HW 2 Math 523a Fall 2016 Due Sep. 30, 2016

- 1. (Folland 6). Complete the proof of Thm 1.9.
- 2. (Folland 19) Let μ^* be an outer measure on Ω induced from finite premeasure μ_0 . If $E \subset \Omega$, define the inner measure of E to be $\mu_*(E) = \mu_0(\Omega) \mu^*(E^c)$. Show E is μ^* -measurable iff $\mu_*(E) = \mu^*(E)$.
- 3. (Folland 23) Let \mathcal{A} be the collection of the empty set and finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.
 - (a) Show \mathcal{A} is an algebra on $\Omega = \mathbb{Q}$.
 - (b) Show that the σ -field generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.
- (c) Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$ in \mathcal{A} . Show μ_0 is a premeasure on \mathcal{A} , and that there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .
- 4. (Folland 29) Let E be a Lebesque measurable set, and m denote Lebesque measure.
- (a) If $E \subset N$ where N is the nonmeasurable set described in Folland 1.1, then m(E) = 0.
- (b) If $E \subset [0,1]$ and m(E) > 0, then E contains a nonmeasurable set. (Note that $E = \bigcup_{r \in R} E \cap N_r$ in the notation of 1.1).
- 5. (a useful lemma; compare Prop 1.20) Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Suppose $\mathcal{F} = \sigma(\mathcal{A})$ where \mathcal{A} is an algebra. Then, for $B \in \mathcal{F}$, we have for each $\epsilon > 0$ that there exists $A_{\epsilon} \in \mathcal{A}$ such that $\mu(B \triangle A_{\epsilon}) < \epsilon$.