
4 Moment generating functions

Moment generating functions (mgf) are a very powerful computational tool.
They make certain computations much shorter. However, they are only a
computational tool. The mgf has no intrinsic meaning.

4.1 Definition and moments

Definition 1. Let X be a random variable. Its moment generating function

is

MX(t) = E[etX ]

At this point in the course we have only considered discrete RV’s. We
have not yet defined continuous RV’s or their expectation, but when we do
the definition of the mgf for a continuous RV will be exactly the same.

Example: Let X be geometric with parameter p. Find its mgf.
Recall that pX(k) = p(1− p)k−1. Then

M(t) =
∞
∑

k=1

etkp(1− p)k−1 = pet
∞
∑

k=1

et(k−1)(1− p)k−1 = pet
1

1− et(1− p)

Note that the geometric series that we just summed only converges if
et(1− p) < 1. So the mgf is not defined for all t.

What is the point? Our first application is show that you can get the
moments of X from its mgf (hence the name).

Definition 2. Let X be a RV. The nth moment of X is the number E[Xn].

So the first moment is the mean or expected value of X. And the variance
is the second moment minus the square of the first moment.

Proposition 1. Let X be a RV with mgf MX(t). Then

E[Xn] = M
(n)
X (0)

where M
(n)
X (t) is the nth derivative of MX(t).
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Proof.

dn

dtn
E[etX ] =

dn

dtn

∑

k

etkpX(k) =
∑

k

knetkpX(k)

At t = 0 this becomes
∑

k

knpX(k) = E[Xn]

There was a cheat in the proof. We interchanged derivatives and an
infinite sum. You can’t always do this and to justify doing it in the above
computation we need some assumptions on pX(k). We will not worry about
this issue.

Example: Let X be binomial RV with n trials and probability p of success.
The mgf is

E[etX ] =
n

∑

k=0

etk
(

n

k

)

pk(1− p)n−k

=
n

∑

k=0

(

n

k

)

(pet)k(1− p)n−k = [pet + (1− p)]n

Now we use it to compute the first two moments.

M ′(t) = n[pet + (1− p)]n−1pet,

M ′′(t) = n(n− 1)[pet + (1− p)]n−2p2e2t + n[pet + (1− p)]n−1pet

Setting t = 0 we have

E[X] = M ′(0) = np,E[X2] = M ′′(0) = n(n− 1)p2 + np

So the variance is

var(X) = E[X2]− E[X]2 = n(n− 1)p2 + np− n2p2 = np− np2 = np(1− p)

If two random variables are identically distributed, then they have the
same moment generating function. The converse is almost true- one needs
to add some technical assumptions to make it true.
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4.2 Sums of independent random variables

Suppose X and Y are independent random variables, and we define a new
random variable by Z = X + Y . Then the pmf of Z is given by

pZ(z) =
∑

x,y:x+y=z

pX(x)pY (y)

The sum is over all points (x, y) subject to the constraint that they lie on
the line x + y = z. This is equivalent to summing over all x and setting
y = z − x. Or we can sum over all y and set x = z − y. So

pZ(z) =
∑

x

pX(x)pY (z − x), pZ(z) =
∑

y

pX(z − y)pY (y)

Note that this formula look like a discrete convolution. One can use this
formula to compute the pmf of a sum of independent RV’s. But computing
the mgf is much easier.

Proposition 2. Let X and Y be independent random variables. Let Z =
X + Y . Then the mgf of Z is given by

MZ(t) = MX(t)MY (t)

If X1, X2, · · · , Xn are independent and identically distributed, then

MX1+X2+···+Xn
(t) = [M(t)]n

where M(t) = MXj
(t) is the common mgf of the Xj’s.

Proof.

E[etZ ] = E[et(X+Y )] = E[etX etY ] = E[etX ]E[etY ] = MX(t)MY (t)

The proof for n RV’s is the same.

Computing the mgf does not give you the pmf of Z. But if you get a mgf
that is already in your catalog, then it effectively does. We will illustrate
this idea in some examples.
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Example: We use the proposition to give a much shorter computation of
the mgf of the binomial. If X is binomial with n trials and probability p of
success, then we can write it as a sum of the outcome of each trial:

X =
n

∑

j=1

Xj

where Xj is 1 if the jth trial is a success and 0 if it is a failure. The Xj are
independent and identically distributed. So the mgf of X is that of Xj raised
to the n.

