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Part V
Optimization

Suggested reading: [BoVa09, Chs. 9, 10, 11].

It is important to note that one can optimize only one function at once. Whenever you claim that
you simultaneously optimize two (or more) functions, you are y
actually optimize a certain combination of those. 2 /

Example V.1: Consider a function with a narrow mini-
mum, f(x) = x* —2exp(—(x— 1)?/26?), with © being small, \ /
e.g., 6 =1/40. It has a local minimum near x = 0 and a global
minimum near x = 1. If one doesn’t test the values of the
function near x = 1, one may not even realize the existence of
the narrow peak pointing downward. Whenever you don’t as-
sume anything about the function you need to optimize, there
i1s no method (other than brute-force exhaustive search within
the whole feasible region) that will find a global optimum in a
guaranteed way.

Maximizing f(x) is the same as minimizing — f(x). -1

16 Least squares problem

Suggested reading: [TrBa97, Lecs. 11, 18, 19].

Consider a quadratic function f(x) = %xTAx —x"b+c. At its minimum (or just extremum) x,, the
derivative (or gradient) is zero: Vf(x,) = 0. Derivative of quadratic function is linear, thus Vf(x.) =0
is a system of linear equations for x,.

In the combination xTAx any assymetric part of A is killed, and [if the matrix A is not symmetric]
one can substitute A by %(A —|—AT). Matrix A then is diagonalizable with real eigenvalues. If at
least one of the eugenvalues is strictly negative, then there is no lower bound for the values of f(x).
Consider some eigenvalue of A are zero, with y being the corresponding eigenvector. If y-b =yTh £ 0,
then there is no lower bound for the values of f(x).

The equation Vf(x,) = 0 for the position of minimum x, reads as Ax, = b. The solution can be
found by standard methods like Gaussian elimination, QR factorization, or (as A is real symmetric)
using Cholesky factorization A = RTR, where R is upper triangular. The latter can be done two times
faster than standard LU factorization. See, e.g., [TrBa97, Lec. 23].
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A least squares problem in linear algebra is the best “solution” to an overdetermined system of
linear equations Ax = b, where A is an m x n matrix with m > n. We have m equations for n unknowns,
and unless the equations are redundant, one doesn’t expect a solution to exist. Instead we look for the
vector x that minimizes the norm of the residual:

X, := argmin| }Ax —b|| , = argmin (xTATAx —xTATh —bTAx+ bTb>
X P

The minimized function is clearly bounded from below by 0, and if the matrix A is of full rank, i.e.,
rankA = n < m, then the solution is unique: x, = (ATA) ~1ATh. Of course, numerically the solution
is found without forming the matrix ATA, as K(ATA) = «?(A). If A= QR and A = ULV are the QR
factorization and SVD of A, respectively, then x, = R~'Q'b = VE-1U"b (the action by R~! and by
31 is done by back substitution or by dividing by the diagonal matrix elements of £).

Problems and exercises

1. Consider the problem of fitting the cloud of points (x;,y;), 1 < i <N, by a linear function
y = ax+ b. The fit minimizes the sum of squares ny:l (ax; + b — y;)?. Write down explicit formulas
for a and b. When the solution for a and b is not unique?

2. Fit the cloud of points .5 = {(—2,-3), (—1,-1), (0,5), (2,5), (3,1) } by y = ax+b line using
the least squares method,! i.e., solve the following least squares problem

21 -3

) 11 .

[ b*} := argmin 01 5

< a 21 5
31 1 5

17 Descent methods

Consider a continuously differentiable function f(x). The gradient vector Vf(x) is the direction
of the fastest growth of the function f(x), locally we have f(x+¢€) =~ f(x)+ (Vf(x)) -&. If we
move against its gradient, dx/dr:= —Vf(x), then the function f (x(t)) is non-increasing: df(x)/dr =
Vf(x)-dx/dt = —||Vf||> < 0. This gives an idea how to compute the position x, of the minimum:

Algorithm x = —Vf: The minimum x, is estimated as x(¢) at sufficiently large 7. The trajectory
x(t) is computed by some ODE solver, one needs to supply the initial condition x(0).

Some example functions that are going to be used:

2
Ga(x,y) = =" =y —x(x+y)* + (o +7)

n—1
(xi—1)>+A Z (xis1 —x,z)z, A is large, e.g., A = 100

Rosenbrock function” R, (X1,X2, ey X)) =
1 i=1

-

1

Here the lower index indicates the number of variables.

I See also the Anscombe’s quartet data.
2 H. H. Rosenbrock, An automatic method for finding the greatest or least value of a function, The Computer Journal
3 (3) 175-184 (1960).


https://en.m.wikipedia.org/wiki/Anscombe%27s_quartet
http://doi.org/10.1093/comjnl/3.3.175

This algorithm may work not too well. Here is it being applied to the 2-dimensional Rosenbrock
function Ry (x1,x2) with x1(0) = 0 and x,(0) = 1:

forward Euler explicit midpoint (RK2) classical Runge—Kutta (RK4)
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The system of ODEs dx/dr = —VR;(x) is stiff, e.g., the equation backward Euler
for x, is dxp/dt = —200(x, — x?), i.e., the component x; decays to *2 o ;
the value x% with the rate 200. For explicit methods to produce a ~__ ‘ -
decaying solution, the step size At should be small, no matter what N =1 /
is the order of accuracy of the method (here At = 0.002 is small %7 U R4
. . f = 0.
enough for all the three methods to converge to the minimum at \
X«1 = Xx2 = 1, one need thousands of time steps though). One can 05

try a method with stiff decay property, e.g., backward Euler, but that would result in solving a system
of [non-linear] equation in each time step. The whole minimization problem is more or less equivalent
to the system of equations Vf(x,) =0, so solving a system at each time step seems to be too expensive.
Each step of backward Euler can be considered as solving the following minimization problem:

(P )

The function in brackets is equal to 0 at X =x(t), and ||X —x(z)| > 0, so it is guaranteed that f (x(z +
Ar)) < f(x(z)). Still Algorithm x = —Vf (with backward Euler as a method of solving the system of
ODEs) at best could be viewed as an application of continuation method to solve the system Vf(x,) =
0, which one may want to try, e.g., due to no good initial guess for x..

Here is how the VR;(x,) = 0 system [of two equations] is solved in GNU Octave®

x(t + At):= argmin
X

octave:1> fsolve(@(x) [2. * (1. — x(1)) — 400. * x(1) * ((x(1))"2 — x(2)), 200.
* ((x(1))"2 - x(2))], [0., 1.1)
ans =

0.84715 0.71697

octave:2> format long; options = optimset ('TolX’, 1
(

.e-13, "MaxIter’, 10000);
octave:3> fsolve(@(x) [2. = (1. — x(1)) - 400. % x(1) =

1 ((x(1))"2 - x(2)), 200.

3 MATLAB® is a commercial software, see MathWorks MATLAB licensing for UA Faculty, Staff & Students.
GNU Octave is one of several (less effective) free alternatives to MATLAB, with mostly compatible syntax.


https://softwarelicense.arizona.edu/mathworks-matlab
https://www.gnu.org/software/octave/

* ((x(1))"2 - x(2))], [0., 1.], options)
ans =

9.999996886399101e-01 9.999993759833326e-01

octave:4> newton(@(x) [2. * (1. — x(1)) — 400. * x(1) * ((x(1))"2 — x(2)); 200.
* ((x(1))"2 - x(2))1, [0.; 1.1
counter = 7
ans =
1 1

Here newton.m implements the Newton—Raphson method, with the Jacobian matrix Vf being com-
puted through finite differences. Solving the system Vf(x.) = 0 by Newton’s method in order to
minimize the function f is discussed in Sec. 18. Notice that for the built-in solver £solve to produce
an answer close to the exact x,; = x4» = 1, we had to tweak the solver parameters (mainly the maximal
number of iterations allowed) using opt imset command.

The trajectories x(¢) on “backward Euler” picture were obtained by the following MATLAB script:

X1l2 = @(x) (x(1))"2 - x(2);

RHS = @(x) [2. * (1. — x(1)) — 400. * x(1) * X12(x); 200. » X12(x)1;
x0 = [0.; 1.]; dt = 0.1; diff = 1.; options = optimset ('MaxIter’, 10000);
while (diff > 1.e-6)
x = fsolve(@(x) ((x - x0) / dt - RHS(x)), x0, options);
diff = norm(x -x0); x0 = x
end

Here is the pseudo-code of a general descent method, with possible variants of its steps:

start with some initial guess x
while (stopping critedia is not met) do
|Vf(x)|| < some small number

pick direction Ax
gradient descent: Ax o< —Vf(x)

steepest descent: Ax:=argminay—; Vf - Ax
| -|| could be, e.g., L'- or weighted norm

line search: choose step size t
exact line search: 7:=argmin, f(x+ sAx), i.e., the step size 7 is
found from exact one-dimensional minimization*
backtracking line search: start with some not too small ¢, then
reduce ¢ until f(x+1Ax) < f(x) +aVf- (tAx),0 <o < 1
update: x:=x+tAx

returnXx

4 This may be ...



Example 17.1: Here is the gradient descent metod with backtraching, a = 0, applied to G, (x,y):
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Example 17.2: Here is the gradient descent method with backtraching, o = 0, applied to the
Rosenbrock function R, (x,y) (initial guessisx= [0 1 }T):

import numpy as np

def f(x):
return (x[0][0] = 1.)x*2 4+ 100. * (x[1][0] = (x[O]J[0])**2)*%2

def grad_f (x):
x21, grad_f = x[1]1[0] - (x[0][0])*x2, np.array([[2. = (x[0][0] - 1.)1, [0.1])
grad_f[0][0], grad_f[1][0] = grad_£f[0][0] - 400. * x[0][0] » x21, 200. x x21
return grad_f

x, old_F, F, dt = np.array([([0.], [1.]1), O., 101., 0.01
while (abs(F - old_F) > 1l.e-10):

print (x[0][0], x[1][0], F, dt)

old_x, old_F, F_x = x, F, grad_f (x)

x, dt = x - dt * F_x, 1.1 * dt

F = £f(x)

if (F > old_F):

x, F, old F, dt = old_x, old F, old F + 1., 0.5 * dt
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Example 17.3: Consider f(x,y) = x> 4+ Ay?, with A > 1. Let us apply to it the gradient descent
method with exact line search. One iteration of the descent method consists in the mapping

2 422
B X B ) ) 2y | X +A%Yy
VE(x,y) =2 [Ay} ; ty = argtrnln((x-l—tx) +A(y+Aty) > TR LAN
x] [ ata ] _ (A—TDxy [ A%y - (A—1)*Ax?y? x
y y+ALy | x2+A3? | —x (2 + A3 (2 +Ay?) | ¥

In particular,

A A—-1] A
Cr— —— C
Lﬂ} A+l [?1}
The rate of decrease of the variables x, y (the minimum is at x, =y, = 0) depends just on the ratio of x

and y, and is minimal at x = +Ay. When A is large, the decrease of x and y is slow (as (A—1)/(A+1) ~
1).

Problems and exercises

1. Consider a function H(x,y) = 50+/g(y? — x2) + (x — 10)? +y?, where g(x) = v/x2 + 1 +x. Find
the minimum of H, by the gradient descent method, starting from (x,y) = (—50,40).

2. Consider a function V5(x,y) = (x +3)% +y?¢~>*. Find the minimum of (a) V»(x,y) and (b)
Wa(x,z) :=Va(x,y = z/20) by the gradient descent method, starting from (x,y) = (0,1) or (x,z) =
(0,20). (c) The part (b) can be considered as an application of the steepest descent method to V.
What norm ||Ax|| is used?



18 Newton’s method

Consider a twice continuously differentiable function f : R” — R that we want to minimize. At
the position of minimum x, we have Vf(x,) = 0. We may think about this equation as a system of
equations for the components of vector x, and then try to solve it be Newton—Raphson method

x—x— (V)" vy

Such updates of the position x is so called pure Newton method.

Interpretations: 1) solution of the system Vf(x,) = 0 by Newton-Raphson method; 2) minimiza-
tion of local quadratic approximation; 3) steepest descent method with weighted norm ||Wx||», where
WTW = V?f.

As the solutions of Vf(x,) =0 are not necessarily local minima, the pure Newton method could
converge to local maxima, saddle points, efc.

Example 18.1: Here is the pure Newton method applied to G, (x,y). In the plot below it is shown

for a grid of initial vectors [x y } T where, if starting from them, the pure Newton method converges
to. The method more or less converges to the closest point where VG, = 0, and this point could
be local minimum (open circle, blue triangle, and red square), maximum (black circle), saddle point
(cyan and orange triangles, and green square). Larger shapes show the position of the corresponding
points with VG, = 0, while small shapes correspond to positions starting from which the Newton’s
method converges to a corresponding zero gradient point.
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The pure Newton method is invariant under affine transformations: Let the vectors x and y be
connected by x = Ty. Consider a function f(x) and its deformation g(y) = f(T'y). We have

9g(y) _ v 9f(x) dx; .
- C S or V =TTV, f(x
i & W |ppy Wi »8(y) f(x)
Tji
ag( ( ) a.Xk axl 2 AT
v v 'V
ayzaYJ Zanaxl x=Ty 3}/13 ay] or yg( ) f( )
Tvi Ty

x= Ty 7y (Vig0)) "Voel)) =x— T (F'V2 )T T1Var(x) =x— (Vif(x)) "' Vir (o)

Example 18.2: Consider f(x) = vx?+ 1. Then the pure Newton updates would be

rroN X "eoN 1 X/Vx2+ 2 _ .3
FW=Tagp W@y YT T g Y W s
L )
\\ //
e
I~ 7

Whenever |x| > 1, the next iteration of the pure Newton method is going to drive x further from the
minimum of f at x, = 0.

In order to improve the realiability of the Newton method, ...

Damped Newton method: x — x —t(V2f)~!Vf, where ¢ is obtained from line search. It is a de-
scent method, there the direction of search is obtained from the Newton method: Ax = —(V?f)~!Vf.

