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a b s t r a c t

In this paper we propose a method which provides a full description of solitary wave solutions of
the Schrödinger equation with periodically varying dispersion. This method is based on analysis and
polynomial deformation of the spectrum of an iterative map. Using this method we discover a new
family of antisymmetric bisoliton solutions. In addition to the fact that these solutions are of interest
for nonlinear fiber optics and the theory of nonlinear Schrödinger equations with periodic coefficients,
they have potential applications for increasing of bit-rate in high speed optical fiber communications.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Chromatic dispersion of optical fibers is one of themajor factors
limiting the capacity of fiber communication systems. It results
in broadening of optical pulses due to differences in velocities
of different spectral components. The dispersion management
technique [1] was proposed as a method to solve the problem of
dispersive pulse broadening. An optical fiber link with dispersion
management is composed of periodically arranged fiber spans
with alternating signs of dispersion. The fiber spans are chosen to
make the cumulative effect of dispersion small or even zero. Full
compensation of the dispersive effects is achieved by making the
mean value of the dispersion to be zero. In this case as a pulse
propagates over one period it will be spread and then contracted
to its original shape.
Increasing bit-rates inevitably leads to manifestation of non-

linear properties of optical fibers. As bit rates increase, the tem-
poral width of an optical pulse (bit carrier) τ0 decreases. On the
other hand the energy of the pulse must remain above some crit-
ical level E ≥ Ecr to provide minimal detection bit-error at the
end of the line, and therefore the power of the signal (P ∼ E/τ0)
increases as the pulse narrows P ≥ Ecr/τ0. It is a well known, ex-
perimentally verified fact that the index of refraction of the fiber
core grows linearly with the power of the signal, n = n0 + αP
(where n0 is linear index of refraction and α is a coefficient of Kerr
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nonlinearity).With a high enough power the nonlinear response of
the medium becomes important. Since dispersion management is
a purely linear approach to compensate for pulse broadening, the
validity of this approach becomes less obvious in the presence of
nonlinearity. It was shown that in presence of nonlinearity the
compensation is still possible for a special class of pulses known
as the dispersion managed (DM) solitons [2]. Detailed information
about the DM solitons and their applications can be found in [3].
Soon after the concept of DM solitons was introduced, it

became clear that both analytic representation and accurate
numerical description of the DM soliton shape are challenging
problems. The first problem was addressed in many papers,
where approximations of the central part of the DM soliton and
asymptotic of oscillatory tails was considered (see [4–6]). However
the general solution of the this problem remains unsolved. The
problem to determine an accurate numerical description of the
DM soliton shape was solved by in [7–9] using a slow dynamics
model of DM solitons proposed in [10]. Later this approach was
used to address the behavior of DM solitons for the systems with
both dispersion and nonlinearity compensation [11].
The dispersion compensation while resolving the physical

problem with the pulse broadening, poses an obstacle for the
numerical computation of such solutions. Following the standard
approach, the description of a soliton consists of launching a
signal and waiting for all the continuous radiation to escape.
For the problem with dispersion management this process is
extremely slow and ineffective on the tails of the soliton. Authors
of [7] proposed solving the averaged equation for the analysis of
solutions, which for the solitary waves reduces from an integro-
differential equation to a nonlinear integral equation, solvable by
a nonlinear iterative procedure. This allowed for a fast way of
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achieving precision exceeding any necessary requirements for the
practical applications.
Unlike the conventional NLS soliton, the dispersion managed

system supports propagation of bound pairs of solutions, or bisoli-
tons. Existence of bisoliton solutions was shown in the numerical
investigations of [12] and later confirmed experimentally in [13]. It
should be noted that this experimental work considered antisym-
metric bisolitons and therefore we limit our investigation to this
type of bisoliton. These solutions are interesting for the theory of
nonlinear partial differential equations, and represent a new phe-
nomenon in nonlinear fiber optics. They illustrate a new type of
solution of a nonlinear Schrödinger equation where the dispersion
coefficient is replaced with a periodic function. The potential ap-
plications for the optical communication systems were discussed
in [13]. Bisolitons can be used to introduce a three-letter alpha-
bet (‘‘empty slot’’, ‘‘DM soliton’’ and ‘‘bisoliton’’), replacing a con-
ventional binary alphabet. This could increase the system capacity
without a change to the physical parameters of the system.
The shape as well as other important characteristics of

