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Outline

I Hydrodynamics of the ‘bulk’ mass

I ‘Replacement’ averaging principle methods

I Fluctuations of the ‘bulk’ mass and ‘occupation times’
Fluctuation field limits
Connections to occupation times, etc.



Exclusion interactions
Recall, the simple exclusion process on Zd consists of a
collection of continuous time RW’s, with jump probabilities
p(x , y) going from x to y , where jumps to occupied locations
are suppressed.
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Zero-range interactions

 

i gnix x x x
x x x x x x x x x x

i
K 7 x 3 here

“At x , a clock rings at rate g(η(x)). Then, a particle at random
is selected, which moves to y with chance p(x , y)”
–Here, g is a nonnegative function, which specifies the
interaction.
–When g(k) ≡ k , the process is that of independent random
walks.



Hydrodynamic limit

Consider the d ≥ 1 nearest-neighbor symmetric Exclusion
process on Zd .

–Recall that ηN
t = ηN2t with θ = 2, and µN is an initial ‘local’

equilibrium measure associated to ρ0 : Rd → [0,1].

We have
πN

t =
1

Nd

∑
x

ηN
t (x)δx/N ⇒ ρ(t ,u)du

where
∂tρ = p(e)∆ρ.

–Here, p(e) = 1/2d .



Fluctuations from the hydrodynamic limit

One might ask about the scale of the ‘errors’ in the
hydrodynamic limit.

Define the fluctuation field

Y N
t =

1
Nd/2

∑
x

(
ηN

t (x)− EµN [ηN
t (x)]

)
δx/N .
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How does Y evolve



We may look at the evolution of

Y N
t (J) =

1
Nd

∑
x

J(x/N)
(
ηN

t (x)− EµN [ηN
t ]
)

for a test function J.

As before,

Y N
t (J) = Y N

0 (J) +

∫ t

0

(
∂t + NθL

)
Y N

s (J)ds + MY
t .



Compute

NθLY N
t (J)〉 =

Nθ

Nd/2

∑
x

J(x/N)LηN
t (x).

–Also, the time-derivative, using ∂tPN
t = NθPN

t L:

∂tY N
t (J)〉 =

−Nθ

Nd/2

∑
x

J(x/N)EµN [LηN
t (x)].

–In d = 1,

LηN
t (x) =

1
2

{
ηN

t (x + 1)− 2ηN
t (x) + ηN

t (x − 1)
)
.



If we add these together,
after summing-by-parts,

we obtain(
∂t + NθL

)
Y N

t (J)

=
p(e)

Nd/2

∑
x

∆J(x/N)
(
ηN

t (x)− EµN [ηN
t (x)]

)
+ o(1)

= Y N
t (∆J)〉+ o(1).



However, in the fluctuation field scaling,
the martingale

MN
t = Y N

t (J)− Y N
0 (J)−

∫ t

0

(
∂t + NθL

)
Y N

s (J)ds

does not vanish.



Consider the ‘square’ martingale

(MY
t )2 − Nθ

∫ t

0
L
(
Y N

s (J)
)2 − 2Y N

s (J)LY N
s (J)ds.

The time integral can be computed as∫ t

0

p(e)

Nd

∑
x

d∑
i=1

∑
±
ηN

s (x)(1− ηN
s (x ±ei)

(
∂xi J(x/N)

)2
ds + o(1).



From the ‘GPV replacements’ already proved, this integral
converges to

2p(e)

∫ t

0

∫
ρ(s,u)

(
1− ρ(s,u)

)∣∣∇J
∣∣2(u)du,

the quadratic variation of the martingale MN
t limit.



With these calculations, we may formulate steps:

Step 1:

Show tightness of

{Y N
t : t ∈ [0,T ]} in D([0,T ],S ′d ),

where S ′d is the space of tempered distributions.



Initially, at t = 0,

Y N
0 (J) =

1√
N

∑
x

J(x/N)
(
η0(x)− ρ0(x/N)

)
⇒ Y0(J),

where the mean-zero Gaussian ‘white noise’ field Y0 has
covariance

E
[
Y0(J)Y0(K )

]
=

∫
J(u)K (u)ρ0(u)(1− ρ0(u))du.



Step 2:

Identify limit points in terms of a unique ‘infinite dimensional
BM’ process.

