Math 215 — Calculus III
This webpage contains my lecture notes and exam solutions for Math 215 at the University of Michigan.
Lecture notes
- §12.1. Coordinate systems
- §12.2. Vectors, §12.3. The dot product
- §12.4. The cross product
- §12.5. Equations of lines and planes I
- §12.5. Equations of lines and planes II, §12.6. Cylinders and quadric surfaces
- §13.1 + 13.2. Vector functions and curves
- §13.3. Arclength and curvature
- §13.4. Motion in space
- §14.1. Functions of several variables
- §14.3. Partial derivatives
- §14.4. Tangent planes and linear approximations
- §14.5. The chain rule
- §14.6. Directional derivatives and the gradient vector
- §14.7. Maximum and minimum values: local extrema
- §14.7. Maximum and minimum values: global extrema
- §14.8. Lagrange multipliers
- §15.1. Double integrals over rectangles
- §15.2. Double integrals over general regions: definitions
- §15.2. Double integrals over general regions: properties
- §15.3. Double integrals in polar coordinates
- §15.4 + 15.5. Applications of double integrals
- §15.6. Triple integrals: definitions and properties
- §15.6. Triple integrals: examples
- §15.17 + 15.8. Triple integrals in cylindrical/spherical coordinates
- §16.1. Vector fields
- §16.2. Line integrals
- §16.3. The fundamental theorem for line integrals
- §16.4. Green's theorem
- §16.5. Curl and divergence
- §16.6. Parametric surfaces
- §16.7. Surface integrals: scalar functions
- §16.7. Surface integrals: vector fields
- §16.8. Stokes' theorem
- §16.9. The divergence theorem
Past exam solutions
Exam 1
Exam 2
Final exam