Levenberg—Marquardt algorithm: x — x —t(V2f +ul) "' V£. In the limit u — 0/ +oo we repro-
duce Newton/ gradient descent methods.

Example 18.3: Consider f(x) = ax+ by + (cx> +y?) /2. Atx =y = 0 we have’

o P I ) A P N R e
) ()W) == (P ) =

> You may think about this example as follows: The Hessian V2f is symmetric, so it can be diagonalized. Here x- and

y-axis are the directions of V2f’s eigenvalues. Here all the Taylor series terms beyond quadratic ones are dropped. By
rescaling the coordinates, we make the coefficient at y* being 1/2, i.e., 3> f/dy* = 1.
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If the function f is non-convex, ¢ could be negative, and then —a? Jc— b? could end up being
positive. The direction of search is wrong, as locally moving in this direction increases the function.

18.1 Quasi-Newton methods

Consider f : R — R, and we want to find such x, that f(x,) = 0. The updates according to
Newton—Raphson method are x o 1:=x; — f(xx)/f (xc)-

Imagine we don’t want to calculate the derivative of function f. We can estimate it trough fi-
nite differences. We can consider an update rule xi1 = xp — f(x) - (e —x61)/ (f (o) — f(xx—1))-
Geometrically this corresponds to forming a line that goes through the points (xk,l, f (xk,l)) and
(xk, f (xk)) , and then find where this line crosses zero. A method of finding a root of a function with
this update rule is called secant method.

Example 18.4 Consider we want to compute /2, so we construct the function f(x) = x> — 2 and
then find its root(s). Let us apply Newton—Raphson method and secant method, starting with xo = 0.4
and x; =2.7:

Newton—Raphson secant
X0 0.4 0.4
X1 0.4—(0.42-2)/0.8=2.7 2.7
X2 929/540 ~ 1.720370370370370 154/155 = 0.9935483870967741
x3 | 1446241/1003320 =~ 1.441455368177650 7258/5725 =~ 1.267772925764192
X4 1.414470981367771 | 1446241/1003320 ~ 1.441455368177650
X5 1.414213585796884 1.412741073918240
X6 1.414213562373095 1.414199508244253
X7 1.414213569693568
X8 1.414213562373059
X9 1.414213562373095
V2 1.414213562373095048801688724209698...

Algorithm BFGS (Broyden—Fletcher—Goldfarb—Shanno algorithm): Quasi-Newton algorithm with
low rank updates of the Hessian approximation at each step.

start with k = 0, some initial guess xy and Co (e.g., Co=1)
while (||Vf(xx)|| > €) do
pick direction Axy == —Cy Vf (x;)
line search: choose step size t
backtracking line search: start with some not too small #, then reduce ¢

(e.g., 1+ Pr)until f(xx+1Axy) < f(xx) +aVf(xe) - (tAx), 0 << 1
update: xp11:=x;+ (dk=: tAxk)
8k:=Vf(Xpt1) — Yf(xk) . .
A s di g\ A [ 8&d did
Ck+1=:<I—T—k)Ck<I— T k + T k
gkdk A gkdk gkdk A

C is an approximation of inverse Hessian, C ~ (V2 f )_1

and Cy 1 is chosen from the condition dy = Cy gk, Which is

an approximation of Vf (xx41) — Vf(xx) & (V2f) - (Xkr1 — Xx)

k+—k+1

return Xgst
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function [x] = BFGS_R2 (X)
f = @(x) ((x(1) — 1)"2 + 100 » (x(2) - (x(1))"2)"2);
df = Q(x) (2 » [x(1) 1; 0] + 200 » (x(2) — (x(1))~2) =
F = f(x); dF = df(x); C = eye(length(x));
while (norm(dr) > 1l.e-12)
d = -C % dF;
while (f(x + d) >= F)
d=d/ 2.;
if (norm(d) < eps)
C = eye(length(x)); d = —-dF;
end
end
X = X d; F = (x); new_dF = df(x); g = new_dF dr; dF =
rho = 1. / (g’ » d); mu = rho * (1. + rho * (g’ = C % qg));
C=C~-rho « (dx* (g8 »C) + (C*x qg) = d) +mu ~ d = d’;
end

octave:1>

P O O F O O OO OO0 O0OOO00OOoOOoO0oOooooooooooo

Example 18.5 Let us apply BFGS method to R, (x,y). Here is a MATLAB script:

1.

.015625
.2605890939040998
.3913828287588037
.2521830924078697
.2988661772597083
.3466003737396083
.3592647314084498
.5263173496617095
.5188182427260010
.6011469854117857
.6925269268918063
.6747491664659666
.7143015319640732
.8381443235933718
.7986209536630781
.8340051975976166
.8937025247897291
.9136520114636923
.9509644199894306
.9705682730518248
.9950326701317903
.9926616882035864
.9977406839316127
.9999291150286614
.9999963589854302
.000000030472313
.9999999999259571
.9999999999998126
.000000000000000

BFGS_R2 ([0;

-0
-0.

H OORFRPR OOODODODOOOOODOOOOOOOOoOoOoOoOo

import numpy as np
def f(x):

return

def grad_f (x):

x21, grad_f
grad_f[0],
return grad_f

(x[0] -

1.

x[1

grad_f[1]

11)

.5625
002902255146133292
.07627178330541139
.1044103708834347
.09405969456641125
.1040695448518871
.1156911711064965
.2453304005070866
.2716690732076990
.3548731818406570
.4563841342293742
.4475149568539881
.5073274307022437
.6837312358530869
.6368555689833639
.6934920772241859
.7914764619245512
.8303169726010279
.9019550045848869
.9421854653766993
.9879595713889101
.9851558833421766
.9954588419091560
.9998429509407731
.9999925797940143
.000000059038727
.9999999998718994
.9999999999995955
.000000000000001

yxx2 4+ 100. =

I = (x[0])xx2,

(x[1] -

grad_f[0]

new_dF;

1.2

np.array([2. =

- 400. * x[0]

11

(x[0]) *%2) xx2

(x[0] = 1.),
* x21, 200.

0.
* x21

1)

1.2



x, alpha, mu = np.array([0., 1.1), 0.75, 0.1
old_x, grad = x, grad_f (x)

while (max(abs(grad[0]), abs(grad[l])) > 1l.e-10):
print(x[0], x[1], f(x))
old x, x = X, x + mu » (x — old_x)
grad = grad_f (x)
d = —grad
while (f(x) + alpha % np.inner(grad, d) < f£(x + d)):
d=0.7 » d

x =x + d

0 0.2 0.4 0.6 0.8
Problems and exercises

1. Consider a function H>(x,y):=exp(8x — 13y +21) +exp(21y — 13x — 34) +0.0001 exp(x +y).
Is it convex/strictly convex? Minimize it, i.e., find (x.,y.) = argmin, s Hz(x,y).

2. Minimize a function J>(x,y) := 3xy — 2y 4+ 1000 (x* + y* — 1.1) exp(10(x* + y* — 1)).

3. Consider a 99-dimensional vector x with components x1, x2, ..., X99. For convenience, the
dummy components xo = —1 and xj00 = 1 are introduced, but xo and xjg9 are not variables in the
optimization problem below. Minimize a function

99 99
E 1 NI 1—2)? — inE
99(x) == 5 Z(le X))+ T (1-x7)7, X, = argmin Ego(x)
i=0 i=1 x

Find Egg(x,). Plot the vector x, (how the component x,;, 0 < i < 100, changes with i).
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19 Equality constrained minimization

Consider we want to minimize a function f(x), x € R", subject to a set of equality constraints
hi(x) =0,i=1,2,...,neq.°

One method is to parametrize the set of points x satisfying the equality constraints by n — neq
coordinates y € R"7"4, and then solve unconstrained optimization problem in y variable.

Example 19.1: Let us minimize K (x,y) = x + xy subject to 41 (x,y) = x> +y*> — 1 = 0. We can
parametrize the set [of points satisfying the constraint] x*> +y? = 1 as (cos@,sin@), 0 < ¢ < 2.
Then we have K> (x,y) — K>(@) = cos@+ cos@sin@ = cos @+ % sin2¢. The minimum of K, () is at
¢, = 51/6, which corresponds to x, = —\/§/2, Ve =1/2, pp = Ko (x4, y5) = —3\/§/4.

1.5

cos(x)+015*sin(2*x)

Ka(phi)

Example 19.1 continued: Let us introduce the Lagrangian anf the dual function

43 2_
L(x,y;v) =x+xy+v(x*+y* - 1), g(v) =inf L (x,y;v) = (A=), v 12
X,y —0o, v 5;1/2

[...]/teaching/2020-1/math_575b/notes/Octave$ cat Lagrangian_K_ 2.m
function [grad_L] = Lagrangian_K_ 2 (x)
grad_L = [1 + x(2); x(1); 0.1 + x(3) * [2. » x(1); 2. * x(2); 0.]1;
grad_L(3) = (x(1)) 2 + (x(2))"2 - 1.;

[...]/teaching/2020-1/math_575b/notes/Octave$ octave-cli
GNU Octave, version 4.4.1

[... copyright notice and links ...]

octave:1> format long; format compact

octave:2> newton (@Lagrangian_K_2, [0.2; 0.; 0.1)’
counter = 34
ans =

°If we want the optimization problem to be convex, then f should be convex, while the set of points satisfying the
equality constraints should be convex too, i.e., it should be flat, and constraints could be written as linear ones.
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8.660254037844387e-01 5.000000000000001e-01 -8.660254037844385e-01

octave:3> newton(@Lagrangian_K 2, [-0.3; 0.; 0.1)’
counter = 32
ans =
-8.660254037844431e-01 5.000000000000023e-01 8.660254037844236e-01

octave:4> newton(@Lagrangian_K 2, [0.; 0.; 0.1)’
warning: matrix singular to machine precision
warning: called from
newton at line 14 column 7
counter = 2
ans =
1.192092909718666e-08 -1.000000000000000e+00 5.960464637411177e-09

octave:5> newton (@Lagrangian_K_2, [-0.8; 0.3; 0.])’
counter = 5
ans =
-8.660254039596367e-01 5.000000001235305e-01 8.660254033776313e-01

The maximum of g(v) happens at v = v/3/2, with d, = g(v,.) = —2(+/3/2)? = —=3V/3/4 = p..

Example 19.2: Let us minimize f(x) = 3xTOx —xTr with the condition Ax = b. We form La-
grangian .Z (x,v) = 3xTOx —xTr +vT (Ax —b). Equating the gradient of . with respect to x and V to

zero, we get
Ox+A™v = r O [AT||x| |r
Ax=b B
i o b

It is an (n 4 neq) X (n+ neq) System of linear equations, solving which would give the position of
optimum x, that automatically satisfy the condition Ax, = b, due to the lower part of the system.

Example 19.3: Consider R;(x,y) with the condition y = 2x — 1.

function [x] = eqg_R2(x)

flag = 1;
while (flag > 0)
G =2 * [x(1) - 1; 0; 0] + 200 » (x(2) - (x(1))"2) » [-2 » x(1); 1; O];
% Hessian of R_2(x, y) % + nu x (y — 2 x — 1)
H = zeros (3);
H(1, 1) = 2. - 400. % x(2) + 1200 = (x(1))"2;
H(l, 2) = —400 * x(1); H(2, 1) = H(1, 2);
H(2, 2) = 200.;
H(3, 1) = -2.; H(1, 3) = -2.;
H(3, 2) = 1.; H(2, 3) = 1.;
x0ld = x; x = x — H\ G; x(3) = 0.;
XI
if (norm(x - xold) < 1.e-8)
flag = 0;
end
end
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Example 19.4: Consider the function Ly(x,y) = (x — 1)> 4 (y — 1)? subject to condition y> =
x? —2x3/3.

The plot below is the map where the primal-dual Newton method (which is an application of
Newton method to the Lagrangian .Z’(x,V)) converges to. There are 3 points (shown by larger shapes)
at which the gradient of L, along the zero level curve of the equality constraint is zero: (1,i3_1/ 2)
and (0,0) (there are 2 directions of the level curve at this point, the gradient is zero along only one
of the directions). The small shapes correspond to positions (x,y,v = 0) starting from which the
Newton’s method converges to a corresponding zero gradient point.
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Let us consider another idea to solve an equality constrained optimization problem. Consider we
want to minimize f(x) subject to neq equality constraints k(x) = 0. We form a function

Neq

fix)=fx)+t Y h(x)
i=1

and minimize it for different values of . Obviously, for the points on which h(x) =0 we have f;(x) =
f(x). When ¢ is large, then any non-zero values in k(x) would produce too large value of f;(x), so the
large ¢ is, the better the solution of unconstrained minimization of f;(x) approximates the solution of
the equality constrained minimization.

When 1 is large, the function f;(x) has narrow valleys along the zero set of h(x), the fact needed
to be taken into account.

Example 19.4, continued: We have f;(x,y) = (x — 1)> 4 (y — 1)2 +1(y*> — x> +2x3/3)%. Let us
apply damped Newton method to it:

function [X] = newton_L2_eqg(X, t)
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h = @(x) ((x(2))72 - (x(1))"2 * (1. - 2. * x(1) / 3.));
f=0(x) ((x(1) — 1.)"2 + (x(2) — 1.)"2 + t *« (h(x))"2);
while (1 > 0)
F = £(X);
x =X(1); vy =X(2); H=y "2 - x"2 4+ 2. » x"3 / 3.;
dFF = 2. * [x — 1.; v —1.] +4. « t » H+ [x"2 - x; y];
if (norm(dF) < 1.e-8)
break;
end
ddF = [2. + 8. * t * (x"2 - x)"2 4+ 4. » t « (2. » x —1.) = H, 0.; 0., 0.1;
ddrF (1, 2) = 8. » t * (x"2 - x) * y; ddF (2, 1) = ddrF (1, 2);
ddrF (2, 2) = 2. + 8. « t » y"2 + 4. x t * H;
d = -(ddF \ dF); flag = O;
while (f£(X + d) >= F)
d=d/ 2.;
if (norm(d) < eps)
if (flag == 1)
break;
end
d = —-dF; flag = 1;
end
end
X = X + d;
XI
end

Problems and exercises
1. Consider the function M>(x,y) = x*> +y?. Minimize and maximize it subject to the condition
(6x4+29)%(x — 1)2 +12(6x+31)(x — 1)y* +36y* = 0.