bisolitons were found in [14] using amodification of the numerical
method proposed in [7–9]. The equation describing averaged
dynamics of the solution is reduced to have a single universal
parameter, which incorporates all of the physical and geometrical
characteristics of the optical system [14]. Analysis of this equation
showed the existence of two branches of bisoliton determined
by the universal parameter, with a critical bifurcation point
connecting the two branches.
Investigation of DM bisolitons was based on the iteration of

a nonlinear map. The analysis of the newly discovered branch
of solutions was complicated by the lack of convergence of the
iterative procedure. Careful analysis of the map showed the
existence of eigenvalues outside of the unit circle, explaining
the existence of the growing modes of the map. In this
work we propose to utilize the method of polynomial spectral
transformations to construct a contractive map, preserving the
original fixed points. The application of thismethod allowed for the
discovery of the previously unknown branch of bisoliton solutions.
These bisolitons present new solutions to nonlinear Schrödinger
equation with periodic dispersion. A recent paper [15] indicates
new experimental evidence for the existence of this branch of
bisoliton solutions. These newly found bisoliton solutions allow
for the introduction of a 4-letter alphabet, further increasing the
capacity of existing lines.

2. Basic equations

A well established model for the propagation of an electromag-
netic pulse through a nonlinear, dispersive medium is the nonlin-
ear Schrödinger equation

iuz + d(z)utt + γ |u|2u = 0 (1)

where the scalar function u(z, t) is the envelope of the signal, z
is the distance along the fiber, t is retarded time. Without loss
of generality we consider a fiber link with constant nonlinearity
given by γ . Function d(z) is the dispersion as a function of distance
along the fiber. For a dispersionmanaged system this is a piecewise
constant, periodic function which can be written in the form
d(z) = d0 + d1 if 0 < z < L/2, and d(z) = d0 − d1 if L/2 < z < L,
where L is a dispersion map period, and d1 � d0.
A fiber link with dispersion management has a characteristic

time scale τdm ≡ (Ld1/2)1/2. The physical meaning of this time is
the width of a pulse such that the pulse will approximately double
in width as it propagates over half of the period. The characteristic
‘‘residual dispersion length’’ zrd ≡ τ 2dm/d0 = Ld1/2d0 is the
distance when a pulse with width τdm propagating over a fiber
with dispersion d0 will approximately double in width. Rescaling
the variables t = τdm t̃ , u = 2π

√
Pũ results in the equation

iũz +
2
L
d(z)− d0
d1

ũt̃ t̃ +
1
zrd
ũt̃ t̃ + (2π)

2 1
znl
|ũ|2ũ = 0. (2)

znl ≡ 1/(γ P) is characteristic ‘‘nonlinear length’’ on which the
change of the phase of the pulse due to fiber nonlinearity will be of
the order 1.
To take advantage of dispersionmanagement in the presence of

nonlinearity, the compensation must take place on the distances
where nonlinearity effects are small and negligible compared to
the local value of dispersion. Therefore the dispersionmanagement
works in the linear regime, and two well separated scales of pulse
propagation can be distinguished. On the first scale local dispersion
will dominate over the weak effects the residual dispersion and
the nonlinearity. There the pulse is rapidly broadened and brought
back to its original width as a result of the alternating signs of local
dispersion. The second scale is where the effects of nonlinearity
and residual dispersion accumulate and become important. Thus,
the spectrum of the signal can be considered in the form

F [ũ] = q(Ω, z) exp
(
−iΩ2/(L/2)

∫ z

L/4
dξ
d(ξ)− d0
d1

)
, (3)

with the Fourier transform F defined as F [f (t)] =
∫
dt exp(iωt)

f (t). Here the exponent is the rapidly changing phase due to the
large value of local dispersion and the amplitude q is varying
slowly with z due to residual dispersion and the nonlinear effects.
Substituting this form of ũ into the Eq. (2) and taking an average
over amap periodwe obtain Gabitov–Turitsyn equation describing
evolution of q [10]

iqz −
1
zrd
Ω2q+

1
znl
R(q,Ω) = 0,

R(q,Ω) =
∫
sin(∆/2)
∆/2

q(Ω1)q(Ω2)q∗(Ω3)

