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Abstract. Consider the p-multiple range R
(p)
N which counts the number of points visited

exactly p ≥ 1 times by a one-dimensional simple symmetric random walk starting at [αN ],
for α ∈ (0, 1), up to the time of exit from DN = {0, 1, . . . , N}. We show that R

(p)
N / log(N)

converges weakly to the law of an exponential random variable with mean 1/2. Moreover, we
show, by the method of moments, that the collection of scaled multiple ranges {R(p)

N / log(N) :
p ≥ 1} in the limit is totally correlated.

1. Introduction and results

Classically, up to time n ≥ 0, the range Rn and the multiple range R(p)
n are the number of

sites visited, and number of sites visited exactly p ≥ 1 times by a simple symmetric random
walk on Zd starting at the origin. The statistics of Rn and R(p)

n have been continually stud-
ied, going back at least to the 1951 paper of Dvoretzky and Erdös [7]. For instance, recent
developments include [1], [2], and references therein. Less is known however of the statistics
of the range and multiple range when the random walk is subject to constraints.

Recently, some works have considered the statistics of the range RN = RτN and multiple
range R

(p)
N = R(p)

τN of simple symmetric random walk up to the (random) time of exit τN
from scaled domains DN ⊂ Zd. Such a setting is natural in the applied context of ‘trapping
phenomena’; see [4]. More theoretically, RN and R

(p)
N inform on the fine structure of the

‘extremal’ sojourn of the random walk, when it reaches a ‘boundary’.
The purpose of this note is to determine the scaled limits of the joint statistics of {R(p)

N :
p ≥ 1} for simple symmetric random walk in d = 1; see Theorems 1.1 and 1.2. That the
trajectory, with respect to R

(p)
N , must exit the interval DN at time τN suggests that there

may be a number of exactly ‘few’ visited sites perhaps near the exit point. Indeed, we show
that log(N) is the order of the count R

(p)
N and that R

(p)
N / log(N) converges weakly to an

exponential random variable with mean 1/2. Moreover, we show that the joint distributions
of {R(p)

N / log(N) : p ≥ 1} are totally correlated in the limit. We comment that the ‘log(N)’
scaling of R(p)

N , the exponential limit, and the total correlation of the scaled joint distribution
of multiple range counts are novel and were not anticipated. In particular, since R

(p)
N and R

(q)
N

for p ̸= q counts sites in disjoint multiple range sets, their total correlation when scaled in the
limit is not obvious.

In comparison, in the classical one-dimensional R(p)
n random walk multiple range, as the

random walk returns continually to the origin, one might feel that there is only a few, random
in number, exactly p-visited points at large times n. Indeed, see Lemma 5.1 where we calculate

2020 Mathematics Subject Classification. 60F05, 60G50, 60G17.
Key words and phrases. multiple, range, random walk, limit, exponential, exit, one dimension.

1



2 CONNER HATTON AND SUNDER SETHURAMAN

supn E0[R(1)
n ] < ∞, and see also [9] which considers unscaled limits of the multiple range R(p)

2n
constrained to return to the origin at time 2n.

Previously, [3] studied the range RN of simple symmetric random walk in d = 1 starting
from [αN ] ∈ DN = [0, 1, . . . , N ] for α ∈ (0, 1), showing convergence to an explicit distribution
RN/N ⇒ Fα depending on α.

In d ≥ 2, [5] studied the range RN and multiple range R(p)
N of simple symmetric random walk

starting at [αN ] ∈ DN = ND up to the time of exit τN from DN for bounded sets D ⊂ Rd.
In d = 2, RN/(N2/ log(N)) and R

(p)
N /(N2/ log(N)) converge to πτα,D and 2π2τα,D. Whereas

in d ≥ 3, RN/N2 and R
(p)
N /N2 converge to (d/2)(1− p0,d) and (d/2)(1− p0,d)

2pp−1
0,d τα,D. Here,

τα,D is the exit time of Brownian motion from the domain D starting at α ∈ D.
One can understand the scalings a(N) = N2/ log(N) in d = 2 and a(N) = N2 in d ≥ 3

with respect to RN and R
(p)
N given that (1) τN/N2 converges weakly to dτα,D, and (2) the a.s.

limits of the classical range and multiple ranges Rn/a(
√
n) to nontrivial constants [7], [8], [11],

[12]. Similarly, the scaling a(N) = N in d = 1 for the range RN is consistent as the classical
Rn/a(

√
n) converges weakly to the span of a Brownian motion up to time 1 [10].

In terms of the literature, the limits of {R(p)
N / log(N) : p ≥ 1} in d = 1 in Theorems 1.1 and

1.2 complete a discussion of the general problem.
We now introduce basic notation and state our results formally. Let {Xn : n ∈ N} be a

one-dimensional simple symmetric random walk on Z, that is,

P[Xn+1 = x± 1|Xn = x] =
1

2
.