20 Example V.2: image restoration’

Consider you have an “image” v (it is either a function v(x) or a two-dimensional picture v(x,y),
etc.). The image is distorted by noise, w = v+ &. Our task is to remove noise. We can pose it as a
following optimization problem

Uy = argmin(%Hu —W”% +7\'HV1’£“>}7)
u

The 1% term tries to get most of the signal w that we have. The 2"¢ term tries to make the restored
image “smooth”, as we think of the noise & to be high frequency, not correlated from pixel to pixel,
etc. If A = 0, then we just have u = w.

Consider the case p =V = 2. Then u is the result of minimization of quadratic function. In the
case of one-dimensional signal we have

Uy = argmin/dx(%(u —w)?+ k(u’(x))2>
(i)

7 Adapted from [Cal20, Sec. 3.6].
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The Euler-Lagrange equation would be linear: (0.2 /ou') = 9% /ou or 2Au') = 2A" = u—w. If
we do the Fourier transform, we get w(k) = (1 +2Ak?)ii(k) (even in higher dimensions), or u is the
convolution of w with a certain kernel, namely exp(—|x|/ \/ﬁ) /V/8M.

Let us think about an image as a graph, with vertices being the pixels, while edges indicate that
its endpoints are neighbors. The optimization problem looks simpler (i.e., more local) for v = p:

U= argmin(%Z(uv —wv)2+ A Z ‘le —u\,2|p>
u \Y

e=ViVvp

(Tt is possible to assign different values of A to edges, if desired.)
The choice p[=Vv] =1 is better. Let us also smooth |u| as V€2 +u?> with some small €. The
problem with two pixels and one edge would look like

(s, Us2) = argmin(%(ul — w1)2 + %(uz — wz)2 —|-7\.\/82 + (uy — uz)z) = argmin f(uy, up)
(ul,uz) (’417“2)

If we do the minimization by ODE version of gradient, we get the equation of motion descent

d ) - A
ﬂ:_‘f(u—l’uz)zwl_ul_}\’ I/t] Mz %Wl_ul__.(ul—uz)
VEX+ (ur — up)? €

dr aul
The last approximate equality is written for the case when u; and u, are close, (1] —uy) < €. (Similar
equation can be written for u,, and one can even write a closed equation for the difference u:=u; —uj;.)
In that case —d(du/dr) /du = f”(u) = 2\/¢ is large, and we need small step size (not greater than /A
if we use forward Euler method) in order for an explicit scheme for solving the ODE for u to be in its
region of absolute stability.
Let us add some inertia to the ODE we are trying to solve:

d’u n du () 2\u
m—+—=—f(u)=————
2 dr NS )

You may imagine a particle of mass m moving in the potential f(u), while the term du/dr provides
a friction force. (In the limit m,A — oo with A/m being fixed we get a Hamiltonian system with
no dissipation.) This is similar to applying Polyak’s heavy ball or Nesterov’s fast gradient meth-
ods, instead of just gradient descent. For small u we have the system mii + i+ Au/e = 0. Now
instead of solution u o e” with y = —2\A/e (which bounds the time step by Ar < €/A), we get
Y=4+/1/4m2 — 2N /em —1/2m =~ +i+/2\/em, so we need At < \/em/A, i.e., At is not much greater
than the inverse frequency of oscillations of the particle near the bottom of the potential f(u).

If one still applies forward Euler method, then in order for Y to be in the region of absolute stability,
we need |14+yAt| < 1, or (1 —At/2m)?+ (At)> (2N /em—1/4m?) = | — At /m+2(At)*L/em < 1, which
gives Ar < €/2\. In order to be stable near the bottoms of v/€2 + u? and have Ar > €/\, we need to use
a method of at least 2" order of accuracy. Even then, if we are just worried about the speed of [linear]
convergence in the small vicinity of the minimum of the function, where the quadratic approximation
would already work, to have the largest gain [in decreast of the function] per step one would choose
At ~ g/, regardless of the numerical method for solving the system of ODEs.

The benefit of introducing the mass m is that [before entering the small vicinity of the minimum
of the function] we descend along the narrow (as € is small) valleys in a more decisive fashion.
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The system of ODEs for the pixels’ values looks like

dzuv duv uv_
1.0 . — v V_}\‘
ez T v ;\/ez-l—(u

for all pixels v i

v_uv’)2

where the summation over v/ goes over the pixels neighboring the pixel v.

Example V.2.1: Let us denoise an 64 x 64 image of letter “U”. The appropriate values of A are
related to the typical pixels’ values (from 0 to 255) — the value of A should not be smaller than the
magnitude of noise. The explicit midpoint (RK2) method was used. With € = 0.1 (i.e., smaller than
our resolution of pixel’s values, which are inetegers) the value of m ~ 0.2 works well and allows the
time steps larger than €/A.

The noise increases from left to right, and the values of A that reasonably denoise the image (e.g.,
A = 16 for the left image (where standard deviation of noise is 17) and A = 128 for the right image
(standard deviation of noise is 102) increase too.

When A is very large, any changes in the image contribute greatly to the function being minimized,
because of A||Vu/||; term. The fading of the image with A is visible for, e.g., A > 64. Another thing to
notice is the jump of the pixels’ values in between the top parts of letter “U” sides. This is because
the length between the sides is shorter than the boundary of inner part of letter “U”, and the “optimal”
reconstruction makes the value of the function smaller by funneling part of the change in image to
shorter segment, thus reducing A||Vu||;. (The area in between the sides of “U” is not becoming dark
because of ||u — w||, term which forces the reconstruction u to resemble the original image w).
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Original image (grayscale, 64 x 64, 8 bits color depth (values are from O to 255), letter
“U”, 51 on the letter and 204 on the background), images with added noise (normally
distributed with zero mean, independent from pixel to pixel, with standard deviation
17 (left), 34, 51, 68, 85, and 102 (right), if the value at the pixel after adding the noise
becomes smaller than O or larger than 255, then it is clipped). Restorations for several
values of A are shown, A = 4 (top), 8, 16, 32, 64, 128, and 256 (bottom).
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Problems and exercises

1. Consider the
image below. You can
think of it as 64 x 64
matrix  written on
the right.  Denoise
it, using p =v =1,
€ = 0.1, and some

21 Barrier method

(The idea of barrier method is similar to the idea of introducing the auxiliary functon f;(x) =
f(x)+tY;h?(x).) Consider we want to minimize the function f(x) subject to inequality constraints
gi(x) < 0. This problem is equivalent to [unconstrained] minimization of f(x)+ ¥,/ (g(x)), where
I_(g) is an indicator function

0, g<0
I-(s) = { oo, >0
Let us substitute the function 7_(g) by, e.g., L;(g):=—(1/t)In(—g) (and, e.g., Li(g) = 4o if g > 0)
— the so called logarithmic barrier. The larger ¢ is, the better L,(g) resembles /_(g), so we can hope
that the point of minimum of f;(x):= f(x) + ¥;L;(gi(x)) is close to the solution of our [constrained]
optimization problem.
Example 21.1: Consider minimizing Ly(x,y) = (x—1)% + (y— 1) subject to y> — x> +2x> /3 < 0.
We introduce the barrier and find the minimum by damped Newtom method:

function [X] = newton_L2_ineqg(X, t)
g = @(x) ((x(2))"2 - (x(1))"2 = (1. = 2. = x(1) / 3.));
f=0@0(x) ((x(1) - 1.)72 + (x(2) - 1.)"2 - log(-g(x)) / t);
while (1 > 0)
F = £(X);
x = X(1); y=X(2); G=y"2 -x"2+ 2. » x"3/ 3.;
dFF = 2. x [x — 1.; v - 1.1 — 2. % [x"2 - %x; y] / (t = G);
if (norm(drF) < 1.e-8)
break;
end
ddrF = [0., O0.; 0., 2. + 4. = y"2 / (t = G"2) — 2. / (t = G)];
ddF (1, 2) = 4. x (x"2 - x) xy / (t = G"2); ddF (2, 1) = ddF (1, 2);
ddr (1, 1) = 2. + 4. » (x"2 = x)"2 / (t = G"2) — (4. =« - 2.) / (t = G);
d = -ddrF \ dF;
while ((£f(X + d) >=F) || (g(X + d) >= 0.))
d=d/ 2.;
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end
X =X + d;
end

octave:1> format long; format compact
octave:2> newton_L2_ineq([0.5; 0.], 1.)’
ans =
1.000000000000117e+00 2.213803260348214e-01

octave:3> newton_L2_ineq([0.5; 0.], 10.)’
ans =
1.000000000000000e+00 4.879092568824754e-01

octave:4> newton_L2_ineqg([0.5; 0.], 100.)’
ans =
9.999999999999998e-01 5.659458736827376e-01

octave:5> newton_L2_ineqg([1l.; 0.5659458736827376], 100000.)"’
ans =
1.000000000000000e+00 5.773384395149100e-01

octave:6> 1. / sqgrt(3.)
ans = 5.773502691896258e-01

The larger is the value of #, the closer is the position of the minimum of f;(x,y) = (x — 1)+ (y —
1)? — (1/t)In(x* —y? —2x3/3) to the exact position (x.,y.) = (1,1/v/3).

Problems and exercises

1. Minimize the function L, (x,y) = (x — 1)?+ (y — 1)? subject to y* +x> < 0.

2. Minimize the function Cy1o(X1,X2, --,X55, 1,2, - Y55) = Yooy (vio1 +yi) /2 = % + Y23, i sub-
ject to 55 inequality constraints y; > 0, i = 1, 2, ..., 55, and 56 equality constrains (x; —x;_1)> +
(yi —yi_l)z =0.032,i=1, 2, ..., 56. Here for convenience dummy [non-]variables xop = yop = 0 and
Xs6 = y56 = 1 are introduced.®

22 Linear programming

Example 22.1: Consider a problem of minimizing a linear function, e.g., —x — 2y, in the domain
x>0,y>0,x+3y<9,x+y<5S.

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_1_simplex.c
#include <stdio.h>
#include <glpk.h>
int main(void) { glp_prob xlp; int ia[5], jal[5]; double x, vy, ar[5];
lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MIN);
glp_add_rows (lp, 2); glp_add_cols(lp, 2);
glp_set_col_bnds(lp, 1, GLP_LO, 0.,
glp_set_col_bnds(lp, 2, GLP_LO, 0.,

Y; /*x 0 <= x %/

0.
0.); /» 0 <=y */

8 The problem is about the shape of a flexible chain of 56 segments with length 0.03 (so the chain’s length is v/2 <
L=1.68 =56-0.03 < 2) with its ends at the points (0,0) and (1, 1) in xy-plane. The function Cj ¢ is the potential energy
in the gravity field. The line y = 0 is the ground level, and the chain can not go below it.
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glp_set_obj_coef (lp, 1, -1.); glp_set_obj_coef(lp, 2, -2.); /+* min -x — 2 y */
ia[l] = 1; jall]l = 1; ar[l] = 1.; /+ x + 3y <= 9 «/

iaf2] = 1; jal2] = 2; ar[2] = 3.;

glp_set_row_bnds (lp, 1, GLP_UP, O., 9.);

ia[3] = 2; jal3] = 1; ar([3] = 1.; /+ x + y <=5 */

iafl4] = 2; jal4] = 2; ar[4] = 1.;

glp_set_row_bnds(lp, 2, GLP_UP, O., 5.);

glp_load matrix(lp, 4, ia, ja, ar); glp_simplex(lp, NULL);

x = glp_get_col_prim(lp, 1); y = glp_get_col_prim(lp, 2);

printf("x = % 22.16e\ny = % 22.16e\n", x, vy);

glp_delete_prob(lp); return 0; }
[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_1_simplex.c
-lglpk ; ./a.out

GLPK Simplex Optimizer, v4.65

2 rows, 2 columns, 4 non-zeros
* 0: obj = 0.000000000e+00 inf = 0.000e+00 (2)
* 2: obj = -=7.000000000e+00 inf = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND

x = 2.9999999999999996e+00

y = 2.0000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$

Here is the same linear program solved by scipy.optimize.linprog from SciPy:

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_1.py
from scipy.optimize import linprog

print (linprog([(-1., -2.]1, A_ub = [[1., 3.1, [1., 1.11, b_ub = [9., 5.1))
[...]/teaching/2020-1/math_575b/notes/linear_programming$ python3 example_1.py

con: array([], dtype=float64)
fun: -7.0
message: 'Optimization terminated successfully.’
nit: 3
slack: array([0., 0.1])
status: O
success: True
x: array ([3., 2.1)

[...]/teaching/2020-1/math_575b/notes/linear_programming$

Example 22.2: Consider fitting the cloud of 5 points .5 = { (-2, -3), (—=1,—1), (0,5), (2,5), (3,1) }
by y = ax+ b line, with max;|ax; + b — y;| being minimized. The problem of fitting in L™ sense could
be written as a linear program

minimize d subjectto —d < ax;+b—y; <d for all i
[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_2.c

