristic p.
 - (1) Verify that the k-group $\alpha_{p^2} := \text{Spec}(k[t]/t^{p^2})$ with the natural additive group structure on $\alpha_{p^2}(B) = \left\{ b \in B : b^{p^2} = 0 \right\}$ for each k-algebra B is finite flat of order p^2 .
 - (2) Show that $\alpha_{p^2}^{\vee}$ admits an isomorphism $\alpha_{p^2}^{\vee} \cong \text{Spec}(k[t, u]/(t^p, u^p))$ with the multiplication on $\alpha_{p^2}^{\vee}(B) \cong \{(b_1, b_2) \in B^2 : b_1^p = b_2^p = 0\}$ for each k-algebra B given by

$$(b_1, b_2) \cdot (b'_1, b'_2) = (b_1 + b'_1, b_2 + b'_2 - W_1(b_1, b_2))$$

where we write $W_1(t, u) := \left((t+u)^p - t^p - u^p \right) / p \in \mathbb{Z}[t, u].$

Hint. One can show that a *B*-algebra homomorphism $B[t, t^{-1}] \to B[t]/(t^{p^2})$ induces a *B*-group homomorphism $\alpha_{p^2} \to \mathbb{G}_m$ if and only if the image of *t* is of the form $f(t) = E(b_1t)E(b_2t^p)$ with $b_1^p = b_2^p = 0$, where we write $E(t) := \sum_{i=0}^{p-1} \frac{t^i}{i!}$.

(3) For $k = \overline{\mathbb{F}}_p$, show that α_{p^2} fits into a nonsplit short exact sequence

 $\underline{0} \longrightarrow \alpha_p \longrightarrow \alpha_{p^2} \longrightarrow \alpha_p \longrightarrow \underline{0}.$

- **6.** Assume that R = k is a perfect field.
 - (1) Given a finite abelian group M with a continuous Γ_k -action, show that the scheme $\underline{M}^{\Gamma_k} := \operatorname{Spec}(A)$ for $A := \left(\prod_{i \in M} \overline{k}\right)^{\Gamma_k}$ is naturally a finite étale k-group.

Hint. Since M is finite, the Γ_k -action should factor through a finite quotient.

- (2) Prove that the inverse functor for the equivalence in Proposition 1.3.4 maps each finite abelian group M with a continuous Γ_k -action to \underline{M}^{Γ_k} .
- (3) Prove that a finite étale group scheme G over a field k is a constant group scheme if and only if the Γ_k -action on $G(\overline{k})$ is trivial.

7. In this exercise, we follow the notes of Pink [Pin, §15] to present a counterexample for Proposition 1.4.15 when k is not perfect. Let us choose $c \in k$ which is not a p-th power and p-1

set
$$G := \prod_{i=0}^{n} G_i$$
 with $G_i := \operatorname{Spec} \left(k[t]/(t^p - c^i) \right).$

(1) Given a k-algebra B, verify a natural identification

 $G_i(B) \cong \left\{ b \in B : b^p = c^i \right\}$ for each $i = 0, \cdots, p-1$

and show that G(B) is a group with multiplication given by the following maps:

- $m_{ij}: G_i(B) \times G_j(B) \to G_{i+j}(B)$ for i+j < p which sends each (g, g') to gg',
- $m_{ij}: G_i(B) \times G_j(B) \to G_{i+j-p}(B)$ for $i+j \ge p$ which sends each (g, g') to gg'/c.

(2) Show that G yields a nonsplit connected-étale sequence

$$\underline{0} \longrightarrow \mu_p \longrightarrow G \longrightarrow \underline{\mathbb{Z}}/p\underline{\mathbb{Z}} \longrightarrow \underline{0}$$

Hint. To show that the sequence does not split, compare G_0 with G_i for $i \neq 0$.

- 8. Assume that R = k is a field.
 - (1) If k has characteristic 0, establish a natural identification $\operatorname{End}_{k-\operatorname{grp}}(\mathbb{G}_a) \cong k$.
 - (2) If k has characteristic p, show that $\operatorname{End}_{k\operatorname{-grp}}(\mathbb{G}_a)$ is isomorphic to the (possibly noncommutative) polynomial ring $k\langle\varphi\rangle$ with $\varphi c = c^p\varphi$ for any $c \in k$.
- **9.** Assume that R = k is a field.
 - (1) Give a proof of Theorem 1.3.10 when R = k is a field without using Theorem 1.1.16.

Hint. If k has characteristic 0, we can adjust the proof of Proposition 1.5.19 to obtain an isomorphism $G^{\circ} \simeq \text{Spec}(k[t_1, \dots, t_d])$ for some integer $d \ge 0$ and in turn find d = 0by the fact that G° is finite flat.

(2) Prove Theorem 1.1.16 when R = k is a field.