Let Tx = T
(1)
x = inf{n ≥ 0 : Xn = x} be the first time the point x is visited, and T

(p)
x =

inf{n > T
(p−1)
x : Xn = x} be the time that the point x is visited exactly p > 1 times. Let

τN = min{T0, TN} be the time of exit from DN = [0, 1, . . . , N ]. We will set the starting point
of the random walk as X0 = [αN ] where 0 < α < 1 and N ∈ N is a scaling factor.

By translation-invariance, the model is the same as when the random walk starts at the
origin and τN is the exit time from the interval [−[αN ], N− [αN ]]. In this way, all the random
variables {R(p)

N : p ≥ 1, N ≥ 1} may be viewed to be all on the same probability space.
Let Z be an exponential random variable with mean 1/2. Note that the moment E

[
Zj
]
=

j!/2j for j ≥ 1.

Theorem 1.1. Let 1 ≤ p1 < . . . < pn for n ≥ 1. We have the weak convergence of the joint
distribution,

lim
N→∞

(
R

(p1)
N

log(N)
,
R

(p2)
N

log(N)
, . . . ,

R
(pn)
N

log(N)

)
= (Z,Z, . . . , Z).

From consideration of moments (cf. for instance Section 2.3.e in [6]), Theorem 1.1 follows
directly from the following result.

Theorem 1.2. For n ≥ 1, let 0 ≤ j1, . . . , jn, 1 ≤ p1 < · · · < pn, and Jn =
∑n

i=1 ji. Define
also the joint scaled moment,

µN
j1,...,jn(p1, . . . , pn) =

1

logJn(N)
E[αN ]

[
n∏

i=1

(
R

(pi)
N

)ji]
.

Then,

lim
N→∞

µN
j1,...,jn(p1, . . . , pn) =

Jn!

2Jn
= E

[
ZJn

]
.
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1.1. Remarks. We make a few comments about the main theorems and their proofs.
1. As a consequence of Theorem 1.2, the scaled multiple ranges are indistinguishable in the

limit and completely correlated: For ϵ > 0,

lim
N→∞

P[αN ]

( ∑
1≤i,k≤n

∣∣∣ R(pi)
N

logN
−

R
(pk)
N

logN

∣∣∣ > ϵ
)
= 0.

Moreover, unlike for the range RN in d = 1 as mentioned above, the scaled limit in Theorem
1.1 does not depend on α ∈ (0, 1), that is the distance to the boundaries, as long as the
distance is at least of order N .

2. Unlike for the range RN , there is no ‘monotonicity’ property to exploit for the multiple
range R

(p)
N in that a point x ∈ DN may be visited exactly p times up to time τN but visited

more times up to time τN+1 and so may not be present in the count R
(p)
N+1. One may view

R
(p)
N in terms of local times of the random walk. However, since p < ∞, the order and limits

of R(p)
N reflect finer structure than would be seen in scaling of the local times where p grows

with N . Here, the method of proof, taking advantage of the geometry of the d = 1 setting,
relies on moment calculations via gambler’s ruin estimates and the Markov property.

3. As a complement, we mention that [3] and [5] consider the problem for simple asymmetric
random walks with right/left jump probabilities ℓ < r. Given τN/N → (1− α)/(1− p0) a.s.,
the convergences in probability RN/N → 1−α and R

(p)
N /N → (1−p0)p

p−1
0 (1−α) follow from

that of Rn/n → 1− α and R(p)
n /n → (1− p0)

2pp−1
0 (1− α) (cf. [11]), where p0 = 2(1− r) < 1

is the probability a random walk starting at the origin returns.

1.2. Outline of the proofs of Theorem 1.2. We first prove the theorem when n = 1 and
p1 = 1 in Section 2 via an induction argument. Then, in Section 3, we prove the theorem
when n = 1 and p1 > 1, using some of the calculations in Section 2 and the p1 = 1 result
as the base case in another induction. In Section 4, we complete the proof of the full result,
using schemes in Section 3.

2. Moments of R
(1)
N : Proof of Theorem 1.2 for n = 1, p1 = p

Let Ax = A
(1)
x = {Tx < τN , T

(2)
x > τN} be the event that the point x is visited exactly

once before exit from DN . Since R
(1)
N counts the number of points visited exactly once, we

can write R
(1)
N =

∑
x 1Ax . Therefore, for j ≥ 1,(

R
(1)
N

)j
= j!

