HW 2 Math 523a Fall 2016 Due Sep. 16, 2016

- 1. (Folland 5). If \mathcal{M} is the σ -algebra generated by \mathcal{E} , show that \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . Hint: Show that the latter object is a σ -algebra.
- 2. (part of Folland 8). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $\{E_j\}_{j\geq 1}$ be sets in \mathcal{F} . Show that $\mu(\liminf E_n) \leq \liminf_{n \to \infty} \mu(E_n)$.
- 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\{E_j\}_{j\geq 1}$ be sets in \mathcal{F} . Show that

$$\sum_{j\geq 1} \mu(E_j) < \infty \implies \mu(\limsup_n E_n) = 0.$$

- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a **probability** space.
- (a) Suppose $\{B_n\}_{n\geq 1}$ are sets in \mathcal{F} such that $\mu(B_n)=1$ for all $n\geq 1$. Show that $\mu(\cap_{n\geq 1}B_n)=1$.
- (b) Suppose $\{B_n\}_{n=1}^N$ are sets in \mathcal{F} such that $\sum_{n=1}^N \mu(B_n) > N-1$. Show that $\mu(\bigcap_{n=1}^N B_n) > 0$.
- 5. (Folland 12). Let $(\Omega, \mathcal{F}, \mu)$ be a **finite** measure space. Note that the 'symmetric difference' $E \triangle F = (E \setminus F) \cup (F \setminus E)$.
 - (a) Show, if $E, F \in \mathcal{F}$ and $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$.
- (b) Say that $E \sim F$ if $\mu(E \triangle F) = 0$. Show that \sim is an equivalence relation on \mathcal{F} .
- (c) For $E, F \in \mathcal{F}$, define $\rho(E, F) = \mu(E \triangle F)$. Show that ρ defines a metric on the space $\mathcal{F} \setminus \sim$ of equivalence classes.