#include <stdio.h>
#include <glpk.h>

#define MAT (I, J, A) ia[m] = I; jalm] = J; ar[m] = A; m++;

int main(void) { glp_prob xlp; int i, k, m, ia[31l], jal[31l]; double a, b, ar[31];
double xy[5][2] = {{-2., -3.}, {-1., -1.}, {0., 5.}, {2., 5.}, {3., 1.}};
lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MIN);
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glp_add_rows (lp, 10); glp_add_cols(lp, 3);

for (i = 1; i <= 3; i++) glp_set_col_bnds(lp, i, GLP_FR, 0., 0.);
glp_set_obj_coef(lp, 1, 0.); glp_set_obj_coef(lp, 2, 0.);
glp_set_obj_coef(lp, 3, 1.);

for (m =1, 1 = 0; i1 < 5; i++) {

k=21 + 1; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, -1.);
glp_set_row_bnds(lp, k, GLP_UP, O., xy[1]1[11);

k=2 1+ 2; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, 1.);
glp_set_row_bnds (lp, k, GLP_LO, xy[1][1], 0.); 1}

glp_load _matrix(lp, m - 1, ia, ja, ar); glp_simplex(lp, NULL);

a = glp_get_col_prim(lp, 1); b = glp_get_col_prim(lp, 2);
printf("a = % 22.16e\nb = % 22.16e\n", a, b);
glp_delete_prob(lp); return 0; }
[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_2.c -lglpk
[...]/teaching/2020-1/math_575b/notes/linear_programming$ ./a.out
GLPK Simplex Optimizer, v4.65
10 rows, 3 columns, 28 non—-zeros

0: obj = 0.000000000e+00 inf = 1.500e+01 (5)
5: obj = 3.200000000e+00 inf = 0.000e+00 (0O)
OPTIMAL LP SOLUTION FOUND
a = 8.0000000000000016e-01

b = 1.8000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$

Example 22.3: Consider fitting the cloud of 5 points .¥5 by y = ax + b line, with Zi|ax,~ +b—y;
being minimized. The problem of fitting in L! sense could be written as a linear program

minimize Zd,— subjectto —d; < ax;+b—y; <d; forall i
i

[...]/teaching/2020-1/math_575b/notes/linear_programming$ diff -tyW 156 —--suppre
ss—common—-lines example_2.c example_3.cC
glp_add_rows (lp, 10); glp_add_cols(lp, 3); |
glp_add_rows (1lp, 10); glp_add_cols(lp, 7);
for (i = 1; 1 <= 3; 1i++) glp_set_col_bnds(lp, i, GLP_FR, 0., 0.);
for (i =1; i <= 7; i++) glp_set_col_bnds(lp, i, GLP_FR, 0., O
glp_set_obj_coef (lp, 3, 1.); |

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_3.c -1lglpk
[...]/teaching/2020-1/math_575b/notes/linear_programming$ ./a.out

GLPK Simplex Optimizer, v4.65

10 rows, 7 columns, 28 non—-zeros

for (i = 3; 1 <= 7; i++) glp_set_obj_coef(lp, i, 1.);
k 2 i+ 1; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, -1.); |
k=21 + 1; MAT(k, 1, xy[i]I[0]); MAT(k, 2, 1.); MAT(k, 1 + 3, -1.);
k=2 % 1+ 2; MAT(k, 1, xy[i]1[0]); MAT(k, 2, 1.); MAT(k, 3, 1.); |
k=2 1i+ 2; MAT(k, 1, xy[i][O0]); MAT(k, 2, 1.); MAT(k, i + 3, 1.);
]
]

0: obj = 0.000000000e+00 inf = 1.500e+01 (5)
4: obj = 1.000000000e+01 inf = 0.000e+00 (0O)
* 7: obj = 1.000000000e+01 inf = 0.000e+00 (0O)

OPTIMAL LP SOLUTION FOUND

a 2.0000000000000000e+00

b = 1.0000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$
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Part VI
Applied probability

23 Generating pseudo-random numbers

linear congruential generators, RANDU (bad pseudo-random numbers generator)

TestUO1, KISS: a bit too simple

GNU GSL RNGs

From now on let us assume that we have an access to a generator of uniformly distributed on [0, 1)
random numbers. Different trials of this generator are assumed to be independent.

Example 23.1: Let us construct a generator of random numbers with distribution function

0 x<-—1
1—|—X —1 <)C<O ! 2 -
_ ’ — T ) (1+x)?/2, —1<x<0
A= (1)_x7 gtlfefwgiscla ) = 1-(1 _x)2/27 O<x<1
’ 1, 1<x
fX(x) Fx(x)
T
'/
4//
0 X 0 X

The 1% idea is to use the expression for Fy 1,

_ —1+V2u, u<l1/2
x'_{ 1—v2(0—w), u>1)2

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

int main(void) { gsl_rng % RNG; int i; double u, x;
RNG = gsl_rng_alloc(gsl_rng _ranlux389);

gsl_rng_uniform (RNG) ;

for (i = 0; 1 < 2000000; i++) { u =
) — 1.; else x = 1. - sgrt(2. = (1 - u));

if (u < 0.5) x = sqgqrt(2. * u
printf ("% 22.16e\n", x); }

gsl_rng_free (RNG); return 0; }

The 2" idea is to notice that ¥ := min(uy,u,) is distributed according to Fy(y) = 2(1 —y) for
0 <y < 1. Wesetx:=sign(2u3 — 1) -min(uj,uz). This way we use three uniform numbers u;, uy, u3
to form one x, but the functions are simpler.
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#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

int main(void) { gsl_rng % RNG; int i, Jj; double ul[3], x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; 1 < 1000; i++) {

for (3 0; J < 3; J++) ulj] = gsl_rng_uniform(RNG);
x = ul[0]; if (ull] < x) x = ull]; x = copysign(x, 2. % ul2] - 1.);
printf ("% 22.16e\n", x); }

gsl_rng_free (RNG); return 0; }

fir (@) = [ dedy fe(fy ()8(x+y=2) = (fis /1) (2

The 3" idea is to notice that u; + up — 1 (like the sum of two dice rolls) would be distributed in the
desired way. This can also be rewritten as u; — (1 — up), and as u; and 1 — uy have same distribution,
let us generate x as x:=uj — uy:

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

int main(void) { gsl_rng % RNG; int i, Jj; double ul2], x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; 1 < 2000000; 1i++) {
for (j = 0; J < 2; j++) ulj] = gsl_rng_uniform(RNG);
x = u[0] - ull]l; printf("% 22.16e\n", x); }

gsl_rng_free (RNG); return 0; }

The 4™ idea is the rejection method due to John von Ay
Neumann. Consider we have the desired density distribu-
tion function fx (x) confined in a rectangle, with the share
of the area under the fy being not small. We can throw
a point uniformly distributed in the rectangle by throwing
two uniform numbers u; and up. We then check whether
the point in the rectangle is below the density fx(x), and if
not, then we reject it and try again. In the case of success 0 X
the horizontal coordinate is x.

rejected

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

double f_X(double x) { if ((x <= -1.) || (x >= 1.)) return 0.; else
{ if (x <= 0.) return 1. + x; else return 1. - x; } }

int main(void) { gsl_rng % RNG; int i, Jj; double ul2], x;
RNG = gsl_rng_alloc(gsl_rng _ranlux389);
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for (i
for
X

print

(

gsl_rng_free (RNG) ;

= 0; i < 2000000; i++) {

;;) { for (jJ = 0; J < 2; j++) ulj]l = gsl_rng_uniform(RNG);
2. % ul0] - 1.; if (ull] < f_X(x)) break; }

£("% 22.16e\n", x); }

return 0O;

}

All the 4 methods give the same distribution of the random variable X:
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Example 23.2: Let us construct a generator of random numbers with standard normal distrubu-

tion.

The 1% idea is to use the inverse cumulative distribution function. Here Fy (x) = \/szn [* dye > /?

is related to a so called error function. There is a built-in inverse error function in MATLAB (and
GNU Octave), but not in C’s math.h or even GNU GSL. Let us invert it using the bisection method
(it is not going to be too fast):

#include
#include
#include
#include
int main
RNG g

for (i
for (
{ x
print

gsl_rng_free (RNG) ;

<stdio.h>
<math.h>

<gsl/gsl_sf_erf.

<gsl/gsl_rng.h>
(void) { gsl_rng
sl_rng_alloc(gsl
= i < 1000000
-20., Xr
0.5  (x1 + x
f("% 22.16e\n",

x1

0;

retu

h>

* RNG; int 1i; double u,
_rng_ranlux389);

X, X1, XxXr;

; it++) { u = gsl_rng_uniform(RNG);

20.; xr — x1 > 1.e-15;)

r); if (gsl_sf_erf Q(x) < u) xr = x; else x1 = x; }
x); '}

rn 0; }
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The 2" idea uses the Cental Limit Theorem. Let us sum 100 (again, this is not too fast) uniformly
distributed numbers, and then shift and rescale the result so that we get a number that is [almost]
normally distrubuted, with zero mean and standard deviation being equal to 1:

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

int main(void) { gsl_rng % RNG; int i, Jj; double su, x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; 1 < 1000000; i++) {
for (su = 0., 3 =0; j < 100; j++) su += gsl_rng uniform(RNG) ;
x= (su - 50.) / sqgrt(100. *« (1. / 12.)); printf ("% 22.16e\n", x); }

gsl_rng_free (RNG); return 0; }
. . .. 2,2 2
The 3 idea is exploiting o-e = 17/ 2dxdy = s-e " /2rdrdd = e *ds &2, where r = \/x2 + 2
and s = r? /2. We have exponential distribution for s and uniform one for 0. The code is

#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

int main(void) { gsl_rng % RNG; int i, Jj; double ul2], r, Xx;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 500000; i++) {
for (jJ = 0; J < 2; j++) ulj] = gsl_rng_uniform(RNG) ;
r = sqgrt(-2. * log(uf[0]));
X r * cos(2. » M_PI * ull]); printf ("% 22.16e\n", x);
X = r % sin(2. * M_PI * ul[l]); printf("$ 22.16e\n", x); }

gsl_rng_free (RNG); return 0; }

All the 3 methods give the same distribution of the random variable X:

18000 ‘ ‘
‘hist_ex_23.2.17 —+—
‘hist_ex_23.2.2" ---&---

16000 |- hist_ex_23.2.3" o~ |

14000

12000

10000

8000

6000

4000

2000




Problems and exercises
1. Write a random number generator that produces numbers distributed according to density dis-

tribution function £ = exp(x) /(e — 1), 0<x<I:
= 0, x<0 or x>1.

24 Monte Carlo method

Imagine you have a stochastic differential equation dx/dr = &(¢), where &(¢) is a white noise with
correlation function (§(#1)§(2)) = 2Dd(f; —t2). Then the density distribution function p(¢,x) of the
random variable x(¢) satisfies the so called Fokker—Planck equation dp(t,x)/dt = Dd%p(t,x)/0x>. The
quantity D is often called the diffusion coefficient.

One of the solutions of this partial differential equation is p(¢,x) = exp(—x?/4Dt) /+/4nDt, with
lim,_,¢+ p(#,x) = 8(x). The solution gives the density of x(7) conditioned by x(0) = 0. Notice that
(x*(t)) =2Dt, i.e., x ~ \/Dt.

Imagine we discretized time (with the time step being t), and x(¢), &(¢) are substituted by their
grid functions x;, &, /2- We would like to write down some kind of update rule x; 1 = x; + t&ip1 /2-
What values the noise &/, does take? The correlation function (§(#1)&(t2)) = 2D3(t1 —t2) is now
(§,§ j> = 2Dy; j /T, Le., all &; are independent normally distributed random variables, with standard
deviation /2D/t. Thus the update rule looks like x;+1 = x; + /2Dt -, where { on each step is
independently chosen according to the standard normal distribution, f({) = exp(—{?/2)/v/2x. Note
that x; 1 — x; ~ /T > 7. This can also be obtained from

t+T t+7T 47T t+7

<( (t+1)— /dt1 /dtz (11)E(t2)) /dt1 /dtz 2D8(1) — 1) = 2Dt

The decay of information about the distant past in random process X (¢) is often measured by
autocorrelation or autocovariance function

Kxx(t1,12) = E((X(fl) — EX(M)) (X(IZ) - EX(IZ))>

For stationary process X (¢) the quantity EX(z) does not depend on ¢, while Kxx(1,7,) depends just
on time difference ¢; —t,. If X(t;) and X (1) are independent, then Kxx(t1,t2) = 0.” The smaller
Kxx (Tt =1 — 1), the less dependence we expect between the values of X separated by T in time.

Example 24.1: Consider a stochastic differential equation dx(z)/dt = —x(¢) +&(¢), where &(1) is
white noise, (§(#1)(r2)) = 8(¢; —12). The quantity x(¢) is stirred by &, otherwise x(¢) exponentially

° The reverse is not true. Consider, e.g., X and Y to be uniformly distributed on the circle X> +Y? = 1. Then
EX = EY = EXY = 0 (so linear correlation coefficient between X and Y is zero), but X and Y are not independet, they are
even functionally dependent.
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decays with rate 1. We have x(¢) = [*_dr' e~ (~") ('), and Ex(t) = 0, while

n 15
K1) = Ex(in)x() = [ arf [ ath exp(~(n ~1}) (12 1)) E&(1)E(8)
~—
. B(tf~13)
min(zy,t)
= / dr’ exp(2t’—t1 —t2) = %exp(—|t1 —t2|)

The process x(t) is stationary, and Ky (¢1,t>) depends just on t; — 1.1

The equation can be solved numerically using the update rule x;+1 = e "x; + /T{; 44 /2, here T is
the time step. Here index in { just distinguished the independent trials of standard normal distribution.
The statistics of — is the same as of {, and Ex; = 0. As EC = 0, we have Ex; 1x; = e*TExiz, or
K(t) =e "K(0). We have K(2) = Exjox; = E(e "xip1 + \/Ef;i+3/2)x,~ =e "K(1) =e 2°K(0). It can
be shown that K(r) = e 'K(0), i.e., correlations between different time values of x decay with rate 1.

import numpy as np; from random import normalvariate
x, dt, corr, N = np.zeros(100200), 0.01, np.zeros(201), O
x[0], sigma = 0., np.sqrt (dt)
for 1 in range(l, 100200):
x[1i] = (1. - dt) = x[1 - 1] + normalvariate (0., sigma)
if (i >= 200):
for 3 in range (0, 201):
corr[j] += x[1i] * x[1 - 7]
N += 1

print ("# N =', N)

for j in range (0, 201):
corr[j] /=N
print (j, corr[jl)

0.55

i 'dataﬁex724‘.1' u ($1/100):2 +
i exp(-x) /2 -

05|
04s |
04|
0.35 |
03|

0.25

0.05 . 5 .
0 0.5 1 1.5 2

10 The reverse is not true. It could be that Kxx (t1,t2) = Kxx (t| —12), but the process X (¢) is non-stationary.
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Example 24.2: Consider a stochastic differential equation dx(r) /dt = x(¢) §(¢), where &(#) is white
noise, (§(11)&(t2)) = 2D3(t; — ). We would like to solve them numerically, producing realizations
of the process x(¢). One can come up with, e.g., the following update rules:

Itd: xip1 =x;+V2D71x; Ci+1/2
Stratonovich: x;11 =x;+V2D7 % Civ /2

Both seem sane discretizations, but they will produce different dynamics. It is easy to see that in 1t6
discretization we have Ex;;; = Ex; = x(0). To the contrary, in Stratonovich discretization we have
xip1 = xi(1+v2D18/2) /(1 —V2D1§/2) = x;(1 4+ v2D1(/2) (1 + V2Dl /2 + 2Dt /4 + ..) =
xi(14+V2Dt{+ 2Dt /4 +2DtC% /4 + ...) — xi(1+ Dt +V/2Dt§). We have Ex;y = (14 D1)Ex;,
and Ex(t) = e”'x(0).