∑
x1<x2<···<xj

1Ax1
1Ax2

. . . 1Axj
+

∑
x1,x2,...,xj

not distinct

1Ax1
. . . 1Aj = B1 +B2,

where the summations are over all possible x1, . . . , xj ∈ DN . Note also that B2 is a finite
linear combinations of (R(1)

N )k for 1 ≤ k ≤ j − 1.
Our goal in this section is to show Theorem 1.2 when n = 1 and p1 = 1: Namely,

E[αN ]

[(
R

(1)
N

)j]
=

∑
x1<···<xj

P[αN ]

(
j⋂

i=1

Axi

)
+ E[αN ] [B2](1)

=
j!

2j
logj(N) + o(logj(N)).
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We will also assume that [αN ] ̸∈ {x1, . . . , xj} in the sum in (1), as the j terms when [αN ] ∈
{x1, . . . , xj} can be put into the o(logj(N)) term.

2.1. Visitation schedule and four cases. Given an ordering of the points x1 < · · · < xj ,
let V = V(1) = {yi}j+1

i=0 ⊂ {[αN ], 0, x1, . . . , xj , N} be an ordered list where y0 = [αN ], yj+1 ∈
{0, N} and each x1, . . . , xj appears once. By the one-dimensional geometry, there are only
four possible ‘visiting schedules’ V such that a random walk visits in order the points in V up
to the time of exit from DN and

PV = P[αN ]

(
Ty1 < Ty2 < · · · < Tyj < min{τN ,min

i≤j
T (2)
yi }

)
> 0.

Namely (see Figure 1),
Case 1 V1 = ([αN ], xj , xj−1, . . . , x1, 0) with xj < [αN ] < N
Case 2 V2 = ([αN ], xj , xj−1, . . . , x1, 0) with xj−1 < [αN ] < xj < N
Case 3 V3 = ([αN ], x1, x2, . . . , xj , N) with 0 < x1 < [αN ] < x2
Case 4 V4 = ([αN ], x1, x2, . . . , xj , N) with 0 < [αN ] < x1.

Then, for 0 < x1 < · · · < xj < N , we have

P[αN ]

(
∩j
i=1Axi

)
=

4∑
k=1

P[αN ]

(
Ty1 < · · · < Tyj+1 < min

1≤i≤n
{T (2)

xi
}
)

=

4∑
k=1

PVk
.

0 x1 x2 . . . xj [αN ] N

move leftmove leftmove left

Figure 1. Case 1 visitation schedule when p = 1

2.2. Sequential path decomposition. Recall the gambler’s ruin identities for a < b < c:

Pb(Ta < Tc) =
c− b

c− a
and Pb(Tc < Ta) =

b− a

c− a
.

We now describe the sequential decomposition of the probability of paths following V1. Such
a random walk starts at [αN ], then visits xj before visiting N , with chance given by the exit
probability P[αN ]({Txj < TN}). From xj , the random walk must move left to the point xj − 1,
with ‘fair’ chance Pxj ({Txj−1 = Txj + 1}) = 1/2, and then visits next xj−1 before visiting xj
with chance Pxj−1({Txj−1 < Txj}). This sequential process continues until the random walk
exit at yj+1 = 0. Thus, by the Markov property and gambler’s ruin probabilities,

PV1 =
1

2j
P[αN ]({Txj < TN})Px1−1({T0 < Tx1})

j∏
i=2

Pxi−1({Txi−1 < Txi})

=
1

2j
N − [αN ]

N − xj
· 1

xj − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1

1

x1
.

Let us write

E[αN ][B1] = j!

4∑
i=1

∑
x1<···<xj

PVi =
j!

2j

{
S
(1)
j + S

(2)
j + S

(3)
j + S

(4)
j

}
(2)
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where

S
(1)
j =

∑
x1<x2<···<xj<[αN ]

N − [αN ]

N − xj
· 1

xj − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1
(3)

S
(2)
j =

∑
x1<x2<···<[αN ]<xj

[αN ]− xj−1

xj − xj−1
· 1

xj − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1

S
(3)
j =

∑
x1<[αN ]<x2<···<xj

x2 − [αN ]

x2 − x1
· 1

x2 − x1
· 1

x3 − x2
. . .

1

xj − xj−1

1

N − xj

S
(4)
j =

∑
[αN ]<x1<x2<···<xj

[αN ]

N − xj
· 1

xj − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1
.

We observe that there are relations between Cases 1 and 4 and also between Cases 3 and 4
via the mapping x 7→ N − x. In particular, the order estimates for Cases 1 and 2 equal those
of Cases 3 and 4, multiplied by α/(1− α), that is the prefactor α is changed to 1− α.

2.2.1. A reduction by partial fractions. To help reduce the sums, we will invoke the partial
fraction decomposition

(4)
1

N − xi
· 1

xi − xi−1
=

1

N − xi−1

[
1

N − xi
+

1

xi − xi−1

]
.

