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Outline

I Hydrodynamics of the ‘bulk’ mass

I ‘Replacement’ averaging principle methods
‘Entropy’ GPV method
‘Yau’s’ method

I Fluctuations of the ‘bulk’ mass and ‘occupation times’



Replacement

The main work to establish ‘hydrodynamics’ is the ‘replacement’
estimate to close the discrete evolution equations.
–This estimate is of its own interest, and may have application
in other settings.

We will discuss two main techniques which have broad validity:

I ‘entropy’ method of GPV (1988), and
I ‘relative entropy’ method of Yau (1991).



Exclusion model
Recall the simple exclusion process on Td

N = Zd/NZd consists
of a collection of continuous time RW’s, with jump probabilities
p(x , y) going from x to y , where jumps to occupied locations
are suppressed.
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Its generator is

LSE f (η) =
∑
x ,y

(
f (ηxy )− f (η)

)
η(x)(1− η(y))p(y − x)

–Invariant measures include the Bernoulli product measures

µρ =
∏

x

Bern(ρ)



As before, we will start from initial configurations distributed
according to a ‘local equilibrium’ measure

µN =
∏

x

Bern(ρ0(x/N))

where ρ0 : Td → [0,1].



Recall that we are speeding up time by Nθ and the grid spacing
is 1/N, and

ηN
t (x) = ηNθ t(x)

–Recall also the empirical measure

πN
t =

1
Nd

∑
x

ηN
t (x)δx/N .



Main aim

Let h be a local function,
e.g. h(η) = η(0)

(
1− η(1)

)
in d = 1, etc.

–Our goal is to approximate

h
(
ηN

t (x)
)

by
Eµρ(t,u) [h] =: H

(
ρ(t ,u)

)
where x = Nu.
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Recall that

η(Nε)(x) =
1

(2Nε+ 1)d

∑
|y |≤`

η(x + y)

= 〈iε, πN
s 〉

can be written in terms of πN
t .

–Here, as before,

iε(u) = (2ε)−11(|u| ≤ ε).



‘Entropy’ method

We will show in a sense that

h
(
ηN

t (x)
)
∼ H

(
η
(Nε)
t
)

from which things follow:

Indeed, as η(Nε)Nθ t (x) is a macroscopic average,
in an ε window,

it will be close to ρ(t ,u), as discussed last time.



Remark

The ‘entropy’ method works well when

I the setting is translation-invariant
I the dynamics is reversible (θ = 2)

–Elements of the ‘entropy’ method replacement though will be
useful in the asymmetric setting as well,

e.g. the upcoming 1-block lemma will hold.



Recall τx denotes a shift by x .
Let J be a test function.

Theorem. We have

lim sup
ε↓0

lim sup
N↑∞

EµN

[∣∣∣ ∫ T

0

1
Nd

∑
x

J
( x

N

)
τxVNε(η

N
s )ds

]
= 0

where
V`(η) =

{
h(η)− H

(
η(`)(0)

)}
.
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Introducing scale 1 << ` << N

Write

1
Nd

∑
x

J
( x

N

)
τxV Nε(η)

= 1
Nd

∑
x

J
( x

N

) {
τxh(η)− 1

(2`+1)d

∑
|z|≤`

τz+xh(η)
}

+ 1
Nd

∑
x

J
( x

N

) { 1
(2`+1)d

∑
|z|≤`

τz+xh(η)− H
(
η(`)(x)

)}
+ 1

Nd

∑
x

J
( x

N

) {
H
(
η(`)(x)

)
− H

(
η(Nε)(x)

)}
.



The first line on RHS introduces more averaging.

–By smoothness of J,

it is of order O(`d/(Nε)).



The second term, bringing an absolute value inside the sum,
is bounded by

‖J‖L∞

Nd

∑
x

τxW`(η)

where

W`(η) =
∣∣∣ 1
(2`+ 1)d

∑
|y |≤`

τyh(η)− H(η(`)(0))
∣∣∣.



While in the third term, as H is Lipschitz, we bound by

‖J‖L∞

Nd

∑
x

∣∣H(η(`)(x))− H(η(Nε)(x)
∣∣

≤ ‖J‖L
∞

Nd

∑
x

∣∣η(`)(x)− η(Nε)(x)∣∣.



We may further write the Nε-window term η(Nε)(x) in terms of
an average of `-window terms η(`)(x + zi) for
i = 1, . . . ,M := (2Nε+ 1)d/(2`+ 1)d :

η(Nε)(x) =
(2`+ 1)d

(2Nε+ 1)d

M∑
i=1

η(`)(x + zi) + O
(
`d

Nd

)
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Finally, ‘omitting’ `-blocks near x ,
we bound the third term:

sup
2`≤|y |≤Nε

C
Nd

∑
x

|η(`)(x)− η(`)(x + y)|+ O(`d/Nd)



1-block lemma

Let PN
t be the semigroup for the Nθ speeded up process,

and let µρ be a reference measure.

Denote the probability density

f N
T :=

1
T

∫ T

0

dµNPN
s

dµρ
ds.