Here is a Python script solving dx/dr = x& using It6 dicretization (D = 1/2):

from math import sqgrt; from random import normalvariate
dt = 0.001
for n in range (0, 20):
t, x = 0., 1.
print (t, x)
for i in range (0, 10000):
t, x =t + dt, x » (1. + sgrt(dt) = normalvariate (0., 1.))
print (t, x)

print ()
% P 100.000000 : : ‘ ‘
ata_Ito
| MM (i
10.000000 ’U i ¥ ot o
AL b MW
70 | WW%"W "\“‘v:‘lw
1.000000 L ) ¥ www%n MW Nt
L ‘ Wi, :
X ’\“’pw‘%l "\‘w% K \ v
S0 0.100000 | W A
IJM
x g o
0.010000 | \ ‘
0.001000 |
0.000100 |
‘data_lto’
0.000010 . w
0 1 2 3 4 5 6 7 8 9 10

Here is a Python script solving dx/dt = x& using Stratonovich dicretization (D = 1/2):

from math import sqgrt; from random import normalvariate
dt = 0.001
for n in range (0, 20):

t, x = 0., 1.

print (t, x)

for i in range (0, 10000) :
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xi = sqgrt(dt) * normalvariate (0.,
t, x =t +dt, x * (1. + xi) / (1
print (t, x)

print ()

1.) / 2.
- x1)
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Example 24.3: Consider we start the diffusion process (D = 1/2) with x(0) = 1. How the time
T of hitting x = O for the first time (i.e., x(T) =0, x(z) > 0 for all t < T, or T := min, x(¢) < 0) is
distributed? This problem can be modeled by the diffusion equation dp(t,x)/dt = %azp(t,x) /ox?
with [absorbing] boundary condition p(#,0) = 0 and initial condition p(0,x) = §(x— 1). The solution

looks like
o 552 )

We have Fr(t) =1 — [;"dx p(z,x), and

1 1
ety =0 [ 00 L[, P00 1000 _ew(L/)
0

dr ox? 2 ox =0 213
~—_———
diffusive flux to the wall

Here is a “naive” Python script which generates 10000 instances of the random walk, terminating
each time the particle hits x = 0 or when time ¢ exceeds 3, whichever happens first:
from math import sqgrt; from random import normalvariate
for i in range (0, 10000):

x, t, dt = 1., 0., 0.0001

while ((x > 0.) and (t < 3.)):

X, x + sqrt(dt) * normalvariate(0., 1.), t + dt

t =
print (t)
If we would terminate only when the particle hits x = 0, then sometimes generating an instance of a

random walk would take very long time. It is not surprising, as the expected value of the hitting time
T is either 40 or [formally] does not exits. The histogram from 10* [and also 10°] trials looks like
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exp(-1/(2*x)) / sqri(2*pi*x*x*x)
"hist

310000 o
‘hist_list_1000000"

In order to work with many trials, the trials should be done in a more efficient way. In the “naive”
script we spend too much time if we go far from the wall. There, to speed up the computation, we can
safely do larger in time steps:

from math import sqgrt; from random import normalvariate
t, x = [0.1, [1.]
while (x[0] > 0.):

dt = x[-1]*x%x2; t.append(t[-1] + dt)

x.append(x[-1] + normalvariate (0., sqgrt(dt)))

while (len(t) > 1):

if ((£[1] — t([0] > 0.0001) and ((x[0] + x[1])**2 < 50. * (t[1l] - t[0]))):
dt = t[1] - t[0]; t.insert(l, 0.5 = (t[0] + t[1l]))
x.insert (1, 0.5 » (x[0] + x[1]) + normalvariate (0., sqgrt(dt) / 2.))
if (x[1] < 0.):
del t[2:], x[2:]
else:

print (£[0], x[0])
del t[0], x[0]

Here trajectory is built as needed. If we didn’t hit x = 0 yet, we add a time step that is large enough to
realistically expect a hitting event within the step. (Here it happens with the probability P(z > 1) ~
0.16.) Next we review an already formed trajectory, trying to fill in the gaps and check whether hitting
x = 0 did happen there. If between the two points of the built trajectory the probability to hit x =0 is
smaller than about 10~!°, we don’t refine the trajectory there any further. (Same if the time difference

between two points is less than 0.0001.)
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If (t; —19 > 0.0001) and (xp, x; are not too far from 0) then refine the trajectory:
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24.1 Importance sampling

Consider we have a random variable X which is distributed with density distribution function
fx(x), and we want to find EA(X), i.e., we want to find what is the average of the quantity A which
depends on X in some way. The simplest application of the Monte Carlo method would be to sample
the distribution fx many (N) times, get values x, x2, ..., X, and then eastimate EA(X ) ~ %Zi\’: 1A(x)).

Sometimes (that of course depends on the statistics of X and the nature of the function A(-)) the
values of X that contribute to EA(X) are quite rare (and we can think of the value of EA(X) as small).
In this case in order to accurately estimate EA(X) the number of samples N needs to be very large, so
that all the relevant values of X were sampled enough many times.

Importance sampling is the technique of speeding up the accurate estimation of EA(X). The idea
is to sample not fx(x), but some other distribution g(x), and write

x
A = [ aca) il = [ ar [0 2 g
One can interpret the expression on the right as calculation of the expected value of the quantity
A(x) fx(x)/g(x), where x is distributed with density g(x). If the values of x relevant for the expected
value EA(x) are well covered by the distribution g(x), then in our N samples we would comprehen-

sively contain all the x needed. Each of that values of x would be weighted by an additional [small]
factor fx(x)/g(x).

Example 24.1.1: Consider the exponential diststibution f(x) =e™*, x > 0. Let us estimate P(x >
10) =e 10~ 4.54-107. We have P(x > 10) = EA(x), where A(x) = 1 if x > 10 and A(x) = 0 if
x < 10. The function A(x) cuts out the far tail of exponential distribution.
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The simplest application of the Monte Carlo method with N = 10° samples would produce only
about 45 events with x > 10 on average, with standard deviation being ~ /45 ~ 7 events. Thus the
estimation of P(x > 10) would be something like (4.54+0.7)-1075.

Here is a Python script which estimates P(x > 10), with the sample size N being one of the two
inputs:

from sys import argv; from math import log, exp; from random import random
X, N, width, catch = 10., int (argv[2]), float (argv[l]), O.
for 1 in range (0, N):
x = —-width % log(random())
1f (x > X):
catch += width * exp((l. / width - 1.) * x)
print (catch / N)

Here g(x):= exp(—x/ width) /width, x > 0, Le., it is an exponential distribution of width width.
When width is large, we often get not small, i.e., > 10 values of x, thus getting more events con-
tributing into our estimation of P(x > 10). Each realization of x > 10 contributes not by 1/N, but by
a smaller amount to P(x > 10), to compensate for the fact that we throw x > 10 more frequently.

Here is a batch of 100 attempts to estimate P(x > 10) by N = 10 sample size, with width = 1
and width = 10:
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diffetent N = 108 samples

The exact answer exp(—10) is shown by a horizontal line, which is here all covered by points corre-
sponding to width = 10. The accuracy of determining P(x > 10) from the same N = 10° trials, but
the ones adapted to the quantity of interest P(x > 10), is improved a lot.
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Here is how the standard deviation \/ E ( (estimation of P(x > 10) from N = 106 trials) — exp(— 10)) ?
depends on width:
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standard deviation from exp(-10)

0.0000002

0.0000001 : ‘
1 10 100 1000

width
It has the minimal value at around width = 10. There the share of samples that result in x > 10 is of

the order of 1 (namely with width = 10 the share is 1/e ~ 0.37).

Another variant (and one can think of many more) of deforming fx(x) — g(x) is shifting the
distribution: g(x) = exp(shift —x), x > shift. Increasing shift we produce x > 10 events more
often, and out estimation of P(x > 10) is going to be more accurate. At shift = 10 the computation
of P(x > 10) is going to be exact, as the chosen g(x) exactly coinsides with conditional density
fx (x}x > 10). With shift = 10 all the samples will fall into x > 10 region and in the importance
sampling setting will have the same weight: A(x) fx (x)/g(x) = 1-exp(—x)/exp(shitt —x) =e 1011
When shift > 10 our estimation of P(x > 10) will be underestimating no matter how large is our
sample size — the distribution g(x) does not cover some of the values of x that do contribute to
P(x > 10), namely 10 < x < shift ones.

Example 24.1.2: Consider a stochastic differential equation dx/df = —x + ex? + &, where &(¢) is
white noise with correlation function (§(¢1)&(r2)) = 8(¢; —2). The parameter € is small. The white
noise & causes x(¢) to diffuse. When x is not large, x < 1/g, there is a tendency to move towards
the origin x = 0. When x > 1/¢, then non-random part of dx/dr is positive, and with high chances
x(t) will move to the right without return (because of €x? term in dx/d¢ the trajectory x(¢) will reach
X = oo in finite time). During any time interval there is a non-zero probability that the particle in its
diffusing process overcomes the tendency to move towards the origin and escapes to large x > 1/€.
What is the probability per unit time to escape?

This problem is a typical one for which the instanton method works. In order to escape the noise
should push the particle to the right more eagerly than usual. The shape of the noise &(z) should be

' For more complicated situations it may be not that easy to choose g(x) in such a way that importance sampling
produces the exact answer with no fluctuations. We would like to have g(x) being normalized A(x)fx(x) (which is
possible only if A(x) > 0 for all x), and we’ll have to compute the normalization factor which is EA(x) itself.
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somewhat optimized for making the particle to escape, any substantial deviation from the optimal
shape would necessitate the increase in noise amplitute, thus greatly reducing the probability of such
noise &(t) to appear.

(a) One can write down the noise optimality equations, and then solve them. We want to maximize
the density distribution function of &, but the noise (#) should be such that x(z) reaches 1 /€. This can
be written as the following variational problem: We need to find extrema of

2x0.20.00) =3 [0+ o002 420 -20 20

The noise density f{&(t)} o« exp(—3 [dt &*(¢)), so maximizing it means minimizing the integral
inside the exponent. Here p(t) is a Lagrange multiplier for the equality constraint meaning that the
equation for x is satisfied at the moment ¢. The boundary conditions are x(—eo) = 0 (we start at typical
x not far from the origin) and x(+4o0) = 1/€ (we reach the point after which & being switched off the
trajectory moves to the right).

Making variation with respect to p, we just reproduce the equation of motion for x. Making
variation w.r.t. §, we get §(¢) = p(z). Variation w.r.t. x produces the equation for p(¢): dp/dt =
p(1 —2ex). The equations for x and p produce a Hamiltonian system: ¢ (x, p):= % p? — plx—ex?),
and g—f = aéif, %—f = —aé—fﬂ. On the starting and ending points, (x,p) = (0,0) and (1/¢€,0), we have
A =0, while ¢ as the Hamiltonian does not depend on time. Thus .7 =0, and p =2(x— sxz). This
gives & = x — ex? with the solution x(t) = - (1 +tanh(¢/2)) (and actually also its shifts in time). We
get &(1) = p(t) = 2(x(t) —ex?(t)) = 1/2ecosh?(t/2). The probability per unit time to escape (with
some accuracy) can be estimated as

P~ f{&)} NeXp<—%/dt iz(t)> %exp<—é/ﬁt@/2)> :e"p<_3_i2)

(b) The density distribution function p(z,x) satisfies Fokker—Planck equation

p(t,x) o (19 )
T a<——+x—€x p(t,x)

If € =0 (i.e., dx/dt = —x +&), then p(¢,x) = exp(—x?)//T is a stationary solution. For any € > 0
there is no normalizable stationary solution, but one can write down a solution with constant flux:
(%% +x—ex?)p(x) = —J, and p(x) = 2J [ dx’ exp(—x? +2ex’ /3 + x> — 2ex"3/3). (The integral
over x’ converges because of —2ex’? /3 term inside the exponent.) We have p(0) = 2J [;°dx” exp (x> —
2ex3/ 3) ~ 2J/mexp(1/3¢€?). (The last integration was calculated by the saddle-point method, the in-
tegrand is cumulated near x’ =~ 1 /¢.) The flux J is small, so p(x) tries to be similar to exp(—x%/2)/\/T
near the origin, with p(0) = 1/4/&, which gives J ~ exp(—1/3¢?) /2.