Hint. If k has characteristic 0, we can deduce the assertion from the corresponding theorem for finite groups by observing that G is étale. If k has characteristic p, we can reduce to the case where G is simple with k algebraically closed.

4

10. Use the self-duality of elliptic curves to prove that every elliptic curve over $\overline{\mathbb{F}}_p$ is either ordinary or supersingular.

- **11.** Assume that R = k is a perfect field.
 - (1) Show that the dual of every étale p-divisible group over k is connected.
 - (2) Show that every p-divisible G over k admits a natural decomposition

$$G \cong G^{\mathrm{ll}} \times G^{\mathrm{mult}} \times G^{\mathrm{\acute{e}t}}$$

with the following properties:

- (i) G^{ll} is connected with $(G^{\text{ll}})^{\vee}$ connected.
- (ii) G^{mult} is connected with $(G^{\text{mult}})^{\vee}$ étale.
- (iii) $G^{\text{ét}}$ is étale with $(G^{\text{ét}})^{\vee}$ connected.

12. Assume that R = k is a field of characteristic 0. Establish an isomorphism between the formal group laws $\mu_{\widehat{\mathbb{G}}_n}$ and $\mu_{\widehat{\mathbb{G}}_m}$ over k defined as in Example 2.2.3.

Hint. Consider the map $k[[t]] \to k[[t]]$ sending t to $\exp(t) - 1 = \sum_{n=1}^{\infty} \frac{t^n}{n!}$.

- **13.** Let K be a finite extension of \mathbb{Q}_p with uniformizer π and residue field \mathbb{F}_q .
 - (1) Show that there exists a unique formal group law μ_{π} over \mathcal{O}_K of dimension 1 with an endomorphism $[\pi] : \mathcal{O}_K[[t]] \to \mathcal{O}_K[[t]]$ sending t to $\pi t + t^q$.
 - (2) Show that μ_{π} is *p*-divisible.

Remark. The formal group law μ_{π} is a *Lubin-Tate formal group law*, introduced by the work of Lubin-Tate [LT65] as a means to construct the totally ramified abelian extensions of K.

14. For a supersingular elliptic curve E over $\overline{\mathbb{F}}_p$, show that ker $(\varphi_{E[p]})$ is isomorphic to α_p .

15. Recall that every $\alpha \in \mathbb{Z}_p$ admits a unique *p*-adic expansion $\alpha = \sum_{n=0}^{\infty} a_n p^n$ where each a_n is an integer with $0 \le a_n \le n$

is an integer with $0 \le a_n < p$.

- (1) Show that the 2-adic expansion agrees with the Teichmüler expansion on \mathbb{Z}_2 .
- (2) Show that the *p*-adic expansion does not agree with the Teichmüler expansion on \mathbb{Z}_p for p > 2.
- (3) Find the 3-adic expansion for $[2] \in \mathbb{Z}_3$.
- (4) Find the first four coefficients of the 5-adic expansion for $[2] \in \mathbb{Z}_5$.

Hint. The Teichmüler lift of an element $a \in \mathbb{F}_p$ is the unique lift $[a] \in \mathbb{Z}_p$ with $[a]^p = [a]$. One can inductively find its image in $\mathbb{Z}_p/p^n\mathbb{Z}_p = \mathbb{Z}/p^n\mathbb{Z}$ for each $n \ge 1$ by Hensel's lemma.

S. HONG

16. Assume that R = k is a perfect field of characteristic p. For each $\lambda \in \mathbb{Q}$, show that there exists a natural isomorphism $N(\lambda)^{\vee} \cong N(-\lambda)$.

17. Let A be an abelian variety over $\overline{\mathbb{F}}_p$ of dimension g.

- (1) Show that the isocrystal $\mathbb{D}(A[p^{\infty}])[1/p]$ is self-dual by using the fact that A is isogenous to its dual.
- (2) If A is ordinary in the sense that $A[p](\overline{\mathbb{F}}_p)$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\oplus g}$, show that there exists an isomorphism

$$A[p^{\infty}] \simeq (\underline{\mathbb{Q}_p}/\mathbb{Z}_p)^g \times (\mu_{p^{\infty}})^g.$$

Hint. Show that $A[p^{\infty}]^{\circ}$ has étale dual, possibly by establishing an isomorphism $\mathbb{D}(A[p^{\infty}])[1/p] \simeq N(0)^{\oplus g} \oplus N(1)^{\oplus g}$.

- **18.** Let K be a p-adic field.
 - (1) Prove that its algebraic closure \overline{K} is not *p*-adically complete.