With respect to the second term before,
integrating in time, taking expectation,

EµN

[ ∫ T

0

1
Nd

∑
x

τxW`(η
N
s )ds

]
= T Eµρ

[
f N
T (η)

1
Nd

∑
x

τxW`(η)
]
.

Lemma (1-block) We have

lim
`↑∞

lim
N↑∞

Eµρ
[
f N
T (η)

1
Nd

∑
x

τxW`(η)
]
= 0.



2-block lemma

Similarly, w.r.t. the third term, integrating in time and taking
expectation, we show the following.

Lemma (2-block) We have

lim
`↑∞

lim
ε↓0

lim
N↑∞

sup
2`≤|y |≤2Nε

Eµρ
[
f N
T (η)

1
Nd

∑
x

∣∣η(`)(x)− η(`)(x + y)
∣∣] = 0.



Measuring f N
T

1. Consider the relative entropy of µN with respect to µρ:

H(µN ;µρ) = EµN

[
log

dµN

dµρ

]
=
∑

x

[
ρ0(x/N) log ρ0(x/N)/ρ+ (1− ρ0(x/N)) log

1− ρ0(x/N)

1− ρ

]
This is O(Nd) as we are on the torus Td

N .



2. At time t , for the Nθ-speeded up process,
with semigroup PN

t ,
the rate of change is

d
dt

H(µNPN
t ;µρ) = NθEµρ

[dµNPN
t

dµρ
L log

dµNPN
t

dµρ

]
.



3. A calculation gives

Eµρ
[dµNPt

dµρ
L log

dµNPt

dµρ

]
≤ −2D

(√dµNPN
t

dµρ

)

where, for Exclusion,

D(h) = Eµρ
[
h(−Lh)

]
=

1
4

∑
x ,y

s(y − x)Eµρ
[(

h(ηxy )− h(η)
)2
]
.

–Here, s(z) is the symmetrization
(
p(z) + p(−z)

)
/2



4. Then (∗∗),

d
dt

H(µNPN
t ;µρ) ≤ −2NθD

(√dµNPN
t

dµρ

)
and

H(µNPN
T ;µρ) + 2Nθ

∫ T

0
D
(√dµNPN

s

dµρ

)
ds

≤ H(µN ;µρ) ≤ CNd .

**Uses a log(b/a) ≤
√

a
[√

b −
√

a
]

for a,b > 0.



5. Abbreviate and recall

I(h) = D(
√

h), and f N
T =

1
T

∫ T

0

dµNPN
s

dµρ
ds.

–By convexity of Dirichlet form,

I
(
f N
T
)
≤ CTNd−θ.



Sketch: 1-block lemma

The idea is, when localized in a `-block,
the Dirichlet form of f = f N

T vanishes in the N ↑ ∞ limit.

This means f is roughly constant.
Ergodicity w.r.t. µρ now applies.



Highlights

A. Write

Eµρ
[
f (η) · 1

Nd

∑
x

τxW`(η)
]
= Eµρ

[
Av(f ) ·W`(η)

]
= Eµρ

[
f`(η)W`(η)

]
.

where

Av(f ) =
1

Nd

∑
x

τx f (η) and f`(η) = Eµρ [Av(f )|F`].

–Here, F` = σ{η(x) : |x | ≤ `}.



B. Consider the ’`-block’ Dirichlet form

I`(w) =
∑

x ,y :|x |,|x+y |≤`

Ix ,x+y (w)

where

Ix ,x+y (w) =
1
4

s(y − x)Eµρ
[(√

w(ηxy )−
√

w(η)
)2
]
.



By translation-invariance,

Ix ,x+y (w) =
1

Nd

∑
z∈Td

N

Iz,z+y (w)

≤ 1
Nd

∑
z,z′

Iz,z′(w)

=
1

Nd I(w).

–Since p is finite-range, we have

I`(w) ≤ C`dN−d I(w).



Then, by convexity, and I(f ) ≤ CNd−θ,
we have

I`(f`) ≤ I`(Av(f ))

≤ C`dN−d I(Av(f ))

≤ C`dN−d I(f )

≤ C`dN−θ.



C. Considering limit points as N ↑ ∞, need only show

lim
`↑∞

sup
I`(f )=0

Eµρ
[
f (η)V`(η)

]
= 0.

But, looking at the form of I`,
if I`(f ) = 0,

conclude f is constant
on configurations on {−`, · · · , `} such that η(`)(0) = a.

–Here, the values 0 ≤ a ≤ 1 (in the Exclusion process).



So, it would be enough to show

lim
`↑∞

sup
0≤a≤1

Eµρ
[∣∣ 1

(2`+1)d

∑
|x |≤`

τxh(η)− H(a)
∣∣∣∣∣η(`)(0) = a

]
= 0.

–Recall H(a) = Eµa [h].
–The measure µρ is product.

–At this point, the last limit can be seen via local central limit
theorems, for instance.