–If Yt is a limit point, informally

dYt = p(e)∆Ytdt +
√

2p(e)dWt

–Here, for s ≤ t ,
if we had started from an invariant measure µρ
(so ρ(t ,u) ≡ ρ), then

E
[
Yt (J)Ys(K )

]
= ρ(1− ρ)

∫
JTt−sK

E
[
Wt (J)Ys(K )

]
= min{s, t}

∫
∇J · ∇Kdu



Martingale problem

More carefully, we conclude that
Yt satisfies the martingale problem:

There is a unique distribution Q governing Yt , concentrated on
C([0,T ],S ′d ), such that

Mt (J) = Yt (J)− Y0(J)− p(e)

∫ t

0
Ys(∆J)ds

Nt (J) = (Mt (J))2 − 2p(e)

∫ t

0

∫
ρ(s,u)(1− ρ(s,u))

∣∣∇J
∣∣2duds

are martingales.

–goes back to Holley-Stroock ’79



Equilibrium fluctuations in zero-range models

In other models, without the ‘closing’ properties of symmetric
exclusion, some type of ‘replacement’ will be needed. The
theory is most robust, if we start in an invariant measure µρ,
where things are already interesting.

Consider nearest-neighbor symmetric Zero-range processes,
with initial distribution µρ.



As before

Y N
t (J) =

1
Nd/2

∑
x

J(x/N)
(
ηN

t (x)− ρ
)

satisfies a discrete evolution equation.

–Here,

NθLY N
t (J) =

p(e)

Nd/2

∑
x

∆J(x/N)g(ηN
t (x)) + o(1).



Before, in the hydrodynamic scaling, g(ηN
t (x)) could be

replaced by a homogenized function of the empirical measure.

–The difficulty now is that, in dividing by Nd/2, we have less
room to manuever, and have to include more terms in the
approximation.



Boltzmann-Gibbs replacement

Theorem. We have

lim
N↑∞

Eµρ
∣∣∣ ∫ t

0

1
Nd/2

∑
x

J(x/N)

×
{

g(ηN
s (x))− φ(ρ)− φ′(ρ)

(
ηN

s (x)− ρ
)}

ds
∣∣∣2 = 0.

–Recall, that ρ(t ,u) ≡ ρ, as we start from µρ.

–Goes back to Brox-Rost ’84



In a sense, to one more order,

g(ηN
t ) ∼ E

[
g(ηN

t (x))|η(Nε)Nθ t

]
∼ φ(ρ) + φ′(ρ)

(
η
(Nε)
Nθ t − ρ

)
.



The associated martingale MN
t (H) has quadratic variation,∫ t

0

2p(e)

Nd

∑
x

∣∣∇H
∣∣2(x/N)g(ηN

s )ds

∼ 2p(e)φ(ρ)‖∇H‖2L2 t .



With the BG principle,
we obtain

dYt (H) = p(e)φ′(ρ)Yt (∆H)dt +
√

2p(e)φ(ρ)dWt ,

more precisely written in the martingale problem format.

–Here, Wt is as before.



Comments

1. There are only few results, starting out of the invariant
measure, in more general symmetric systems.

See Chang-Yau ’92, and more recently Jara-Menezes 2018.

2. But, for fully asymmetric systems, in d = 1, there is now a
wealth of results on various objects, including ‘height function’,
via integrable probability,

to KPZ class limits: Space 1/N, time N3/2, deviation 1/
√

N.

3. For asymmetric systems, in d ≥ 2, there are less results.
Chang-Landim-Olla 2001, Landim-Olla-Varadhan 204,

Caravenna-Sun-Zygouras ’20, Chatterjee-Dunlap ’20, Gu ’21,
Cannizzaro-Erhard-Toninelli ’21



A look at ‘local’ statistics

Other statistics are of course of interest,
such as ‘current’ through a bond,
‘occupation time’ at a site, or
the motion of a distinguished particle, a ‘tagged’ particle, etc.

–To consider something different, let’s look at ‘occupation times’
with respect to Exclusion processes.



Basic problem

In the Exclusion process on Zd ,
let f : Ω→ R be a local function.

What is the behavior of

Af (t) =

∫ t

0
f (ηs)ds

as t ↑ ∞?

–We will start the process under an invariant measure µρ.



Since µρ is extremal, the process is ergodic with respect to
time-shifts.

So, the a.s. law of large numbers holds:

lim
t→∞

1
t

∫ t

0
f (ηs)ds = Eµρ [f ].