× δ(Ω1 +Ω2 −Ω3 −Ω)dΩ1dΩ2dΩ3,

(4)

where∆ ≡ Ω21 +Ω
2
2 −Ω

2
3 −Ω

2, and δ(·) is Dirac’s delta function.
We are interested in computation of antisymmetric bisolitons

which are solitary wave solutions of this equation. For such a
solution the amplitude profile is independent of the distance along
the fiber, and can be written as q(Ω, z̃) = ϕ(Ω)eiλz̃ , where λ is a
wave number of the solitary wave. With λ = 1/znl the function ϕ
is governed by the following equation

ϕ + d̄0Ω2ϕ = R(ϕ,Ω), where d̄0 ≡
znl
zrd
=

d0
(γ P)(d1L/2)

. (5)

Thus far we have reduced this three parameter partial differential
equation to an integral equation with a single free parameter (an
alternative way to do that is presented in Appendix A).

3. Solving the integral equation

In this paper we study the family of antisymmetric bisolitons at
different positive values of parameter d̄0. In order to solve Eq. (5)
we use the following iterative procedure [16]

ϕn+1 = Nd̄0(ϕn), Nd̄0(ϕ) ≡ Podd

(
Q 3/4

R(ϕ,Ω)
1+ d̄0Ω2

)
Q ≡

∫
|ϕ|2dΩ∫

|R(ϕ,Ω)/
(
1+ d̄0Ω2

)
|2dΩ

(6)

where Q is a Petviashvilli factor [17,18] which is introduced
to avoid the convergence to the trivial solution ϕ = 0 by
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Fig. 1. Energy of the two branches of bisolitons as a function of d̄0 . The solid line
corresponds to the solutionswith higher energy (upper branch) and the dashed line
corresponds to solutions with lower energy (lower branch).

making that solution unstable. The operator Podd (f (Ω)) ≡
(f (Ω)− f (−Ω)) /2 is a projection onto odd functions, used here
to project the iterated functions onto the space of antisymmetric
functions. We solve the Eq. (6) numerically, discretizing ϕ on a
grid of M points. The iterations are stopped when ϕn satisfies the
condition

‖ϕn + d̄0Ω2ϕn − R(ϕn,Ω)‖L2 < 10
−8. (7)

A Fourier transform of a sum of two Gaussian pulses, shifted
apart and taken with opposite signs is used as a seed for the
iteration procedure with d̄0 = 0.2. The value of d̄0 is decreased
incrementally, with a previous solution used as a seed for the next
value of d̄0, until the parameter reaches zero. The same procedure
was performed in the increasing direction from d̄0 = 0.2. We
found two branches of bisoliton solutions. Fig. 1 shows the energy
of the solutions as a function of d̄0. The solutions bifurcate near
d̄0bf ≈ 0.4256. We observed no convergence for the values of
d̄0 > d̄0bf.
Direct application of the scheme in Eq. (6) demonstrates

convergence only for the lower branch of solutions, and does not
allow one to find the upper branch of solutions. In order to find the
solutions from the upper branch we study the spectrum of the N
and modify the map.

4. Convergence of the map N

In order to understand the convergence of the iterative
procedure described in Eq. (6) we analyze the spectrum ofNd̄0 near
a fixed point. In the neighborhood of the fixed pointϕfp themapNd̄0
is approximated by the linear operator K :

N(ϕfp + Ψ ) = ϕfp + K(Ψ )+ O(Ψ 2). (8)