When xi ≤ [αN ], we have directly that
∑[αN ]−j−1+i

xi=xi−1+1
1

N−xi
= O(1), while by the Euler-

Maclaurin formula to estimate sums in terms of integrals, we have for xi−1 < xi that
N−1∑

xi=[αN ]+1

1

(xi − xi−1)2
=

(
1

[αN ]− xj−1 + 1
− 1

N − xj−1 − 1

)
+O(1).(5)

Similarly, by the Euler-Macluarin formula we have
[αN ]−j−1+i∑
xi=xi−1+A

1

xi − xi−1
= log([αN ]− xi − j − i− 1)− log(A) +O(1) ≤ logN +O(1).(6)

2.3. Bounding Cases 2 and 3. These cases involve a ‘backtrack’ in that from [αN ] the walk
goes to the end of the sequence, and then must return over the same ground covered, and so
their probability will be smaller than in Cases 1 and 4.

Indeed, consider the inner sum in S
(2)
j . Using the Euler-Maclaurin formula (5) and xj−1 ≤

[αN ]− 1, we get
N−1∑

xj=[αN ]+1

[αN ]− xj−1

(xj − xj−1)2
= ([αN ]− xj−1)

(
1

[αN ]− xj−1 + 1
− 1

N − xj−1 − 1

)
+O(1)

= ([αN ]− xj−1)

(
N − [αN ]− 2

([αN ]− xj−1 + 1)(N − xj−1 − 1)

)
+O(1) = O(1).

Then, we can write S
(2)
j as

O(1) ·
[αN ]−j+1∑

x1=1

[αN ]−j+2∑
x2=x1+1

· · ·
[αN ]−1∑

xj−1=xj−2+1

1

xj−1 − xj−2
· 1

xj−2 − xj−3
. . .

1

x2 − x1

1

x1
.
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Using (6) repeatedly, we can see that the above summation is bounded and

(7) S
(2)
j = O

(
logj−1(N)

)
.

Furthermore, from symmetric notions we can conclude that S
(3)
j in Case 3 has the same

order O(logj−1(N) = o(logj(N)) as in Case 2.

2.4. Estimating Cases 1 and 2. We claim that the summation in Case 1 satisfies

(8) Sj = S
(1)
j = (1− α) logj(N) + o(logj(N)).

By symmetry relations, we would then have S
(4)
j = α logj(N) + o(logj(N)). We proceed by

induction and iterative estimation to prove (8).

2.4.1. Base Case. Let us first show the result for S1. We use the partial fraction decomposition
(4) on (3) to get

S1 =

[αN ]−j∑
x1=1

N − [αN ]

N − x1
· 1

x1

= (N − [αN ])

[αN ]−j∑
x1=1

1

N
· 1

N − x1
+ (N − [αN ])

[αN ]−j∑
x1=1

1

N
· 1

x1
= σ(1,1) + σ(2,1)

From inspection (cf. remark after (4)), it follows that σ(1,1) = O(1).

On the other hand, using (6) we get σ(2,1) =
(
1− [αN ]

N

)
[log([αN ] − j) + O(1)] = (1 −

α) log(N) +O(1), and therefore the base induction step holds: S1 = (1− α) log(N) +O(1).

2.4.2. Induction. Let j ≥ 2. We have, by partial fractions (4) applied to the inner sum of Sj ,
that Sj = σ(j,1) + σ(j,2) where

σ(j,1) =

[αN ]−j∑
x1=1

[αN ]−j+1∑
x2=x1+1

· · ·
[αN ]−1∑

xj=xj−1+1

N − [αN ]

N − xj
· 1

N − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1

and

σ(j,2) =

[αN ]−j∑
x1=1

[αN ]−j+1∑
x2=x1+1

· · ·
[αN ]−1∑

xj=xj−1+1

N − [αN ]

xj − xj−1
· 1

N − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1
.

Applying the remark after (4), it follows that σ(j,1) = O(Sj−1) = o(logj(N)) via our induction
hypothesis.

Let us now consider σ(j,2). Using (6), we see that

σ(j,2) =

[αN ]−j∑
x1=1

[αN ]−j+1∑
x2=x1+1

. . .(9)

[αN ]−2∑
xj−1=xj−2+1

N − [αN ]

N − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1
log([αN ]− xj−1 − 1) +O(Sj−1).

To evaluate Sj further we ‘sandwich’ it via upper and lower estimates.
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2.4.3. Upper estimate of Sj. As log([αN ]−xj−1−1) ≤ log(N), we have σ(j,2) ≤ log(N) ·Sj−1.
Then, with the bound σ(j,1) = O(Sj−1) and induction, we have

(10) Sj = σj,1 + σj,2 ≤ (log(N) +O(1))Sj−1 ≤ (1− α) log(N)j + o(log(N)j).