(c) We can directly simulate the SDE dx/dr = x — ex? +&:

from sys import argv; import numpy as np; from random import normalvariate
t, x, dt, eps = 0., 0., 0.01, float(argv[l])
sigma = np.sqgrt (dt)
while (x < 2. / eps):
print (t, x)
t, x =t +dt, x + dt * (-x + eps x» x*x*x2) + normalvariate (0., sigma)

37



and get how x(¢) could depends ¢. Here are 3 realizations for € = 0.3:

7

’Umedowlf JE—
‘trajectory_2' ------- ‘
6 | ‘trajectory_3’ - - | |

0 100 200 300 400 500 600
t

Here is a Python script that computes average time to escape by naive Monte Carlo, from 1000
trials (for loop over m), parameter € is supplied from the command line:

from sys import argv; import numpy as np; from random import normalvariate
dt, eps, AVG = 0.01, float(argv[l]), O.
sigma = np.sqgrt (dt)
for m in range (0, 1000):
t, x =0., 0.;
while (x < 2. / eps):

t, x =t +dt, x + dt * (-x + eps x x*x%2) + normalvariate (0., sigma)
print (t)
AVG += t

print ("#’, AVG / 1000.)

Here is the graph of average time to escape as a function of €:
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Let us apply the importance sampling technique in 2 [similar] ways:

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$
cat ex_24.1.2_1ISl.py

from sys import argv; import numpy as np; from random import normalvariate

dt, eps, a, T = 0.01, float(argv[l]), float (argv[2]), 10.

sigma = np.sqgrt (dt)

for m in range (0, 100000) :

t, x, compensation = 0., 0., 1.
while ((t < T) and (x < 2. / eps)):
v, dt_xi = -x + eps * xxx2, normalvariate (0., sigma)

V=v + a
t, x =t 4+ dt, x + dt » V + dt_xi
compensation *= np.exp((v — V) % (dt_xi - 0.5 » dt * (v —- V)))
if (x > 1.5 / eps):
print (compensation / T)
else:
print (0.)
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$
diff --suppress—-common-lines —-tyW 156 ex_24.1.2_1ISl.py ex_24.1.2_1S2.py
V=v + a |
V= (l. -—a) = v if (v < 0.) else v
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$

Here we substitute the update rule x;1; = x; +vi+ /1 —to— xi11 = x; + V1T ++/7(, and the
compensation factor is compensation = exp((xis1 —x; —vt)?/27) /exp((xip1 —x; — V1)?/21).

The two graphs below correspond to these 2 ways. The second way tries to mimic the in-
stanton from (a), and would correspond to a = 2, it is then the velocity dx/dr is changed from
—x+ex? —to— —x—|—8x2+p:x—8x2.
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Problems and exercises

1. A mouse, starting from ], runs through the maze on the right. @
At each step it moves to a neighboring cell that is not separated by a ‘
wall (chosen with equal probability, independently of the past). The
mouse continues moving in this way until it eats the cheese at || (after
that it escapes to the outside), or it is eaten by the cat at k4. Find (by
means of your choice, e.g., analytically, or studying eigenvectors of
the corresponding Markov chain transition matrix, or by Monte Carlo | ~,
method, efc.) the probability that the mouse escapes. @ ‘

2. Consider a diffusing particle (with diffusion coefficient D = %) inside the triangle x > 0,y > 0,
and x+y < 1. The particle starts at x(0) = y(0) = 1. Find the distribution of the hitting the walls of
the triangle time.

3. Consider a random variable X ~ N(0,1). Use importance sampling to estimate EX2°.

4. Consider a Markov chain with transition probabilities 7'(x,x+1) =1/3,0 <x < N; T(0,0) =
T(x,x—1)=2/3,0<x<N;and T(N,N) = 1. The chain starts from Xo = 0. As T (x,x+ 1) = § <
% = T (x,x— 1), there is a substantial bias to the left, and typically X, is kept not too far from 0. There
is [not too large] probability y per step/unit time to escape/reach the absorbing state N. Find it for
N =20 by (a) direct simulation of the Markov chain, also (b) speed up the computation of y by some
kind of importance sampling.

25 Monte Carlo Markov chains (MCMC)

A way to sample an arbitrary distribution using Markov chains was proposed in 1953 by Mitropo-
lis et al.'> and generalized in 1970 by Hastings.!> This is what is known as Metropolis—Hastings
algorithm. The idea of the method is the following:

We want to sample a distribution with density P(x). We would like to form a Markov chain whose

stationary distribution is P(x) by construction, and then simulate it. A simple way to ensure that P(x)
is indeed the stationary distribution of the Markov chain is making it so through detailed balance:

. : Ax]x')
probability flux — is A(x'|x) T (x'|x) P(x) 1
@ A(X|x) - T (X |x) @
T AGR) TG |
probability flux < is A(x|x') T (x|x") P(x')
detailed balance: A(X'|x) T (x'|x) P(x) = A(x|x') T (x|x") P(x') A(X|x)

0 1

12 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21 (6) 1087 (1953).

13'W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1)
97-109 (1970).

41


https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97

Here T (x'|x) is the distribution of the attempted next state x’ of the Markov chain, given that the
current state is x. The quantity A(x|x) is the probability that when attempting the transition x — x’
we would accept it (otherwise we just stay at state x). Obviously, 0 <A < 1, and in order to speed
the dynamics inside the Markov chain we would like to have the acceptance probabilities as large as
possible. That is why the pair (A(x'|x),A(x|x")) should lie on the boundary of the square [0, 1]%. We

et , ( P()T(x¥)
A(X'|x) = m1n<l, o) T )

Note that the acceptance probabilities A depend only on the ratio of of values of P (and 7T"). One needs
to know just the shape of P(x), but not its normalization. A version of the algorithm from 1953 did
assume that 7 (x'|x) = T (x|x’), in this case A(x'|x) = min(1, P(x')/P(x)).

), notice that if A(x'|x) < 1, then A(x|x") = 1

Example 25.1: It is not a practically reasonable thing to do, but let us construct a MCMC for
sampling the uniform on [0, 1) distribution. We have P(x) = 1 for 0 < x < 1, otherwise P(x) = 0.
We choose T (x|x) = exp(—(x' —x)?/26%) /2o, i.e., ¥ = x+6-{. In our MCMC simulation we
always are going to have 0 < x < 1, so P(x) = 1. The acceptance factor is A(x'|x) = 1if 0 < X' < 1,
and A(x'|x) = 0 otherwise. Here is a Python code with 6 =0.1:

from random import normalvariate
X, sigma = 0.5, 0.1
for i in range (0, 10000):

print (x)
Xp = x + normalvariate (0., sigma)
if ((xp >= 0.) and (xp < 1.)):

X = Xp

1 1 T T T T T T

"data_ex_25.1_sorted’ u 1:($0/10000)
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0.8 | 0.8 | E
0.7 | 0.7 | E
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x 05t . X o5 E

0.4 s 0.4 - i
0.3 g 03 | E
0.2 E 02| E
0.1 | E 0.1} E

0 L L L | 0 L L L L L L L L L

0 200 400 600 800 1000 0 01 02 03 04 05 06 07 08 09 1

MCMC simulation step X

A discrete analog of that would be a Markov chain with transition matrix

10000 , I ,
I 91oo0o0 With probability 5 we move either to the left
(2) 1 (2) 1o o0 or to the right. If we try to move to the left
T = 0 (2) 1 (2) 1o from the most left state, we stay still. Same
0 0 (2) 1 (2) 1 for the right end. The stationary distribution
2 7 . 111111
_0 00 (2) % ;_ OfthlSMClS[gggggg}
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What value of G is the best? We would like the equilibration of the MCMC to be the fastest, i.e., if
X, is the Markov chain state at the m'® time step, we would like x,,—,, and x,, to be as independent as
possible for even not so large n. One of the possible measures is the auto-correlation function K (n) =
E(%m — 3) (Xm—n— 5 ). We have K(0) = 1/12 as the dispersion of uniform on [0, 1) distribution. For

K(1) we have (§ = o0):

1 —Xx :’;2/20
E(x’—%)(x—%):/dx dg (x +/d§ x+E—3)(x— /d§ ¢
0 V2no
! 1—x min(1,1-&)
~&/20° ~£2/26°
1\2 € e |
:/dx(x_Z) +/dx /d§§ V21o 12 /&@ V216 /dx(x_Z)
0 max(0,—&)
1 2502 -
1 e—5/207 11 _ (_g_l)z (1 _@2_ 1
- E—’—/d&'a MG : 2 : Xg<o T : > — X§>0]
1 2 /h 2 2 /h 2
! e /2 TElEl g 1 e 8/,
1 3= 1-&) =K(1
12+/§§ 2ne | 2 2} 12 /a 2 G&( i) m
0.08 .
Q@ 007 . ,,/,,"'//l
= . _,f,“?’
f 0.06 . .r'/'//
009 et/ Ak B
/ 1/12- S|gmerl]_/2' :
‘ ‘ L ! (1-1/(sqrt(2 pi) sigma)) / 12 ———-
0.1 1 10
sigma
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Example 25.2: Consider a distribution function F(x) = v/x/(1 + y/x), x > 0, with density func-
tion P(x) = 1/2v/x(1+ /x)?. Let is sample this distribution by Metropolis—Hastings algorithm in 2
different ways:

First, let us choose T (x'|x) = exp(—(x¥' —x)?/26?) /v/2n6, with 6 = 0.1:

from math import sqgrt; from random import random, normalvariate
def P (x):
if (x <= 0.):
return O.
else:
return 1. / (2. * sqrt(x) * (1 + sgrt(x))*=*2)

%X, sigma = 1., 0.1
for 1 in range (0, 1000000) :
print (x)
Xp = x + normalvariate (0., sigma)
if (random() < (P(xp) / P(x))):
X = Xp

Second, let us choose T (x'|x) = exp(—(x’ —x)?/2x?) /v/2nx. Here T (x'|x) # T (x|x’) here, and
the generalization from 1970 is relevant:

from math import sqgrt, exp; from random import random, normalvariate
def P (x):
if (x <= 0.):
return 0.
else:
return 1. / (2. % sqgrt(x) *= (1 + sgrt(x))x**2)

x = 1.
for i in range (0, 1000000) :
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print (x)

Xp = x + normalvariate (0., x)
if (xp > 0.):
TT = (x / xp) * exp(((xp — x)*xx2 / 2.) % (x*%(=2) — xp**(=2)))
if (random() < (P(xp) / P(x)) * TT):
X = Xp
2 . - : : 300 ‘ : ‘ : ‘
‘fragment_ex_25.2 1" —+— ‘fragment_ex_25.2 2" —+—
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The largest observed value of x in the MCMC simulation with 10° steps in the first/second way
was 33.36.../about 5- 107.

25.1 Ising model

See, e.g., W. Janke, Monte Carlo methods in classical statistical physics.

Imagine we have a joint distribution of many random variables P(x,xz,...,xy). Gibbs sampling
is a MCMC algorithm that starts from some initial x, and then at each step we 1) randomly (or in
some pre-defined order) choose a variable x; from xi, x2, ..., xn; and 2) set x; according to the
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conditional distribution P(xk‘xl,xz, ceeyXk—1,Xk+ 1, -, XN ). Such sampling could be convenient when
the conditional distribution of one (or not so many) variable(s) can be easily computed (while the
whole P(x) is not).

Gibbs sampling is a partial case of Metropolis—Hastings algorithm, where the transitional prob-
abilities 7'(x’|x) are non-zero only if just one variable has different value in the pair of states x and
x’. (One can think that a move is rejected in the Gibbs sampling MCMC, if the value of a variable x;
didn’t change after being chosen according to the conditional distribution.)

Consider a D-dimensional integer lattice Z”, with each site n = (n1,n2, ...,np) containing a binary
variable 6, = £1. The values of all the binary variables, a vector 6, form a “state”, and we introduce
the following distribution over the states:

o SOy o

Z(T) ncZb i=1

For this expressions to have sense, one should consider them on a finite part of the Z” lattice, let us say
of size L, with appropriate boundary conditions. (It is possible to properly define a thermodynamics
limit L — oo.) The quantity Z(T'), or so called partition function, is hard to calculate. It is connected
to [Helmholtz] free energy as F = —T InZ, where T = 1/ is temperature, or Z = ¥;e PEi = ¢ BF,

Here is the program in C that samples P(6) for 2D Ising model using Gibbs sampling (which for
Ising model is also called Glauber algorithm/dynamics'* or heat bath algorithm):
B exp(onS/T)
~ exp(S/T) +exp(—S/T)

S= Onte; T On—e; T Onte, T O0n—e,, P(Gn)

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ 1s

Ising.c

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ cat Ising.c
#include <stdio.h>

#include <math.h>

#include <gsl/gsl_rng.h>

#define L 256

#define FOR_ALL_SITES for (i = 0; i < L; i++) for (j

int main(void) { gsl_rng % RNG; FILE =*out; char name[32];
int i, j, t, m, S[L][L], n[L], p[L]; double u, T = 3., E;
RNG = gsl_rng_alloc(gsl_rng_ranlux389); p[0] =L - 1; n[L - 1] = 0;
for (i = 0; 1 <L - 1; i++) { n[i] =1 + 1; p[i + 1] = 1i; }
FOR_ALL_SITES S[il[j] = gsl_rng_get (RNG) % 2;

for (£t = 0; t < 500; t++) { sprintf (name, "%03d.pgm", t);
out = fopen (name, "w"); fprintf (out, "P5 %d %d 255\n", L, L);
FOR_ALL_SITES fputc (255 % S[i][j], out); fclose(out);

for (m = 0; m < 81920; m++) {
i = gsl_rng_get (RNG) % L; j = gsl_rng_get (RNG) % L;
E = 2. % (double) (S[n[i]]1([3] + S[p[il11(3] + S[il[n[j]] + S[i]l[p[3j]
-2

1 = 2);
S[i]1[J] = (gsl_rng_uniform(RNG) < 1. / (1 + exp( .+« E/ T))); Y}

14 R. .J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4 (2) 294-307 (1963).
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gsl_rng_free (RNG); return 0; }
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ cc Ising.c —-1m -1
gsl ; ./a.out ; ffmpeg -r 25 -f image2 -s 256x256 -i %03d.pgm -vcodec 1libx264 -c
rf 30 -pix_fmt yuv420p -loglevel error Ising.mp4 ; rm *.pgm ; 1s
a.out Ising.c Ising.mp4
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$

It could be argued that the dynamics arising in this Markov chain is not unreasonable dynamics of the
corresponding would be a system of “spins” (the dynamics in general tries to reduce energy, attemps
to be in thermal equilibrium with temperature 7).