Here the operator K lacks the complex structure and should be
viewed as a linear operator over the field of real numbers acting
on a real vector space consisting of functions ReΨ and ImΨ . Let
the finite set {µi}, {|φi〉}, and {〈φi|} correspond to eigenvalues, right
eigenvectors and left eigenvectors of K̂ , the discretized version of
K . Right awaywe see that there is an eigenvalue 1 corresponding to
a constant phase shift of any fixed point. This eigenvector does not
affect the convergence since Eq. (7) is unaffected by the constant
phase shift. Therefore, we introduce the sets {µ̃i} = {µi} \ 1 and
{|φ̃i〉} = {|φi〉} \ |φµ=1〉, {〈φ̃i|} = {〈φi|} \ 〈φµ=1| where we have
removed the above eigenvector and the corresponding eigenvalue.
Furthermore, we assume that if i < j than |µ̃i| ≥ |µ̃j|, so that µ̃1
has maximal magnitude. The following iterative procedure is used
to obtain the Nth eigenfunction

|φ̃N〉 = lim
n→∞

Ψn, where Ψn+1 =

K̂(Ψn)−
N−1∑
j=1
〈φ̃j|K̂(Ψn)〉|φ̃j〉∫
|Ψn|

2dΩ
(9)
Fig. 2. A plot of largest eigenvalue of K̂ as a function of time d̄0 at the upper branch
solutions (solid) and at the lower branch solutions (dashed).

where 〈φ̃j| is a dual vector of |φ̃j〉, satisfying 〈φ̃j|φ̃k〉 = δjk (here
δjk is a Kronecker symbol). We assume here that initial function
Ψ0 has nonzero projection onto Nth eigenfunction. At each step of
this procedure the largest N−1modes are projected out ofΨn and
in the limit as the number of iterations n goes to infinity the next
largest mode is the only one that survives. The contribution from
theMth vector (M > N) dies out as (µ̃M/µ̃N)n.
In order to perform the procedure described in Eq. (9) we use

the explicit expression for the operator K̂

K̂(Ψ ) = 1.5ϕfp

∫
Re
[
ϕ∗fp (Ψ − L(Ψ ))

]
dΩ

/∫
|ϕfp|

2dΩ + L(Ψ )

and L(Ψ ) ≡
∫
sin(∆/2)
∆/2

(
ϕfp(Ω1)ϕfp(Ω2)Ψ

∗(Ω3)

+ 2ϕfp(Ω1)Ψ (Ω2)ϕ∗fp(Ω3)
) δ(Ω1 +Ω2 −Ω3 −Ω)

1+ d̄0Ω2
dΩ̄

(10)

here dΩ̄ = dΩ1dΩ2dΩ3. The operator K̂ is not self-adjoint,
therefore, its left and right eigenvectors are different. We obtain
the the left eigenvectors of the operator K̂ by studying the right
eigenvectors of the operator K̂ Ď

K̂ Ď(ξ) = LĎ (ζ )− ζ + LĎ(ξ)

ζ ≡ 1.5ϕfp

∫
Re
[
ϕ∗fpξ

]
dΩ

/∫
|ϕfp|

2dΩ

LĎ(ξ) =
∫
sin(∆+/2)
∆+/2

ϕfp(Ω1)ϕfp(Ω2)ξ
∗(Ω3)

×
δ(Ω1 +Ω2 −Ω3 −Ω)

1+ d̄0Ω23
dΩ̄

+

∫
sin(∆−/2)
∆−/2

2ϕfp(Ω1)ξ(Ω2)ϕ∗fp(Ω3)

×
δ(Ω1 −Ω2 −Ω3 +Ω)

1+ d̄0Ω22
dΩ̄

∆± ≡ Ω
2
1 ±Ω

2
2 −Ω

2
3 ∓Ω

2.

(11)

Fig. 2 shows how the largest magnitude eigenvalue of the
operator K̂ depends on d̄0. Here the dashed line corresponds to
the lower branch of solutions and the solid line corresponds to
the upper branch of solutions. Since for all values of d̄0 the largest
eigenvalue of K̂ at the lower branch solutions is less than 1 themap
N is contractive. Therefore as long as we are close enough to the
fixed point the iterations will converge. The situation is different
for the upper branch of solutions. As clearly shown on Fig. 3 for all
values of d̄0 the largest eigenvalue is larger than 1 and therefore
the map is not contractive.
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Fig. 3. Plot of |µ̃1| vs d̄0 for the upper branch only. The graph exhibits vertical
behavior near d̄0 ≈ 0.4256 and near d̄0 ≈ 0.1856. In the first case this behavior
is due to bifurcation.