2.4.4. Lower estimate of Sj. In the sum Sj , we now limit the summands {xi} away each other
and the starting position [αN ] to get a lower bound. For ϵ > 0 and i ≥ 2, consider

xi−1 + log(N) ≤ xi ≤ [αN ]− (j − i+ 1)⌊N1−ϵ⌋.

Denote by S∗
j ≤ Sj the truncated sum

S∗
j =

[αN ]−j⌊N1−ϵ⌋∑
x1=log(N)

[αN ]−(j−1)⌊N1−ϵ⌋∑
x2=x1+log(N)

· · ·
[αN ]−⌊N1−ϵ⌋∑

xj=xj−1+log(N)

N − [αN ]

N − xj
· 1

xj − xj−1
. . .

1

x2 − x1
· 1

x1
.

As in Section 2.4.1, the base case S∗
1 = (1− α) log(N) + o(log(N)).

For j ≥ 2, analogous to the decomposition of Sj = σ(j,1) + σ(j,2) via partial fractions in
Section 2.4.2, write S∗

j = σ∗
(j,1) + σ∗

(j,2) where σ∗
(j,1) ≤ σ(j,1) = o(logj(N)) and

σ∗
(j,2) =

[αN ]−j⌊N1−ϵ⌋∑
x1=log(N)

[αN ]−(j−1)⌊N1−ϵ⌋∑
x2=x1+log(N)

· · ·
[αN ]−2⌊N1−ϵ⌋∑

xj−1=xj−2+log(N)

N − [αN ]

N − xj−1
· 1

xj−1 − xj−2
. . .

1

x2 − x1
· 1

x1

·
[
log([αN ]− ⌊N1−ϵ⌋ − xj−1)− log(log(N)) +O(Sj−1)

]
.

Observe that log([αN ] − ⌊N1−ϵ⌋ − xj−1) is minimized at the largest value of xj−1, which is
[αN ]− 2⌊N1−ϵ⌋. Thus,

log([αN ]− ⌊N1−ϵ⌋ − xj−1) ≥ log(⌊N1−ϵ⌋) ≥ (1− ϵ) log(N − 1)

and therefore Sj ≥ S∗
j ≥ (1−ϵ) log(N)S∗

j−1+O(log(log(N))+S∗
j−1)+o(logj(N)). By iteration

of this process and from the base case analysis for S∗
1 , we have

(11) Sj ≥ S∗
j ≥ (1− α)(1− ϵ)j−1 log(N)j(1 + o(1)).

2.5. Conclusion of the proof of Theorem 1.2 when n = 1 and p1 = 1. Given that
ϵ > 0 is arbitrary, we may combine the upper estimate in (10) and lower estimate in (11)
to complete the induction step (8) to determine that S

(1)
j = (1 − α) logj(N) + o(logj(N))

and S
(2)
j = α logj(N) + o(logj(N)). Hence, adding to S

(2)
j , S

(3)
j = o(logj(N)) (cf. (7)), and

multiplying by j!/2j as in (2), we recover (1) and complete the proof of Theorem 1.2 when
n = 1, p1 = 1.

3. Moments of R
(p)
N : Proof of Theorem 1.2 when n = 1 and p1 = p > 1

Fix p > 1 and let A
(p)
x = {T (p)

x < τN , T
(p+1)
x > τN} be the event that the point x is visited

exactly p times before the time of exit τN . Then, analogous to the computation when p = 1,(
R

(p)
N

)j
=

∑
x1,x2,...,xj

1
A

(p)
x1

1
A

(p)
x2

. . . 1
A

(p)
xj

= j!B
(p)
1 +B

(p)
2 ,
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where B
(p)
1 =

∑
x1<x2<···<xj

1
A

(p)
x1

1
A

(p)
x2

. . . 1
A

(p)
xj

and B
(p)
2 is the sum over non-distinct sum-

mands, equal to a linear combination of R(k)
N for 1 ≤ k ≤ p − 1. Our goal will be to show

Theorem 1.2 when n = 1 and p1 = p > 1: Namely,

E[αN ]

[
R

(p)
N

]
=

∑
x1<···<xj

P[αN ]

(
j⋂

i=1

A(p)
xi

)
+ E[αN ]

[
B

(p)
2

]
=

j!

2j
logj(N) + o(logj(N)).(12)

Again, we may take in the sum that [αN ] ̸∈ {x1, . . . , xj} as the finite possibilities [αN ] ∈
{x1, . . . , xj} can be put in the o(logj(N)) term.

