
Example of solving RC circuit by Laplace transform

Consider a series RC circuit with a known time dependent input voltage V (t). We will determine the charge
Q on the capacitor as a function of time. The charge is governed by the following differential equation.

V (t) = R
dQ

dt
+

1

C
Q

Taking a Laplace transform of both sides we get

L{V }(s) =RL

{
dQ

dt

}
(s) +

1

C
L{Q}(s)

=R (−Q(0) + sL{Q}(s)) +
1

C
L{Q}(s)

=−RQ(0) + (Rs+ 1/C)L{Q}(s)

=⇒ L{Q}(s) =
L{V }(s) +RQ(0)

Rs+ 1/C

We can now recover the charge as a function of time by inverting the Laplace transform. Here is a table of
the inverse Laplace transforms we will use in this example:

Y (s) L−1{Y }(t)

1

s− a
eat

1

s
e−as ua(t)

e−asY (s) ua(t)L−1{Y }(t− a)

Case 1: Input voltage is zero

In this case,

L{Q}(s) =
RQ(0)

Rs+ 1/C

=
Q(0)

s− (−1/RC)
.

Now take an inverse Laplace transform. We use the first row of our inverse transform table with a = −1/RC.

=⇒ Q(t) =Q(0)L−1
{

1

s− (−1/RC)

}
=Q(0)e−t/RC .

Case 2: Input voltage is unit step function

Now let’s suppose that the input voltage is a unit step function at some time τ . The Laplace transform of
this step function is

L{uτ}(s) =
1

s
e−τs,

1



So our equation for the Laplace transform of Q becomes

L{Q}(s) =
e−τs/s+RQ(0)

Rs+ 1/C

=e−τs
1

s(Rs+ 1/C)
+

Q(0)

s− (−1/RC)

Notice that we already took the inverse transform of the second term when we solved the problem with
V (t) = 0. Take an inverse Laplace transform; use the V (t) = 0 solution; then apply the third rule in our
table:

Q(t) =L−1
{
e−τs

1

s(Rs+ 1/C)

}
+ L−1

{
Q(0)

s− (−1/RC)

}
=L−1

{
e−τs

1

s(Rs+ 1/C)

}
+Q(0)e(−1/RC)t

=uτ (t)L−1
{

1

s(Rs+ 1/C)

}
(t− τ) +Q(0)e(−1/RC)t

Almost done– do a partial fraction decomposition, then finish inverse transform using first rule in table.

1

s(Rs+ 1/C)
=
C

s
− C

s− (−1/RC)

=⇒ L−1
{

1

s(Rs+ 1/C)

}
=CL−1

{
1

s

}
− CL−1

{
1

s− (−1/RC)

}
=Ce0 − Ce(−1/RC)t

=C − Ce−t/RC

Done. We have calculated the following formula for the charge as a function of time:

Q(t) =uτ (t)L−1
{

1

s(Rs+ 1/C)

}
(t− τ) +Q(0)e(−1/RC)t

=uτ (t)
(
C − Ce−(t−τ)/RC

)
+Q(0)e−t/RC

Example of solving underdamped LRC circuit by Laplace transform

Now let’s add an inductor, so that we have a series LRC circuit. Since we’ve been using L for the Laplace
transform operator, we will denote the inductance of our circuit with a lowercase l. The voltage equation
now reads

V (t) =l
d2Q

dt2
+R

dQ

dt
+

1

C
Q

Taking a Laplace transform, we have

L{V }(s) =l
(
−Q′(0)− sQ(0) + s2L{Q}(s)

)
+R (−Q(0) + sL{Q}(s)) +

1

C
L{Q}(s)

=− (ls+R)Q(0)− lQ′(0) + (ls2 +Rs+ 1/C)L{Q}(s)

It’s easy to solve for the Laplace transform of Q.

L{Q}(s) =
L{V }(s) + (s+R/l)Q(0) +Q′(0)

(s2 +Rs/l + 1/lC)

2



Case 1: Input voltage is zero

We’ll need a few more entries in our Laplace transform table:

Y (s) L−1{Y }(t)

s− a
(s− a)2 + b2

eat cos(bt)

b

(s− a)2 + b2
eat sin(bt)

We can “complete the square” to make express our function in terms of quantities appearing in our inverse

Laplace transform table. Let’s assume that 1
lC >

(
R
2l

)2
so that we can take a real number square root in

the following calculation. In this case, the circuit is said to be underdamped; this condition is sometimes

expressed as R
2

√
C
l < 1 (these conditions are equivalent).

L{Q}(s) =
(s+R/l)Q(0) +Q′(0)

(s2 +Rs/l + 1/lC)

=
(s+R/l)Q(0) +Q′(0)

(s−R/2l)2 − (R/2l)2 + 1/lC

=Q(0)
(s+ R

2l )(
s− R

2l

)2
+

(√
1
lC −

(
R
2l

)2)2 +
Q′(0) + R

2lQ(0)√
1
lC −

(
R
2l

)2
√

1
lC −

(
R
2l

)2
(
s− R

2l

)2
+

(√
1
lC −

(
R
2l

)2)2 .

Now take an inverse Laplace transorm.

Q(t) =Q(0)L−1
{

s−A
(s−A)2 +B2

}
+
Q′(0) + R

2lQ(0)√
1
lC −

(
R
2l

)2 L−1
{

B

(s−A)2 +B2

}

=Q(0)eAt cos(Bt) +
Q′(0) + R

2lQ(0)√
1
lC −

(
R
2l

)2 eAt sin(Bt)

Finally, we have calculated Q(t).

Q(t) =Q(0)e−(R/2l)t cos

(
t

√
1

lC
−

(
R

2l

)2
)

+
Q′(0) + R

2lQ(0)√
1
lC −

(
R
2l

)2 e−(R/2l)t sin

(
t

√
1

lC
−

(
R

2l

)2
)

Case 1: Arbitrary input voltage

Recall the convolution formula for the inverse Laplace transform of a product. If L{f} = F and L{g} = G,
then

L−1{F (s)G(s)} = [u0(t)f(t)] ∗ [u0(t)g(t)]

The square parenthesis are just indicating order of operations. We solve using an inverse Laplace transform.

L{Q}(s) =
L{V }(s) + (s+R/l)Q(0) +Q′(0)

s2 +Rs/l + 1/lC

=⇒ Q(t) =L−1
{
L{V }(s) 1

s2 +Rs/l + 1/lC

}
+ L−1

{
(s+R/l)Q(0) +Q′(0)

s2 +Rs/l + 1/lC

}
= [u0(t)V (t)] ∗

[
u0(t)L−1

{
1

s2 +Rs/l + 1/lC

}]
+ L−1

{
(s+R/l)Q(0) +Q′(0)

s2 +Rs/l + 1/lC

}
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We already calculated the second inverse transform in this formula. The first one is done similarly; we get

Q(t) = [u0(t)V (t)] ∗

 u0(t)√
1

lC
−

(
R

2l

)2
sin

(
t

√
1

lC
−

(
R

2l

)2
)

+Q(0)e−(R/2l)t cos

(
t

√
1

lC
−

(
R

2l

)2
)

+
Q′(0) + R

2lQ(0)√
1
lC −

(
R
2l

)2 e−(R/2l) sin

(
t

√
1

lC
−

(
R

2l

)2
)
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