5. Construction of a contractive map

We construct amap that retains the same fixed points asNd̄0(ϕ)
in Eq. (6) and at the same time a map that is contractive in the
neighborhood of the upper branch fixed points.
Consider a polynomial P(x) =

∑p
j=0 bjx

j and use it to construct
a new map P:

P(ϕ) ≡ P(N(ϕ)) =
p∑
j=0

bjN j(ϕ)

N0(ϕ) = ϕ, N j = N(N(. . .N(ϕ))) j times.

(12)

In the neighborhood of a fixed point this operator has the following
linearization

P(ϕfp + ψ) = P

(
ϕfp +

∑
i

ai|φ̃i〉

)

=

p∑
j=0

bj

(
ϕfp + K j

(∑
i

ai|φ̃i〉

))

=

p∑
j=0

bj

(
ϕfp +

∑
i

aiµ̃
j
i|φ̃i〉

)

= ϕfp

p∑
j=0

bj +
∑
i

ai

(
p∑
j=0

bjµ̃
j
i

)
|φ̃i〉. (13)

We choose the values of bj so that the
∑
bj = 1. Due to this

condition the newmap retains the same fixed point asN . Thus after
n iterations we have

Pn(ϕfp + ψ) = ϕfp +
∑
i

ai {P(µ̃i)}n |φ̃i〉. (14)

We choose the coefficients of the polynomial bi in such a manner
that the condition max{|P(µ̃i)|} < 1 is satisfied. According to
Eq. (14) each mode decays exponentially, and the smaller
max{|P(µ̃i)|} is, the faster the convergence.
Our approach is a modification of the technique considered

in [19], where only first order polynomials were needed. In our
case we found a 5th order polynomial that fit our needs. The
coefficients of the polynomial could be optimized further for the
faster convergence. This issue is discussed in thematrix Chebyshev
approximation problem [20–22].
Fig. 4 shows the 10 largest eigenvalues of K at the fixed point

ϕ
upper
d̄0=0.4

found numerically using the method in Eq. (9). This is a
typical picture for all upper branch fixed points. This computation
shows that the imaginary part of these eigenvalues is either
very small or zero. The real part of the first 10 eigenvalues lies
between 0 and 1.012 and all other eigenvalues lie in the shaded
area. There are two key features of the spectrum that should be
Fig. 4. A plot of the imaginary part of eigenvalue versus the real part. Plotted first
10 eigenvalues of operator K at ϕupper

d̄0=0.4
. In subfigure (a) the shaded region defines

the part of space where the rest of eigenvalues lay. In subfigure (b) the real part is
plotted on logarithmic scale.

emphasized. First, µ̃1 is extremely close to 1. As shown on Fig. 3
this feature is shared by all of the upper branch solutions. Second,
as demonstrated by Fig. 5 the following inequality takes place:
|µ̃1− 1| � |1− µ̃2|. The decay of the first mode is proportional to
P(µ̃1)n where n is the number of iterations performed, therefore,
tomake the convergence of thismode as fast as possiblewe choose
a polynomialwith a derivative at (1, 1) near a value of−1/(µ̃1−1).
Due to the first feature µ̃1 − 1 being very small, this implies fast
growth of the polynomial to the left of the point (1, 1). However,
due to the second feature of the spectrum such a behavior is not
problematic, since there is plenty of room for the polynomial to
return close to zero. Thus, consider the polynomial presented in
the Fig. 6 and defined as

P(x) =
p∏
i=1

(x− ri)
/ p∏
i=1

(1− ri)

and let r1 = 0.0, r2 = 0.1, r3 = 0.3, r4 = 0.46, r5 = 1.01.