The typical state in the MCMC simulation of the 2D Ising model looks like (left/middle/right is
corresponding to temperature below/at/abobe the phase transition)

T=2

Of course, we would be interested in how fast the mixing within the state space is happening. We
do not have any chance to visit a notable share of states, as the number of states is the pnumber of spin sites
We visit a large number of states and hope that it is representative enough for our statistical purposes.
Imagine we look after some quantity A(6) and check how it does depend on time. We can introduce
a so called autocorrelation function

2
(AAric) — (Ar)
2 Y
(A7) —(Ar)
How fast K4 (t) decays with T is our estimation about how uncorrelated/independent are our samples
of P(o).

Let us choose the quantity S = ), 6, — the sum of all the spins. Its average value divided by the
number of spins is called magnetization M. (As K4 (7) is normalized, we have Kg(T) = Kj(7).)

normalized Ku(T):= Ka(0)=1
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Here is how “average” (I'm starting the MCMC with all spins up) magnetization depends on
temperature 7'

T )
‘magnetization’ —e—

| |
2 2.1 2.2 2.3 2.4 25 2.6 2.7
temperature T

Here is how Ks(t) falls down with 7

1.2 T

Kg(tau)

0.2 I I I I
0 20 40 60 80 100

tau measured in sweeps, i.e., L x L, L = 256, spin flip attempts

25.2 Stochastic optimization

Example 25.2.1: Consider V (x) = x> /2 — 50 cosx. To minimize it we can try the gradient descent
method, dx/df = —dV (x)/dx = —x — 50sinux.

48



= \ /
\
1000 \
4 ~
N\ ~
)
SN o~
0 \/ﬁ\v’\ /\\/r\v/”x/f\J
T \V/\V/\\W NA
aa YAVAVAVAVAVAAVE

URVEVARY

VU

——100

—60

—-40

—20

0

20 40

Vi

Here is a Python script that updates x according to the rule x(z 4 dr):=x(z) — dr - V' (x) + v2DdsC,
where { ~ N(0,1). The case D = 0 would correspond to standard gradient descent (its ODE formu-
lation with forward Euler method). When D > 0, but Y= 1, we use additive noise in the updates of
x in order to not be stuck in shallow minima of V(x). The larger D is, the deeper are the minima we
can realistically climb out of. In order to eventually converge/freeze, the diffusion coefficient D is
gradually decreased (like in simulated annealing), D(¢ 4 dt):=7- D(t).

from sys import argv

from math import cos,

sin,

sgrt

from random import normalvariate

def f(x):

return 0.5 % xx%x2 - 50 * cos(x)

def df (x):

return x + 50 % sin(x)

x, t, dt, D,

print (t, x,

£(x),

gamma = 60.
best_x, best_f = x, f(x
af (x),

while (t < 100.):

x, t, D= x — dt * df(x)

if (f(x)
best_x,
print (t,

< best_f):

best_f =
f(x),

Xy

0.

Xy
df (x

best_x,

best_x,

01,

float (argv([1l]),

best_f)

+ normalvariate (0.,

best_f)
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Problems and exercises

1. Using Metropolis algorithm, simulate a Markov chain with P(x) = exp(—x), x > 0 density and
transition function 7 (x’|x) = exp(—(x' —x)?/206%)/v/2n 6 (with appropriate acceptance probability
A(X'|x)). Find o that minimizes K,(1) = E(x,, — 1)(x;,—1 — 1), where x;, is the state of the Markov
chain at time m.

2. Using either Metropolis algorithm or Glauber dynamics, simulate a MCMC for 2D Ising model
on a L x L torus of binary variables/spins. Compute and plot as a function of temperature 7 (e.g., for
2 < T <2.6) the average value of m(T') = |Z,, (Y,,!/L2 for L =32, 64, and 128. Is the transition from
non-zero to [almost] zero value of m(T) becomes sharper for larger L?

26 Message passing/belief propagation

A factor graph (X, F, E) is a bipartite graph, whose vertices are separated into two groups: variable
vertices X = (x1,x2,...,xy) and facror vertices F = (fi, f2, ..., fm). For each factor vertex 1 <o <M
let us consider a subset of varible vertices Xy C X that are connected to fy, by an edge. Similarly, for
each 1 <i <N let F; be the subset of factor vertices that are connedted to i. 15 Let us associate with a
factor graph (X, F,E) a factorized density distribution function g(X) = (1/2)[T*L, fu(Xo), where Z
is the normalization factor ensuring Yy g(X) = 1.

15 A similar structure would be a hypergraph, where [hyper]edges could connect an arbitrary subset of vertices.
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5 l—?z b g(x1,x2,x3,x4) o< f1(x1,x3) f2(x1,x2,%3) f3(x2,X4) fa(xa)

5
() (9—A
The state evolution in Markov chain could be expressed by a factor graph:

£
D“"‘""—" Xo _____X.\ D__ Xz_,.- « e

Here f;(x;—1,x;) is the transition function with [dx; f;(x;,—1,x/) = 1 (or a constant not depending
on x;_1). Inegrating over x;y1x;+2X13... we would get the marginal distribution g(xg,xy,...,X;) o<

Jfo(xo) f1(x0,x1) fo(x1,%2)... f (xr—1,%;).

Imagine we would like to find marginal distributions g(x;) = Y.x\y, §(X). To compute them directly
could be prohibitively expensive, as there could be too much terms in the sum. If, e.g., the variables
x; are binary, the the sum has 2N=1 terms.

Belief propagation'® is an approximate algorithm of computing marginals distributions g; (xi) =
LX\x; g(X). On our factor graph we pass messages from the variable vertices to the factor ones and

back, with the messages being calculated locally at each vertex according to (y; Hog =1)

:uoc—n Z fOC X(X H ;uj_>(x lu—>(x H ;UB*H xl

xX(x\l ]EXa\l BEF \OC

At each iteration the marginal distribution g;(x;) is approximated by g;(x;) H ,ua 7,;(xi). If we put

this expression to the definition of what the messages are, then we get ack;

gi(xl) °<,Uz—>0c(xl Ho—si xl Z foc XOL H Hj—o X]
qu\t ]GXOL

< gxq (¥Xor)

gx xX ) HgXu (xXoc) Hqu (XXQ)
X) o< Hfoc(xXa H gL ta = ¢ — o —
o i—0 xz gi(xi) |F|—1

[1 I1 ) H(gi(xi))

i—o Ma—i i

i€Xy,

26.1 Error correcting codes

A simple example of an error correcting code would be a spelling alphabet, where instead of one
letter we say [through a noisy phone connection] the whole word that starts from it.

16R. Gallager (1963), J. Pearl (1982), D. J. C. MacKay, R. M. Neal (1996)
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Another example is a repetition code, each bit is sent, e.g., 3 times, while on the other end the
decoding is done by majority rule. To transmit “0”, we send “000” through the communication
channel, and decode “000”, “0017, “010”, “100” outputs as “0” (and similarly for “1”). If the prob-
ability of a bit to be flipped by the channel is p < 1, then the error probability after the decoding is
3p*(1—p)+ p* =3p? —2p® ~ 3p? < p. The probability of error p — 3p? can be greatly reduced.

Our whole language is redundant in order for communication to be reliable, and the following
once popular joke is one of many demonstrations of that:

Arocdnicg to rsceearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the Itteers in
a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteer are in the rghit pcale. The
rset can be a toatl mses and you can sitll raed it wouthit pobelrm. Tihs is buseace the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

We can read partially incomplete text, correct typos, etc.

In case of a linear binary error correcting code, an encoded (thus longer due to the added redun-
dancy) message can be viewed as a block of N bits taking values 0 and 1. These are the variable
vertices in the corresponding factor graph (often also called Tanner graph of the code). The encoded
message satisfied Mpc parity checks, which are some of the factor vertices. Each parity check factor
vertex is connected to the bits that are participating in this parity check. Another N factor vertices
(in case of message distortion by the communication channel to be independent from bit to bit) are
attached in one-to-one fashion to the bits — they correspond to the statistics of the channel output.

The factor nodes corresponding to the parity checks have the function

Jolx1,x Xp) = I, xit+x2+..+x =0 (mod2) parity is satisfied
ethE2 T 0, x4 a0+ 4 x = 1 (mod 2) parity is not satisfied

This makes the summing over X [with g(X) in mind] going over only such configurations of xj, xy,
..., Xy that do satisfy all the parity checks (so called codewords).

In the case of x;, 1 <i < N, being binary variables, taking, e.g., the values 0 and 1, the dis-
tribution of one such variable can be fully described by the so called logarithmic likelihood m; =

(1/2)1n(gi(0)/gi(1)). The message passing becomes (here 1:= (1/2)In(u(0)/u(1)))""

Y I “5':(11) (x;)

(1) 1 Xa,parity,xi=0 jeXq\i

Mo 2 (t—1) ’ ntgga(xi)::h“L Z nglp mz@‘:hi+ an)—n’
) IT 456 () BEF\a ack,

Xo,parity xi=1 jeXq\i

Ny, = arctanh (%o — 1)/ (£ +£1)) = arctanh ( I1 tanhnﬁia>
JEXa\i

Example 26.1: Consider a repetition code

17 arctanh(x) = (1/2)In((1+x)/(1—x))

53



hoods from the output of the communication channel.
Positive/negative value of 4 means that 0/ 1 is more prob-
able. The magnitude of % is corresponding to how much
more probable.

3
" &ul |

W

[...]/teaching/2020-1/math_575b/notes/message_passing$ cat MP.m

0 The numbers Ay, hy, and h3 are logarithmic likeli-
|
32

The parity checks f; and f> make the only allowed
configurations of bits being “000” and “111”.

function [eta] = MP(h, eta)
etall = h(l);
eta2l = h(2) + eta(4); % eta(4) = eta32
eta22 = h(2) + eta(l); % eta(l) = etall
eta32 = h(3);
ml = h(l) + eta2l;
m2 = h(2) + etall + eta32;
m3 = h(3) + eta22;
[ml m2 m3]
eta = [etall, eta2l, eta22, eta32];

[...]/teaching/2020-1/math_575b/notes/message_passing$ octave-cli
GNU Octave, version 4.4.1

[... copyright notice and links ...]

octave:1> format compact

octave:2> MP([1, 3, -2], [0, O, 0O, 0O1)

ans =

octave:3> MP([1, 3, -2], [1, 3, 3, =2])
ans =
2 2 2

ans =

Here there are no arctanh(-) functions because the product of tanh(-)’s inside it always contains just
one factor, and “arctanh” and “tanh’ eat/kill/cancel each other.
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Example 26.2: Consider a code with 2 bits and 2 parity checks
each connected to both of the bits. The allowed configurations are “00”
and “117, the parity checks are redundant, i.e., they double each other.

The message passing equations are ngtl) =hy —H]g{U, Ni2 < h1 +M21,

N21 < hy +M12, and M2 <= hy + N1, with the decoding output being
my = hy +M21 +MN22, my = hy +M11 +MN12.
From these equations we have, for example, {1 +M22 < h1 +hy +

MN11 +MN22, which means that ng’f +n§’§ =t-(h1+hy).

Part VII
Machine learning

27 Regression

Consider we have a bunch of data of type (x;,y;), and we want to come up with a function f(x)
such that f(x;) ~ y;.

We are not necessarily targeting for f(x;) = y; exactly, as the values y; may contain some noise of
measurement error, so we assume that y; is a “true” function fiye (x) distorted in a certain way. In order
to have an idea how well a given approximation f(x) works, we need to assume a certain statistics of
the distortion P(y ] firue(x)). A popular assumption is that y; = fire (x) +&;, where & ~ N(0,6%) is an
additive noise[, and &; for different i are independent].

Let us say, we decide to choose our function approximating the data from a family of functions
f(x,0), where 0 is the vector of parameters. The task of choosing a good function is now the task of
choosing a suitable vector of parameters 0.

One approach to find the values of the parameters 0 is called maximum likelihood. We set

N N
P(yi| f(x:,0)), oML =al‘g;nin2(yi—f(xi,9))2
i=1 i=1

(. J/
-

likelihood loss function

OnL = argmax
0

where (x;,v;), i =1, 2, ..., N is the data from which we estimate 0.

The case f(x,0) = Y7 0,,f,(x) is called linear regression. In case of additive Gaussian noise
the maximum likelihood is a least squares problem: Oy, = argming Zﬁ\': 1 (y,- —Y =19 fm (x,-))z, ie.,
Oy is found from the miniminization of a quadratic function of 0.

Example 27.1: Consider data being generated by a Python script

from math import exp; from random import random, normalvariate
for i in range (0, 1000):

x = 4. x random() - 2.

y = exp(-0.5 * xxx2) + normalvariate (0., 0.1)

print (x, vy)
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‘data_1000' -
exp(-x**2/2) ———

Imagine we take the first 10 points of the data and then try to fit them by the 9" degree polynomial
f(x,0) =Y, (0™

from sys import argv;
global xy
def loss (theta):
loss, N, M = 0., xy.shape[0], theta.shapel[0]
for i in range (0, N):
y 0.
for m in range (0, M):
y += theta[m] * xy[i, O0]**m

loss += (xy[i, 1] - y)*%x2
return loss

import numpy as np; from scipy.optimize import minimize

xy = np.loadtxt (argv[1l])

res = minimize (loss, np.zeros(1l0),

method=’BFGS’, jac =
print (res.x)

None)

56



"data_1000’
[almost] Lagrange polynomial for ]0 points

dataj‘ 0 e

-4 ! ! ! ! ! !
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

We then have a situation that is called overfitting. The suggested function f(x,0) is going well through
the points that were used in estimation of 0 (training data), but does not generalize well to new data.