We now extend our notation for visitation schedules from Section 2.1. With respect to
points x1 < · · · < xj , a valid visitation schedule V(p) = {yi}jp+1

i=0 is a list of jp + 2 members
specifying the order in which the collection of points {xi}ji=1 are visited exactly p times before
exit. Let x0 = [αN ] and xj+1 ∈ {0, N}.

Define ℓ : {0, . . . , jp+ 1} → {0, 1, . . . , j, j + 1} as the map, which characterizes V(p), where
yi = xℓ(i). Being valid implies y0 = x0, y1 = xℓ(1) is one of possibly two nearest adjacent
values to x0 in {xi}ji=1, y2 = xℓ(2) is one of xℓ(1), xℓ(1)−1 or xℓ(1)+1, and so on to yjp = xℓ(k)
which must be the nearest adjacent point to either 0 or N , equal to the last value yjp+1.

As a simple example, we remark when j = 1 that there are only two visitation schedules

V(p) = ([αN ], x1, x1, . . . , x1, 0 or N)

where x1 is repeated p times. On the other hand, when j > 1, the visitation schedules are less
restricted than when p = 1. Trajectories no longer need to visit the {xi} points monotonically
from either the left or the right, nor is the starting position [αN ] restricted.

By a crude bound, as each yi takes at most j+2 values, the number of visitation schedules
V(p) is at most (j + 2)jp+2. Notice also in any visitation schedule V(p) that one can extract
an increasing subsequence {yik} where either yi1 = x1, yi2 = x2, . . ., yij = xj , yij+1 = N or
yi1 = xj , . . ., yij = x1, yij+1 = 0.

For x1 < · · · < xj , using the Markov property, write P[αN ]

(⋂j
i=1A

(p)
xi

)
=
∑

V(p) PV(p) where

PV(p) =
∑
V(p)

jp+1∏
i=0

Pxℓ(i)

(
Txℓ(i+1)

< min{τN , Txℓ(i+1)−1
, Txℓ(i+1)+1

}
)
.(13)

Note that xℓ(i+1) may equal xℓ(i), xℓ(i)±1 or 0 or N , depending on the schedule, and there may

be some redundancy in the event
{
Txℓ(i+1)

< min{τN , Txℓ(i+1)−1
, Txℓ(i+1)+1

}
}

. Therefore,

E[αN ]

[
R

(p)
N

]
= j!

∑
V(p)

∑
x1<...<xj

PV(p) + E[αN ]

[
B

(p)
2

]
,(14)

where E[αN ]

[
B

(p)
2

]
is a finite linear combination of E[αN ]

[
R

(k)
N

]
for 1 ≤ k ≤ p− 1.

3.1. Visitation schedules with backtracking. For a random walk to traverse between two
points xi and xi+1 more than once, that is to ‘backtrack’, is costly due to an extra gambler’s
ruin factor in (13). This can happen if the initial point [αN ] is in between the {xi} or if a
pair (xi, xi+1) is traversed more than once, as we saw in the analysis of Case 2 in Section 2.3
when n = 1 and p1 = 1; see Figure 2.

In particular, suppose xi < x0 = [αN ] < xi+1 a journey [αN ] to either xi or xi+1 yields a
gambler’s ruin factor with xi+1−xi in the denominator, either P[αN ](Txi < Txi+1) =

xi+1−[αN ]
xi+1−xi
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or P[αN ](Txi > Txi+1) = [αN ]−xi

xi+1−xi
. Then, as the random walk will need to make a backtrack

between the two points xi and xi+1 to visit all of the points p ≥ 2 times, we get an additional
gambler’s ruin factor given by (xi+1 − xi)

−1. There may also be more backtracks between xi
and xi+1 in the schedule; these result in gambler’s ruin factors which we bound by 1.

When summed over xi, by applying Euler-Macluarin (5) and noting xi+1 > [αN ], we have
[αN ]−1∑

xi=xi−1+1

xi+1 − [αN ]

(xi+1 − xi)2
= (xi+1 − [αN ])

[
1

xi+1 − [αN ] + 1
− 1

xi+1 − xi−1 + 1

]
+O(1)(15)

= (xi+1 − [αN ])
[αN ]− xi−1

(xi+1 − [αN ] + 1)(xi+1 − xi−1 + 1)
+O(1) = O(1).