(15)

This is a fifth order polynomial with |P(µ̃i)| < 1 and P(1) = 1.
Following the earlier discussion we can see that this polynomial
does in fact has large slope at (1, 1), and yet there is enough room
for the values to drop back down as x approaches µ̃2. Also note that
this is only a fifth degree polynomial, and therefore one iteration
of P(N) requires only five iterations of N .
To catch the solution on the upper branchwe have to be as close

as possible to the solution before we start our iterative process.
Before computing the upper branch, the lower one was obtained.
Because of the bifurcation structure it is natural to expect that
the function 2ϕd̄0bf − ϕd̄0 could serve as a good starting seed
for the upper branch solution at d̄0. Even with simple iterations
(without the polynomial deformation of the map in order to make
it contractive) it was clear that there exists another branch of
solutions, as for the first few iteration, the residual (see Eq. (7)) was
quickly decreasing (diverging in the long run.)
The behavior of µ̃1 illustrated in Fig. 3 suggests that there is

another bifurcation point with d̄0bf ≈ 0.18 and yet another branch
of antisymmetric bisoliton solutions. There is strong evidence of
that from applying the shooting method using 2ϕd̄0bf − ϕd̄0 from
the computed upper branch.

6. Direct simulation of bisoliton propagation

As a demonstration that the computed solutions of the averaged
Eq. (4) are solitary wave approximations of the Eq. (1) we perform
a direct simulation of (1) with the following initial condition

u0(t) ≡ u(t, L/4) = 2π
√
PF−1

[
ϕd̄0(Ω)

]∣∣
t̃=t/
√
Ld1/2

(16)



844 M. Shkarayev, M.G. Stepanov / Physica D 238 (2009) 840–845
Fig. 5. A plot of µ̃1 (solid) and µ̃2 (dash-dot) versus d̄0 . This plot indicated a large
gap between the first two eigenvalues for the upper branch solutions.

Fig. 6. This is a plot of a polynomial suggested in Eq. (15). Dashed lines indicate
values of 1 and−1, outside of these values eigenvalues of P(N)will be greater than
1, in which case the new map will not be contractive.

(remember that d̄0 ≡ d0/(γ P)(d1L/2)). Here F−1 is the inverse
Fourier transform. The pulse is launched at z = L/4 because
as Eq. (3) indicates at this point the phase of the solution ϕd̄0 is
constant. Notice that parameters d0, d1, L and γ are determined
by the physical system, while P is a free parameter whose value is
limited from below due to the upper bound on d̄0 = d̄0bf:
2d0
d̄0bfd1

1
γ L

< P �
1
γ L
.

The inequality on the right must be maintained in order to
stay in the regime where Gabitov–Turitsyn equation is valid.
Fig. 7 shows the result of propagating u0 over 3000 dispersion
map periods. This distance exceeds the distances needed for
information transmission. The solid line represents the initial pulse
u0(t) of Eq. (16) launched at z = L/4. The pulse u0 is constructed
using a fixed point ϕd̄0=0.4 of the map Nd̄0=0.4. It is used as an
initial condition for direct simulation of Eq. (1) solved using a
split-step method. The dashed line shows an amplitude profile,
plotted on a logarithmic scale, of the pulse after the distance 3000L,
showing excellent agreement between the initial and final pulses
and confirming that u0(t) is indeed a good approximation to a
solitary wave solution of Eq. (1).

7. Conclusion

In this paper we have presented a method to calculate solitary
wave solutions of the nonlinear Schrödinger equation with peri-
odic dispersion and weak nonlinearity. In case when the effect of
local dispersion ismuch stronger than residual dispersion andnon-
linearity the Schrödinger equation is reduced to Gabitov–Turitsyn
equation, an integro-differential equation. This equation is satis-
fied by the first order term in the asymptotic expansion of a solu-
tion to the Schrödinger equation with periodic dispersion. Finding
solitary wave solutions is then reduced to finding a solution of an
integral equation by finding fixed points of a derived map.
We investigated bound pairs of solitary waves, bisolitons,

and showed that system has at least two branches of nontrivial
solutions. On one of these branches, our map is not contractive.
Fig. 7. Directly solving NLS equation with initial condition u0 (solid) from Eq. (16)
with lower branch solution ϕd̄0=0.214d0 = 0.0125, d1 = 1.25, L = 1.2 and γ = 1.
The result of propagation u0 over 3000 periods is represented by a dashed line,
showing three orders of magnitude agreement between the initial and final pulses.
Here P ≈ 0.0345 so that zrd = 45 and znl = 29.