A cartoon about 2-block lemma
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Replacement by Yau’s method

Recall our original framework. We start from µN and evolve the
system in time scale Nθt .

–The variables {
ηN

t (x) : x ∈ Td
N

}
are governed by distribution µN

t := µNPN
t .

These variables are not independent for t > 0,
even if the initial distribution is product.



However, suppose we believe that the system is close to the
macroscopic picture with respect to solution ρ(t ,u).

–The idea is that µN
t should be ‘close’ to a product measure

with means given by {
ρ(t , x/N) : x ∈ Td

N

}
.



Let ρ be a smooth solution of the hydrodynamic PDE,
bounded away from 0 and 1,

for 0 ≤ t ≤ T , for a T > 0
(T could be small, starting from smooth initial data).

Form, for t ≥ 0,

vN
t =

∏
x

Bern(ρ(t , x/N)).

Note: vN
0 is a local equilibrium measure.



Consider d = 1 Exclusion, but say p is asymmetric (θ = 1).

Theorem. Suppose

H(µN ; vN
0 ) = o(N).

Then,

lim
N↑∞

1
N

H(µN
t ; v

N
t ) = 0.



How does this imply hydrodynamics?

Consider the variational definition of entropy:

H(µ; ν) = sup
F

{
Eµ[F ]− logEν [eF ]

}
.

–From this, one can derive the inequality for event A:

µ(A) ≤ log 2 + H(µ; ν)

log
(
1 + 1

ν(A)

) .



Applying with µ = µN
t and v = vN

t , and

A =
{∣∣∣ 1

N

∑
x

J(x/N)ηN
t (x)−

1
N

∑
x

J(x/N)ρ(t , x/N)
∣∣∣ > ε

}
,

we need to show
vN

t (A) ≤ e−CN .

–This is a consequence of large deviation estimates for
independent variables.



Highlights

Consider a reference measure µ1/2.

Let

ψN
t (η) =

dvN
t

dµ1/2
(η)

=
∏

x

(
ρ(t , x/N)

1/2

)η(x)(1− ρ(t , x/N)

1− 1/2

)1−η(x)
.



Using the forward equation,
and some calculation(∗∗),
the derivative of relative entropy may be bounded:

d
dt

H(µN
t |νN

t )

≤ EµN
t

[ N
ψN

t (η)
L∗ψN

t (η)− ∂t logψ
N
t

]

∗∗Uses a
[
log b − log a

]
≤ b − a for a,b > 0.



So, we have

H(µN
t ; v

N
t )

≤ H(µN ; vN
0 ) +

∫ t

0
EµN

s

[ N
ψN

s (η)
L∗ψN

s (η)− ∂t logψ
N
s

]
ds.

If we can bound the integral by

o(N) + κ

∫ t

0
H(µN

s ; v
N
s )ds,

with small κ,
then we may conclude by Gronwall’s lemma.



1. The integrand can be computed.

In the context of TASEP in d = 1,
the dominant term, divided by N, is in form

EµN
t

[ 1
N

∑
x

η(x + 1)(1− η(x)) −∂xρ(t , x/N)

ρ(1− ρ)(t , x/N)

− 1
N

∑
x

η(x)
∂tρ(t , x/N)

ρ(1− ρ)(t , x/N)
+

1
N

∑
x

∂tρ(t , x/N)

(1− ρ)(t , x/N)

]
.



2. Replace, by 1-block Lemma,
the terms

η(x + 1)
(
1− η(x)

)
by η(`)(x)

(
1− η(`)(x)

)
η(x) by η(`)(x).



3. Recall

∂tρ = −∂x
(
ρ(1− ρ)

)
= (2ρ− 1)∂xρ.

Let
F (m, ρ) = −m(1−m)

ρ(1− ρ)
−m

2ρ− 1
ρ(1− ρ)

+
2ρ− 1
1− ρ

.

Then,
F (ρ, ρ) = Fm(ρ, ρ) = 0,

and ∣∣∣F (η(`)(x), ρ)− F (ρ, ρ)
∣∣∣ ≤ C

∣∣∣η(`)(x)− ρ∣∣∣2 .



Hence, the expectation in previous slide is less than

EµN
t

[C
N

∑
x

∣∣∣η(`)(x)− ρ(t , x/N)
∣∣∣2 ].

This can be bounded(∗∗), multiplying back by N, by

o(N) + κ

∫ t

0
H
(
µN

s ; v
N
s
)
ds

as desired.

**Use an entropy inequality,
and large deviations starting from vN

t .



Remarks

1. In ‘Yau’s’ method, smoothness of the solution is needed.

But, only the 1-block Lemma is used.

So, in asymmetric Exclusion, the method is valid up to the
time T that a discontinuity of solution presents.

Note: As a consequence, uniqueness of solution to the PDE is
shown up to time T .



2. However, in the ‘entropy’ method, there is no limitation on the
time T .

Both 1 and 2-blocks are used, limiting use to contexts with
say diffusive scaling.

Note: But, as a consequence, one derives existence of a weak
solution.
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Thank you!