The other case with factor ([αN ]− xi)/(xi+1 − xi)
2 is similar when summing over xi+1, re-

sulting in an O(1) sum.
Another way a ‘backtrack’ occurs is when the random walk goes between xi and xi+1 more

than once. In this situation, the gambler’s ruin factors are bounded by (xi+1 − xi)
−2. When

summed over either xi or xi+1 the effect is O(1) (cf. (5); see Figure 2).
For visiting schedules V(p) in such situations, suppose that the increasing subsequence {yik}

starts at xj and exits at 0, as in Case 1 when n = 1 and p1 = 1 (cf. Section 2.1). In the
situation when the starting position y0 = [αN ] is between an xi−1 and xi and say y1 = xi (the
other case y1 = xi+1 is similar), we conclude

PV(p) ≤ P[αN ](Txi < Txi−1)Pxj (Txj−1 < TN )

[
j−2∏
l=1

Pxj−l
(Txj−l−1

< Txj−l
)

]
Px1(T0 < Tx1).

The sum over x1 < x2 < · · · < xj of the last display is similar to the expression S
(2)
j in Section

2.3, with the difference being that the O(1) sum may be in the middle, rather than at the
beginning. Indeed, noting (15) and by virtually the same calculations as in Section 2.3, the
sum is of order O(logj−1(N)).

Similarly, in the situation where V(p) has a backtrack where a pair xi and xi+1 is traversed
more than once, or when V(p) has a backtrack and the increasing subsequence starts at x1 and
ends at N , we obtain

∑
x1<···<xj

PV(p) = O(logj−1(N)).

0 . . . xi xi+1
. . .. . . N

1
xi+1−xi

1
xi+1−xi

xk−1 [αN ] xk+1

xk+1−[αN ]
xk+1−xk

1
xk+1−xk

Figure 2. Two types of backtracking: when the random walk travels between
two points xi and xi+1 at least twice, or when [αN ] is in between the points

3.2. Visiting schedules without ‘backtracking’. When there is no backtracking, we have
only two scenarios; see Figure 3.
Case 1 xj < [αN ] < N and V(p) = ([αN ], xj , ..., xj−1, . . . , x1, . . . , x1, 0)

Case 2 0 < [αN ] < x1 and V(p) = ([αN ], x1, . . . , x1, . . . , xj , . . . , xj , N)
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0 x1 x2 . . . xj [αN ] N

revisit
p − 1 times

revisit
p − 1 times

revisit
p − 1 times

Figure 3. Case 1 visitation schedule when p > 1

where each value xi is repeated p times.
For a schedule V(p) without backtracking, say in Case 1 going from [αN ] to xj repeated p

times, and so forth, exiting at 0, we have

PV(p) =
1

2j
N − [αN ]

N − xj
· 1

xj − xj−1
· 1

xj−1 − xj−2
· · · 1

x2 − x1

1

x1

j∏
i=1

(Pxi(Ixi))
p−1

where Ixi =
{
TR
xi

< min{τN ,min{Txk
: k ̸= i}}

}
is the event of return to xi before visiting

other points or exit. Here, TR
x = inf{n > 0 : Xn = x} is the return time, in contrast to the

visit time Tx.
A similar expression holds in Case 2.
Here, for 2 ≤ i ≤ j − 1,

Pxi(Ixi) =
1

2
Pxi−1

(
Txi < Txi−1

)
+

1

2
Pxi+1

(
Txi < Txi+1

)
= 1− 1

2

[
1

xi − xi−1
+

1

xi+1 − xi

]
and Px1(Ix1) = 1 − 1

2

[
1
x1

+ 1
x2−x1

]
and Pxj (Ixj ) = 1 − 1

2

[
1

xj−xj−1
+ 1

N−xj

]
. Of course,

Px·(Ix·) ≤ 1 and when the points {xi} are separated from each other and the boundaries
0, N by log(N), we have Px·(Ix·) ≥ 1 +O(log−1(N)).

The corresponding sum
∑

x1<···<xj
PV(p) is analogous to that for S

(1)
j when p = 1, except

for the factors Px·(Ix·). Indeed, an upper bound is S(1)
j On the other hand, the sum restricted

to {xi} separated from each other by log(N), as in the definition of S∗
j in Section 2.4.4, is a

lower bound. We have

S∗
j (1 +O(log−1(N)) ≤

∑
x1<···<xj

PV(p) ≤ S
(1)
j .

Hence, following the steps and conclusion in Section 2.5,∑
x1<···<xj

PV(p) =
1− α

2j
logj(N) + o(logj(N)).(16)

The sum with respect to Case 2 will evaluate analogously as (α/2j) logj(N) + o(logj(N)).

3.3. Conclusion and proof of Theorem 1.2 when n = 1 and p1 = p > 1. Consider
induction on p. The base case p = 1 has already been shown in Section 2.5. In the equation
(14) for the moment, the term E

[
B

(p)
2

]
= O(logj−1(N)) as it is a finite linear combination

of lower order moments. For the other term in (14), as there are only a finite number of
schedules, we need only consider schedules without backtracking by the o(logj(N)) estimates
for those which backtrack in Section 3.1.