Fluctuations of the occupation time

One can ask about the fluctuations. Are they diffusive and
Gaussian?

–We will now concentrate on the centered function

f (η) = η(0)− ρ.



It turns out the answers depend on

I the dimension d ,
I the structure of jump probability (e.g. symmetric or

asymmetric), and
I the density ρ.

–There are still some open questions.



Variance

Let’s try to compute the variance of Af (t):

Var(Af (t)) = Eµρ
[( ∫ t

0
f (ηs)ds

)2]
= 2

∫ t

0

∫ t

r
Eµρ
[
f (ηs)f (ηr )

]
drds.



By stationarity, since

Eµρ
[
f (ηs)f (ηr )

]
= Eµρ

[
f (ηs−r )f (η0)

]
,

we have further

Var(Af (t)) = 2
∫ t

0
(t − s)Eµρ

[
f (ηs)f (η0)

]
ds.



Two point function

With
f (η) = η(0)− ρ,

the centered occupation variable,

we may compute

Eµρ
[
(ηs(0)− ρ)(η0(0)− ρ)

]
= ρ(1− ρ)

{
Eµρ [ηs(0)|η0(0) = 1]− Eµρ [ηs(0)|η0(0) = 0]

}
.



This can be viewed in terms of ‘coupling’:

-On the RHS, in the first expectation, the origin is occupied
initially.

–In the second expectation, it is empty.



Basic coupling

Couple two copies of the Exclusion process,
starting from configurations η′ ≥ η′′, such that

η′(x) = η′′(x) for all x 6= 0, and η′(0) = 1, while η′′(0) = 0.
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The coupled system (η′t , η
′′
t ) has generator

L̄f (η′, η′′)

=
∑
x ,y

p(y − x)1(η′(x) = η′′(x) = 1)
[
f
(
(η′)xy , (η′′)xy)− f

(
η′, η′′

)]
+
∑
x ,y

p(y − x)1(η′(x) = 1, η′′(x) = 0)
[
f
(
(η′)xy , η′′

)
− f
(
η′, η′′

)]
.



Second-class particle

Here, the process η′t , for times t ≥ 0, majorizes η′′t .

–There is exactly one discrepancy, which we label Rt .

The dynamics of Rt is as follows:

It displaces Rt → Rt + z
with rate

p(z)(1− η′′(Rt + z)) + p(−z)η′′(Rt + z).
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Then, the two-point function

Eµρ
[
(ηs(0)− ρ)(η0(0)− ρ)

]
= ρ(1− ρ)

{
Eµρ [ηs(0)|η0(0) = 1]− Eµρ [ηs(0)|η0(0) = 0]

}
= ρ(1− ρ)P̄(Rs = 0).



In the symmetric model, the displacement rate

p(z)(1− η′′(Rt + z)) + p(−z)η′′(Rt + z) = p(z)

does not depend on the underlying configuration!

–So, the statistics of Rt ,
in this case,
is that of a random walk.



In the asymmetric model, however,
formally the drift of the second-class particle is

(1− 2ρ)
∑

zp(z).

–Its statistics are more involved.

–In d = 1, for nearest-neighbor systems, the a.s. law of large
numbers,

1
t

Rt → γ(1− 2ρ),

holds
Ferrari ’92, Rezakhanlou ’95, Balazs-Nagy 2017.



Fluctuations of the second-class particle are also of interest.

–In d = 1, for nearest-neighbor asymmetric systems, these
connect to fluctuations of the current and KPZ class scalings

Ferrari-Spohn 2007, Quastel-Valko 2007.
In particular,

Var(Rt ) ∼ t4/3

(Balazs-Seppalainen 2010).

–In the integrable probability literature, there is much more
detailed information for TASEP, etc.

e.g. Ferrrari-Ghoshal-Nejjar 2019.



–In d = 2, for
(
↑,→

)
systems when ρ = 1/2,

E
∣∣Rt
∣∣2 ∼ t(log t)2/3

(Yau 2002).

–In d ≥ 3, for finite-range systems,

E
∣∣Rt
∣∣2 ∼ t

(Landim-Olla-Varadhan 2004).



Back to occupation time

Recall f (η) = η(0)− ρ.

In the finite-range symmetric model,
we have

Var(Af (t)) ∼


t3/2 d = 1

t log(t) d = 2
t d ≥ 3.