Hint. There are at least two ways to proceed as follows:

- (a) One can observe that \overline{K} is a countable union of nowhere dense subspaces and apply the Baire category theorem to conclude.
- (b) Alternatively, one can use Krasner's lemma to produce a Cauchy sequence in \overline{K} whose limit is not algebraic over K.
- (2) Prove that \mathbb{C}_K is not discretely valued.
- **19.** Give a proof of Proposition 3.3.10 for $G = \mu_{p^{\infty}}$.
- **20.** Let K be a p-adic field and E be an elliptic curve over \mathcal{O}_K .
 - (1) Prove that E gives rise to a Γ_K -equivariant \mathbb{Z}_p -linear perfect pairing

$$T_p(E[p^{\infty}]) \times T_p(E[p^{\infty}]) \to \mathbb{Z}_p(1).$$
(2.1)

(2) Deduce that the determinant character of the Γ_K -representation $T_p(E[p^{\infty}])$ coincides with the *p*-adic cyclotomic character.

Remark. The perfect pairing (2.1) coincides with the *Weil pairing* on *E*.

21. Describe the canonical identification

$$\operatorname{Ext}^{1}_{\mathbb{C}_{K}[\Gamma_{K}]}(\mathbb{C}_{K}(-1),\mathbb{C}_{K})\cong H^{1}(\Gamma_{K},\mathbb{C}_{K}(1))$$

used in the proof of Theorem 3.4.13.

Hint. Given a Γ_K -representation V over \mathbb{C}_K with a Γ_K -equivariant short exact sequence

$$0 \longrightarrow \mathbb{C}_K \longrightarrow V \longrightarrow \mathbb{C}_K(-1) \longrightarrow 0,$$

the action of Γ_K on V(1) admits a matrix representation

$$\begin{pmatrix} \chi & c \\ 0 & 1 \end{pmatrix}$$

for some map $c : \Gamma_K \to \mathbb{C}_K(1)$. Show that c is a 1-cocycle on Γ_K in $\mathbb{C}_K(1)$ with its class in $H^1(\Gamma_K, \mathbb{C}_K(1))$ uniquely determined by the isomorphism class of V.

3. Period rings and functors

1. Let B be a (\mathbb{Q}_p, Γ_K) ring.

- (1) Show that there exists a natural bijection between $H^1(\Gamma_K, \operatorname{GL}_d(B))$ and the set of equivalence classes of free *B*-module of rank *d* with a continuous Γ_K -action.
- (2) Show that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ with $d = \dim_{\mathbb{Q}_p}(V)$ is *B*-admissibile if and only if the Γ_K -action on $V \otimes_{\mathbb{Q}_p} B$ is trivial.

2. Verify that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is \overline{K} -admissible if and only if the Γ_K -action on V factors through a finite quotient, as stated in Example 1.1.4.

Hint. Use (a strong version of) Hilbert's Theorem 90 to prove the identity $H^1(\Gamma_K, \operatorname{GL}_d(\overline{K})) = 0$ and apply the previous exercise.

3. Show that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is \mathbb{C}_K -admissibile if and only if it is Hodge-Tate with 0 as the unique Hodge-Tate weight.

4. Given an elliptic curve E over \mathcal{O}_K , prove that the Γ_K -representation $V_p(E[p^{\infty}])$ is never unramified.

5. Prove that a *p*-divisible group G over \mathcal{O}_K is étale if and only if 0 is not a Hodge-Tate weight of $V_p(G)$.

6. Given an abelian variety A over K of dimension g with good reduction, find the multiplicity for each Hodge-Tate weight of the étale cohomology group $H^n_{\acute{e}t}(A_{\overline{K}}, \mathbb{Q}_p)$.

7. Show that B_{dR}^+ is not (\mathbb{Q}_p, Γ_K) -regular.

8. Show that the category Fil_K is not abelian.

9. Show the (enhanced) functors $D_{\rm HT}$ and $D_{\rm dR}$ are not fully faithful respectively on the categories of Hodge-Tate representations and de Rham representations.

4. The Fargues-Fontaine curve

1. In this exercise, we follow an argument of Fontaine to deduce Corollary 4.1.16 from the following result:

Proposition 4.0.1 (Berger [Ber08]). The ring B_e is Bézout; in other words, the sum of two principal ideals in B_e is principal.

Let us define the degree of an element $x \in B_e$ to be the smallest integer d with $x \in t^{-d}B_{dR}^+$.

- (1) Show that $x \in B_e$ is a unit if and only if its degree is 0.
- (2) Show that every ideal I of B_e is generated by an arbitrary element of minimial degree.

2. See what happens if we mimic the construction of $\mathcal{O}_h(d, r) := (\pi_{rh,h})_* \mathcal{O}_{rh}(d)$ for \mathbb{P}^1_k with k an arbitrary field.

S. HONG

References

- [Ber08] Laurent Berger, Construction of (ϕ, γ) -modules: p-adic representations and B-pairs, Algebra & Number Theory 2 (2008), no. 1, 91–120.
- [LT65] Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Annals of Math. 81 (1965), no. 2, 380–387.
- [Pin] Richard Pink, *Finite group schemes*, ftp://ftp.math.ethz.ch/users/pink/FGS/CompleteNotes.pdf.