We introduce amethod to polynomiallymodify themap, obtaining
a new map that retains the original fixed points, while being
contractive. Effective use of this method resulted in a previously
unknown branch of bisoliton solutions. In order to apply this
method the spectrumof themapwas studied.We carefully studied
the parameter space where such solutions are possible, and found
two places where solutions appear to bifurcate.
The method of polynomial deformation as applied to our

problem can be further improved. The choice of the polynomials
can be adapted as the knowledge about the spectrum improves in
the process of iterations. Also, a better precision on the eigenvalues
may allow one to further decrease the order of the polynomial,
thus expediting the iteration procedure. The approach taken by
this method is not limited to the antisymmetric solutions of our
equation. Higher order solutions can be found after the appropriate
modification of the map. Thus we have used this method to study
symmetric bisolitons, with the results to be published elsewhere.
Authors would like to thank Ildar Gabitov and Linn Mollenauer

for posing the problem, and Robert Indik and Sasha Korotkevich for
the useful discussions during the work on this problem. This work
supported in part by the State of Arizona grant TRIF (Proposition
301), NSFgrant EMSW21-VIGRE#0602173, andby theDepartment
of Energy at Los Alamos National Laboratory under contracts
DE-AC52-06NA25396 and the DOE Office of Science Advanced
Computing Research (ASCR) program in Applied Mathematical
Sciences.

Appendix

Here we present another way of reducing the Eq. (1) to a
dimensionless form. In the ω-space we introduce a slowly varying
amplitude q(z, ω) as

u(z, ω) = q(z, ω) exp
(
−iω2

∫ z

L/4
dz ′
(
d(z ′)− 〈d〉

))
.

Here the angular brackets denote averaging over z. The slow (over
many periods of the dispersion map) dynamics of q is described by
the Gabitov–Turitsyn equation [10]

iqz(ω)− 〈d〉ω2q(ω)+ γ
∫
dω1dω2dω3
(2π)2

× δ(ω1 + ω2 − ω3 − ω)S(δ)q(ω1)q(ω2)q∗(ω3) = 0,
δ = ω21 + ω

2
2 − ω

2
3 − ω

2,

S(δ) =
〈
exp

(
−iδ

∫ z

L/4
dz ′
(
d(z ′)− 〈d〉

))〉
.

For the dispersion map d(z) = d0 + d1 if 0 < z < L/2,
and d(z) = d0 − d1 if L/2 < z < L we get S(δ) =
sin(δLd1/4)/(δLd1/4). We choose

√
Ld1/2 to be a unit of time
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and introduce the dimensionless frequency Ω =
√
Ld1/2ω. Then

S(∆) = sin(∆/2)/(∆/2), where∆ = Ω21 +Ω
2
2 −Ω

2
3 −Ω

2.
We set the residual dispersion to be equal to 1/2 by choosing

the unit of propagation distance: Z = (4d0/Ld1)z. The nonlinearity
coefficient γ can be eliminated by choosing the unit of the pulse
amplitude u (or q): q(z, ω) =

√
2d0/γ Q (Z,Ω).

The dimensionless form of the Gabitov–Turitsyn equation
becomes

iQZ (Ω)−
1
2
Ω2Q (Ω)+

∫
dΩ1dΩ2dΩ3
(2π)2

× δ(Ω1 +Ω2 −Ω3 −Ω)
sin(∆/2)
∆/2

Q (Ω1)Q (Ω2)Q ∗(Ω3) = 0. (17)

The stationary shape solutions have the form Q (Z,Ω) =
eiΛZϕ(Ω) — there is a family of solutions parameterized by wave
numberΛ.
The main point of this appendix is to present another way to

bring the Eq. (1) to the dimensionless form. In the main part of the
text the final step in reducing the number of parameters is done
by choosing the inverse wave number of the solution as the unit
of propagation distance. This way the only remaining parameter is
the dimensionless residual dispersion d̄0 that is related to thewave
number of the solution of (17) Λ as d̄0 = 1/2Λ. The advantage of
this approach is that we now study the family of solutions of one
Eq. (17) instead of considering a family of equations (parametrized
by d̄0), where for each of these equations a solution is found with
a certain wave number.
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