On the other hand, for the two schedules without backtracking, we have the estimate (16)
in Case 1 and the complementary one in Case 2, which when added together, and multiplied
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by j!, yield the desired dominant contribution (j!/2j) logj(N), verifying (12), completing the
proof of Theorem 1.2 when n = 1 and p1 = p > 1.

4. Mixed moments and proof of Theorem 1.2

Recall the event A
(p)
x = {T (p)

x < τN < T
(p+1)
x } that the point x is visited exactly p times.

For 1 ≤ p1 < · · · < pn and 0 ≤ j1, . . . , jn, recall Jn =
∑n

i=1 ji and consider the (unscaled)
joint moment, mN

j1,...,jn
(p1, . . . , pn) = log−Jn(N)µN

j1,...,jn
(p1, . . . , pn),

mN
j1,...,jn(p1, . . . , pn) = E[αN ]

[(
R

p1)
N

)j1 · · · (R(pn)
N

)jn]
= E[αN ]

[∑
1
A

(p1)

x11

. . . 1
A

(p1)

x1
j1

· · · 1
A

(pn)

xn1

. . . 1
A

(pn)

xn
jn

]
,

where the sum is over x11, . . . , x
1
j1
, . . . , xn1 , . . . , x

n
jn

.

We may apply virtually the same analysis as for the moments of R(p)
N in Section 3. Listing the

indices to be visited in order as z1, . . . , zJn , the dominant terms arise when they are distinct in
DN and not equal to [αN ]. With the same calculations as in Section 3, only visiting schedules
without backtracking among the {zi} contribute to the dominant order of the moment, of
which there are only two. Analogous to Case 1 and 2 in Section 3.2, the only difference is that
when the random walk first visits the point xr· , it must return r − 1 times before moving on,
rather than exactly p−1 times. However, when the elements {xr· : r = 1, . . . , n} are separated
by log(N), then the return probabilities equal 1 +O(log−1(N)) as in Section 3.2.

Hence, the dominant order of the moment mN
j1,...,jn

(p1, . . . , pn) is the same as for the Jnth

moment of R(1)
N . In particular, the scaled joint moment µN

j1,...,jn
(p1, . . . , pn) =

Jn!
2Jn

(1 + o(1)),
from which Theorem 1.2 follows.

5. Expected order of R(1)
n

To be brief, we concentrate on R(1)
n , although a similar, more involved argument should

show that E0

[
R(p)

n

]
= O(1).

Lemma 5.1. We have supn≥1 E0

[
R(1)

n

]
< ∞.

Proof. Write R(1)
n =

∑
x 1{Tx≤n<T

(2)
x } and E

[
R(1)

n

]
=
∑

x P0

(
Tx ≤ n < T

(2)
x

)
. By transla-

tion invariance, recall Px(Tx > 2ℓ) = P0(T0 > 2ℓ) = P0(X2ℓ = 0) (cf. equation (3.4), p.
197 in [6]) and so, by local central limit theorem (cf. Theorem 5.2, p. 130 in [6]), that
supx supℓ

√
r + 1Px(Tx > r) < ∞. Then,

E
[
R(1)

n

]
=
∑
x

n∑
k=1

P0 (Tx = k)Px (Tx > n− k)

=
∑
x

n∑
k=0

P0 (Tx = k)P0 (T0 > n− k) ≤ C

n∑
k=0

1√
n− k + 1

∑
x

P0 (Tx = k) .

By the reflection principle, P0(Tx < ℓ) = 2P0(Xℓ > |x|) for x ̸= 0. Hence, for k ≥ 1, as
the increment Xk+1 − Xk takes values ±1 with equal probability, and by local central limit



12 CONNER HATTON AND SUNDER SETHURAMAN

theorem again,∑
x ̸=0

P0(Tx = k) =
∑
x ̸=0

(P0(Tx < k + 1)− P0(Tx < k))

= 2
∑
x ̸=0

(P0(Xk+1 > |x|)− P0(Xk > |x|)) =
∑
x ̸=0

(P0(Xk = |x|)− P0(Xk = |x|+ 1))

= P0(Xk = −1) + P0(Xk = 1) ≤ C√
k + 1

.

Note the boundary cases:
∑

x P0(Tx = k) = P0(T0 = 0) = 1 when k = 0, and P0(Tx =

k) ≤ P0(Xk = 0) ≤ C/
√
k + 1 when x = 0 by local central limit theorem. Then, we have

supn E
[
R(1)

n

]
≤ C

∑n
k=0

1√
n−k+1

1√
k+1

≤ C
∫ 1
0

1√
u(1−u)

du < ∞ as desired. □
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