In the asymmetric model, when ρ 6= 1/2,
the ‘velocity’ γ(1− 2ρ) of Rt does not vanish.

In this case, it turns out

Var(Af (t)) ∼ t



However, when ρ = 1/2, based on the order of E
∣∣Rt
∣∣2,

one conjectures that the transition probability

P̄(Rt = 0) ∼


t−2/3 d = 1

t−1/2(log t)−1/3 d = 2
t−1/2 d ≥ 3.



Accordingly,

Var(Af (t)) ∼ t
∫ t

0
P̄(Rs = 0)ds

should match the order of Var(Rt ).

–This has been proved for all (ρ,d), except in d ≤ 2 for
asymmetric Exclusion when ρ = 1/2.



Here, only superdiffusive bounds have been shown:

Var(Af (t)) ≥
{

t log log(t) d = 2
t5/4 d = 1.

–See background reference
Bernardin-Goncalves-SS 2015.



Limit distributions

Given the variance orders, what are the distributional limits of
the scaled, centered occupation time?

Consider symmetric finite-range Exclusion.
Here, χ(ρ) is proportional to

√
ρ(1− ρ).

–When d = 1, we have

1
N3/4

∫ Nt

0

(
ηs(0)− ρ

)
ds ⇒ χ(ρ)fBM3/4(t)

–When d = 2,

1√
N log N

∫ Nt

0

(
ηs(0)− ρ

)
ds ⇒ χ(ρ)BM(t).



–When d ≥ 3,

1√
N

∫ Nt

0

(
ηs(0)− ρ

)
ds ⇒ χ(ρ)BM(t).



Connection to fluctuation fields

We sketch an argument for the fBM3/4 limit.

One may approximate in d = 1 that

lim
ε→0

lim
N→∞

Eµρ
∣∣∣ 1
N3/2

∫ N2t

0

{(
ηs(0)− ρ

)
− 1√

N

∑
x

iε(x/N)
(
ηN2s(x)− ρ

)}
ds
∣∣∣2 = 0

by a ‘local’ BG principle.



Then, the occupation time

1
(N2)3/4

∫ N2t

0
(ηs(0)− ρ)ds ∼

∫ t

0

√
N

N

∑
x

iε(x/N)
(
ηN2s(x)− ρ

)
ds

=

∫ t

0
Y N

s (iε)ds.

where we recall the fluctuation field

Y N
t
(
iε
)

=
1√
N

∑
x

iε(x/N)
(
ηN2t (x)− ρ

)
.



Since, in the N-limit,

lim
N

Y N
t
(
iε(·)

)
= Yt (iε(·))

d
=

1√
c

Yc2t
(
iε(·/c)

)
we conclude

Z ε
t :=

∫ t

0
Ys(iε)ds

satisfies in the ε-limit

lim
ε

Z ε
t = Zt

d
=

1
c3/4 Zct .



But, as Y N
s limits to a Gaussian field,

conclude the N, ε-limit Zt

is a continuous Gaussian process with stationary increments.

Then, Zt is a fBM3/4(t).

–See Goncalves-Jara 2013; see also SS-Xu ’95, SS 2000



Kipnis-Varadhan CLT

Let ηt be a reversible Markov processes, starting in an invariant
measure µ.

Theorem (Kipnis-Varadhan ’87). Suppose

lim
t↑∞

1
t

Var(Af (t)) = σ2
f <∞.

Then,
1√
N

Af (Nt) =
1√
N

∫ Nt

0
f (ηs)ds ⇒ σf BM(t).



Hence, in d ≥ 3,
for symmetric nearest-neighbor Exclusion,
starting in µρ, we verify

1√
N

∫ Nt

0

(
ηs(0)− ρ

)
ds ⇒ χ(ρ)BM(t).



A useful inequality

Let ηt be a Markov process,
starting from an invariant measure µ.

Lemma We have

Var
(
Af (t)

)
≤ Ct Eµ

[
f (1/t − L)−1f

]
.



Here,

u = (λ− L)−1f =

∫ ∞
0

e−λtPtdt

is the solution of the resolvent equation

λu − Lu = f

–The quantity
Eµ
[
f (λ− L)−1]

is an ‘H−1’ norm, which has variational formulas that can be
estimated..

–Both BG and ‘local’ BG can be proved using this lemma, and
estimating the H−1 norm for the associated functions.
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Thank you!