Here is an example of an application of another model to the data, f(x,0) =8 exp(—(x—01)%/263).
This family of functions contains fyue(x) = exp(—x?/2) for 8p = 1, 8; = 0, and 6, = 1. Here [non-
linear] regression gives an answer close to firye:

[...]/teaching/2020-1/math_575b/notes/regression$ cat gauss.py
from sys import argv; import numpy as np; from scipy.optimize import minimize
global xy
def loss (theta):
if (theta[2] <= 0.):
return 1.e+100
loss, N = 0., xy.shape[0]
for i in range (0, N):
y = thetal[0] * np.exp(-(xy[i, 0] - thetal[l])**2 / (2. * thetal[2]**2))
loss += (xy[i, 1] — y)*%2
return loss

xy = np.loadtxt (argv[1l])

res = minimize (loss, np.array([2., 2., 2.]), method=’'BFGS’, Jjac = None)
print (res.x)

[...]/teaching/2020-1/math_575b/notes/regression$ python3 gauss.py data_10

[ 1.08778132 -0.06268182 1.01929772]
[...]/teaching/2020-1/math_575b/notes/regression$ python3 gauss.py data_1000
[ 1.00205441 -0.01667168 0.98588332]
[...]/teaching/2020-1/math_575b/notes/regressions$

To detect the overfitting, we can divide the data we have to two parts: training data and validation
set. We use the training data to estimate the parameters 8. Then we check how large is the loss
function being calculated on the validation set. If the loss function [per data point] on the training
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data is much less then on the validation set, then we have overfitting. If they are comparable, then
f(x,0) generalizes to new data.

[...]/teaching/2020-1/math_575b/notes/regression$ cat poly_4.py
from sys import argv; import numpy as np; from scipy.optimize import minimize
global xy
def loss(theta):
loss, N, M = 0., xy.shapel[0], theta.shapel0]
for i in range (0, N):
y = 0.
for m in range (0, M):
y += theta[m] * xy[i, O0]**m
loss += (xyl[i, 1] - y)=*x2
return loss

xy = np.loadtxt ('data_500")

res = minimize (loss, np.zeros(5), method=’BFGS’, jac = None)

print (res.x)

print ( loss function per data point on training data:’,loss(res.x) / 500.)

xy = np.loadtxt ('data_500_end’)
print (" loss function per data point on validation set:’,loss(res.x) / 500.)

xy = np.loadtxt ("data_1000")

res = minimize (loss, np.zeros(5), method=’'BFGS’, Jjac = None)
print (res.x)

[...]/teaching/2020-1/math_575b/notes/regression$ python3 poly_4.py
[ 1.00226136 -0.02551919 -0.45139884 0.00918124 0.06167193]

loss function per data point on training data: 0.010732697473740654
loss function per data point on validation set: 0.010292081361308608
[ 0.9908246 -0.01466693 -0.44185825 0.00426412 0.06000264]
[...]/teaching/2020-1/math_575b/notes/regressions$

" ‘data 1000, all data’
4th degree polynimial, least squares for 500 points

‘data_500, training data’ .




Problems and exercises
1. Consider data generated by the following Python script:

from math import sin, pi; from random import seed, random, normalvariate
seed (0)
for i in range (0, 1000):

X = 2. %x pi * random() - pi

print (x, sin(x) + normalvariate (0., 0.1))

We would like to fit the data by the M™ degree polynomial f(x,0) = %:0 0,,x". Let the loss function

. 1 2 . . . .
per data point be —— points Y iin data (yi —f (x,-,B)) . Proceed with [linear] regression, using as

the training data first N > M points of the whole data [of 1000 points], and use the rest as a validation
set. Find an appropriate value of M (the loss function hardly decreases if you increase M) and the size
of training data that is sufficient to learn optimal 0 (the loss function per data point on training and
validation sets are comparable).

28 Classification

Let there be several groups of objects. Each group has a certain label [ € L, where L is the set of
all possible labels. Each object can be described,e.g., by its numerical features x € RP. We would
like to be able to find the object’s label from its numerical representation — a classification problem.
This can be viewed as a problem of approximation of a function f : RP — L.

Example 28: Consider the points on (x,y)-plane. The points differ in whether they are above
(label “17) of below (label “0”) the line x/3+y/2=1o0ry=2—2x/3:

(0] ol
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o o

o
. © © °
.
L4 o o i O
° o o
o)
2 ot O @
o ®
o [0} o
o
.
° .
o ° e . o
N o

‘data_xy_1’ o) o °
o ‘data_xy_ 0’ (]
2-2*x /‘3 ®
-6 —4 -2 0 2 4 6

Here is a Python script that generated this data:

from random import normalvariate
def class_true(x, y):
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return 1. if (x / 3. +y / 2. > 1.) else 0.

for n in range (0, 100):
X, y = normalvariate(0, 2.), 2. + normalvariate(0, 2.)
print (x, y, class_true(x, vy))

On the training data we have the values (x,y) € R? and also the correct labels.'® This is called
supervised learning (a supervisor provided the labels for us to learn how they are assigned).

[...]/teaching/2020-1/math_575b/notes/linear_classifier$ cat classifier.py
import numpy as np; from scipy.optimize import minimize
global xy, N

def class_true(x, y):
return 1. if (x / 3. + y / 2. > 1.) else 0.

def loss(theta):

loss = 0.

for 1 in range (0, xy.shape[0]):
f_true = class_true(xyl[i, 0], xy[i, 1])
f = thetal0O] + thetall] * xy

14

[i, 0] + thetal[2] * xy[i, 1]
f=1. if (£ > 0.) else 0.
loss += (f - f_true)x*2

return loss

xy = np.loadtxt (‘data_xy’)

res = minimize (loss, np.zeros(3), method=’BFGS’, jac = None)

print (res.x, loss(res.x))
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 classifier.py
[1.03849898e-05 3.46166326e—-05 3.63474643e-05] 27.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff —-—-suppress—-common-—
lines —-tyW 156 classifier.py classifier_10.py

res = minimize (loss, np.zeros(3), method=’BFGS’, jac = None) |
res = minimize(loss, np.array([0., 1., 0.]), method='BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 classifier_10.py
[0. 1. 0.] 33.0

[...]

/teaching/2020-1/math_575b/notes/linear_classifier$

Here we try the following change 6y + 61x + 02y — 689 + cos(01)x+ sin(6)y:

[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff —--suppress—common-—
lines —-tyW 156 classifier.py class_cos_sin.py

f = thetal0O] + thetall] * xy[i, 0] + thetal2] *» xy[i, 1]

f = theta[0] + np.cos(theta[l]) * xy[i, 0] + np.sin(theta[l]) * xy[i, 1]
res = minimize (loss, np.zeros(3), method=’'BFGS’, jac = None) |
minimize (loss, np.zeros(2), method=’'BFGS’, jac None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 class_cos_sin.py
[0. 0.] 33.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff —--suppress—-common-—
lines —-tyW 156 class_cos_sin.py class_cos_sin_12.py
res = minimize (loss, np.zeros(2), method=’'BFGS’, jac = None) |
res minimize (loss, np.array([l., 2.]), method=’BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 class_cos_sin_12.py
[1. 2.] 40.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$

18 In scripts below just x and y values are read, but there is class_t rue function which returns the correct label.
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Here we make the function, that approximates fire(x,y) — {0, }, smooth: f(x,y):=1/(1+exp(—10§),
where &:= 800+ cos(0;)x+sin(8;)y:
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ cat smooth.py

import numpy as np; from scipy.optimize import minimize

global xy, N

def class_true(x, y):
return 1. if (x / 3. + y / 2. > 1.) else 0.

def loss(theta):

loss = 0.
for 1 in range (0, xy.shape[O0]):
f_true = class_true(xyl[i, 0], xy[i, 1])
f = thetal[0O] + np.cos(theta * xy[i, 0] + np.sin(theta[l]) *» xy[i, 1]

[1])
f=1./ (1. + np.exp(-10. * f)
loss += (f - f_true)**2

return loss

)

xy = np.loadtxt (‘data_xy’)
res = minimize (loss, np.zeros(2), method=’BFGS’, jac = None)
print (res.x, loss(res.x))
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ dif
f ——-suppress—-common—-lines —-tyW 156 classifier.py smooth.py

f = thetal[0] + thetal[l] * xy[i, 0] + thetal[2] » xy[i, 1]

f = thetal0O] + np.cos(thetall]) * xy[i, 0] + np.sin(theta[l]) * xy[i, 1]
f =1. if (£ > 0.) else 0. |
f=1./ (1. + np.exp(-10. * f))
res = minimize (loss, np.zeros(3), method=’'BFGS’, Jjac = None) |
res minimize (loss, np.zeros(2), method=’'BFGS’, jac = None)

[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 smooth.py
[-1.67480335 0.99776907] 1.2944486110163806
[...]/teaching/2020-1/math_575b/notes/linear_classifiers$

T o7 T
o ‘data_xy O’ (]
© %o ‘data_xy_1° o©
-(-1.62480335 + x * c0s(0.99776907)) / sin(0.99776907)
4| i
L[]
2 - .
0 - .
° L]
-2 . B
| | | | |
—6 —4 -2 0 2 4 6



29 Clustering

Consider there is data/objects x1, x3, ..., Xy € R? (or of whatever nature). We want to agre-
gate/lump objects into not so many groups, with objects in each group being close in some sense to
each other. This is a task called clustering.

Clustering could be set up as a supervised learning, where clustering labels for some of the objects
are provided by the supervisor/teacher/human. Sometimes the supervisor provides the desired final
number of clusters. Often the clustering algoritgm is to produce the clusters (with their number) on
its own — unsupervised learning.

The number of groups in the end could be fixed or left to be determined from the data. The division
into groups could be strict or in distributional sense (for each object there is a probability/likelihood
to belong to each cluster). It could be allowed to claim that some objects do not belong to any [dense
of well defined] cluster.

There are numerous strategies to cluster data:

e hierarchical clustering

— agglomerative: Initially clusters are data points. Two “closest” points/clusters are found
and then merged, with clusters closeness measure redefined/updated.

— divisive: The whole data is divided/cut into two [large] groups, which are further pro-
cessed.

e setting clustering as an optimization problem, then solving it:

k
1
k-means : argmin 2 — ]| Hi=— ) x
Ci 7C27"'7Ck I—ZI XGZCVZ‘ 7 |Cl| xEZCi

Such discrete optimization problem is typically hard, so approximation are used:

import numpy as np
global xy, mu, label

def assign_labels() :
global mu, label
for j in range (0, xy.shape[0]):
best, best_i = 1.e+10, -1
for i in range (0, k):

distance = np.linalg.norm(xy[j] — mu[i])
if (distance < best):
best, best_i = distance, 1
label[j] = best_1i

def compute_mu() :
global mu
for i in range (0, k):

mul[i], n = np.zeros(2), O
for j in range (0, xy.shapelO]):
if (label[j] == 1i):
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mul(i], n = mul[i]

mul[i] /= n
return mu

+ xy[3l,

xy = np.loadtxt ("data_300")
* xy.shape[0]
mu = np.random.normal (0., 1

k, label = 3, [0]

assign_labels ()

while (1 > 0):
compute_mu ()
old_label = labe
assign_labels ()
if (old_label ==

break

for j in range (O,

print (xy[j, 0],

1

label) :

xy.shape[0]) :

xy[3J,

1],

n + 1
-k, 2))
label[3j])
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Here is a [not at all optimized] Python script that implements a [hierarchical] agglomerative
method of clustering called complete-linkage clustering:

import numpy as np
global xy, N, label, dist, lab_d

6 . & 5
- Cs .
xy = np.loadtxt ('data_300")
N = xy.shape[0] 4 Bty o
dist, label = np.zeros((N, N)), np.arange (N) %%%f %]ﬁ]gu
for i in range (0, N - 1): b %“mﬁﬁgﬁﬁm
for j in range(i + 1, N): # i < j 2 o Eﬁﬂ; 0
. ' . _ . . _ . 0O g oEaoo O B ++I
dist[i, 7] np.linalg.norm(xy[1i] xy[J]) moo, @ g *
o DD o [th =) o
while (np.unique (label) .shape[0] > 3): oo uuuﬁfﬁ P
lab_d = np.zeros ((N, N)) . o wede B Nt T
. . . ° Ny e ..‘..... ~+- *
for i in range(0, N - 1): -2 .:‘"*;++++ ;
for j in range(i + 1, N): # 1 < J D . :';‘f#f** .
if (label[i] !'= label[j]): o st j
. .. 4 o
smaller, greater = label[i], label[]] « °
.
if (smaller > greater):
smaller, greater = greater, smaller 6 -4 2 0 2 4
if (lab_d[smaller, greater] < dist[i][]]):
lab_d[smaller, greater] = dist[i, 7]
best = 1.e+10
for i in range(0, N - 1):
for j in range(i + 1, N): # i < J
if (label[i] != label[j]):
smaller, greater = label[i], label[7]
if (smaller > greater):
smaller, greater = greater, smaller
if (lab_d[smaller, greater] < best):
best_s, best_g, best = smaller, greater, lab_d[smaller, greater]
label [np.where (label == best_g)] = best_s
print (label) ‘
6 A
L o Coi D
for 1 in range (0, N): 8% M
print (xy[i, 0], xy[i, 1], label[i]) 4 . %: o & .
. o
L] '. g a]
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oo 8y E +
O o = e
0 Dﬁ e m[h]@ug;ﬂ t ot
. DDD] D%@a:;+ +
e DDDL:’#*# + ~
. o e bon St
i} . : . o' %0 o
2 .'..';‘:%;:X X !
. “-. ".X:%xx *
4 LR e
‘ X
6 4 2 0 2 4

Problems and exercises
1. Consider data generated by the following Python script:
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from random import seed, random

seed (0)
n =0
while (n < 1000):
X, y = 2. x» random() - 1., 2. x random() - 1.

r2 = X**x2 + y**x2

if ((r2 < 1.) and ((r2 < 0.36) or (r2 > 0.64))):
print (x, vy)
n +=1

We want to divide the data points into 2 clusters. Decide which method, k-means, single-linkage,
or complete-linkage clustering is more suitable for task. Proceed with the clustering and plot the 2
resulting clusters.
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