Example of solving RC circuit by Laplace transform

Consider a series RC circuit with a known time dependent input voltage V'(¢). We will determine the charge
@ on the capacitor as a function of time. The charge is governed by the following differential equation.

dQ 1
Vit)=R— + —
() =R+ 5Q
Taking a Laplace transform of both sides we get
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We can now recover the charge as a function of time by inverting the Laplace transform. Here is a table of
the inverse Laplace transforms we will use in this example:
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Case 1: Input voltage is zero

In this case,
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Now take an inverse Laplace transform. We use the first row of our inverse transform table with a = —1/RC.
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Case 2: Input voltage is unit step function

Now let’s suppose that the input voltage is a unit step function at some time 7. The Laplace transform of
this step function is
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So our equation for the Laplace transform of ) becomes
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Notice that we already took the inverse transform of the second term when we solved the problem with
V(t) = 0. Take an inverse Laplace transform; use the V(¢) = 0 solution; then apply the third rule in our
table:
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Almost done— do a partial fraction decomposition, then finish inverse transform using first rule in table.
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Done. We have calculated the following formula for the charge as a function of time:
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Example of solving underdamped LRC circuit by Laplace transform

Now let’s add an inductor, so that we have a series LRC circuit. Since we’ve been using L for the Laplace
transform operator, we will denote the inductance of our circuit with a lowercase [. The voltage equation
now reads
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Taking a Laplace transform, we have
L{V}(s) =1 (—Q'(0) — sQ(0) + s L{Q}(s)) + R (=Q(0) + sL{Q}(s)) + éL{Q}(S)
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It’s easy to solve for the Laplace transform of Q.
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Case 1: Input voltage is zero

We’ll need a few more entries in our Laplace transform table:
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We can “complete the square” to make express our function in terms of quantities appearing in our inverse
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Laplace transform table. Let’s assume that ;5= > (£)” so that we can take a real number square root in

the following calculation. In this case, the circuit is said to be underdamped; this condition is sometimes

expressed as £,/ % < 1 (these conditions are equivalent).
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Finally, we have calculated Q(t).
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Case 1: Arbitrary input voltage

Recall the convolution formula for the inverse Laplace transform of a product. If L{f} = F and L{g} = G,
then
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The square parenthesis are just indicating order of operations. We solve using an inverse Laplace transform.
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We already calculated the second inverse transform in this formula. The first one is done similarly; we get
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