MXj
(t) = E[etXj ] = pet + 1− p

So

MX(t) =
[

pet + 1− p
]n

which is of course the same result we obtained before.

Example: Now suppose X and Y are independent, both are binomial with
the same probability of success, p. X has n trials and Y has m trials. We
argued before that Z = X + Y should be binomial with n +m trials. Now
we can see this from the mgf. The mgf of Z is

MZ(t) = MX(t)MY (t) =
[

pet + 1− p
]n [

pet + 1− p
]m

=
[

pet + 1− p
]n+m

which is indeed the mgf of a binomial with n+m trials.

Example: Look at the negative binomial distribution. It has two parameters
p and n and the pmf is

pX(k) =

(

k − 1

n− 1

)

pn(1− p)k−n, k ≥ n

So

MX(t) =
∞
∑

k=n

etk
(

k − 1

n− 1

)

pn(1− p)k−n

=
∞
∑

k=n

etk
(k − 1)!

(n− 1)!(k − n)!
pn(1− p)k−n
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Let j = k − n in the sum to get

∞
∑

j=0

et(n+j) (n+ j − 1)!

(n− 1)!j!
pn(1− p)j

=
etnpn

(n− 1)!

∞
∑

j=0

(n+ j − 1)!

j!
etj(1− p)j

=
etnpn

(n− 1)!

∞
∑

j=0

dn−1

dxn−1
xn+j−1|x=et(1−p)

=
etnpn

(n− 1)!

dn−1

dxn−1

∞
∑

j=0

xn+j−1|x=et(1−p)

The natural thing to do next is factor out an xn−1 from the series to turn
it into a geometric series. We do something different that will save some
computation later. Note that the n − 1th derivative will kill any term xk

with k < n− 1. So we can replace

∞
∑

j=0

xn+j−1 by

∞
∑

j=0

xj

in the above. So we have

etnpn

(n− 1)!

dn−1

dxn−1

∞
∑

j=0

xj|x=et(1−p) =
etnpn

(n− 1)!

dn−1

dxn−1

1

1− x
|x=et(1−p)

=
etnpn

(n− 1)!
(n− 1)!

1

1− x
|x=et(1−p)

=

[

etp

1− et(1− p)

]n

This is of the form something to the n. The something is just the mgf of
the geometric distribution with parameter p. So the sum of n independent
geometric random variables with the same p gives the negative binomial with
parameters p and n.

End of Friday, September 26 lecture
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4.3 Other generating functions

The book uses the “probability generating function” for random variables
taking values in 0, 1, 2, · · · (or a subset thereof). It is defined by

GX(s) =
∞
∑

k=0

pX(k)s
k

Note that this is just E[sX ], and this is our mgf E[etX ] with t = ln(s).
Anything you can do with the probability generating function you can do
with the mgf, and we will not use the probability generating function.

The mgf need not be defined for all t. We saw an example of this with
the geometric distribution where it was defined only if et(1 − p) < 1, i.e,
t < − ln(1 − p). In fact, it need not be defined for any t other than 0. As
an example of this consider the RV X that takes on all integer values and
P (X = k) = c(1 + k2)−1. The constant c is given by

1

c
=

∞
∑

k=−∞

1

1 + k2

We leave it to the reader to show that
∞
∑

k=−∞

etk
1

1 + k2
= ∞

for all nonzero t.
Another moment generating function that is used is E[eitX ]. A probabilist

calls this the charateristic function of X. An analyst might call it the fourier
transform of the distribution of X. We compute it just like the mgf. We
denote it by φX(t).

φX(t) = E[eitX ] =
∑

x

eitxpX(x) =
∑

x

[cos(tx) + i sin(tx)]pX(x) (1)

where we have used Euler’s formula eiθ = cos(θ) + i sin(θ). The charac-
teristic function has the advantage that for real t it is always defined since
| cos(tx)|, | sin(tx)| ≤ 1.

You can use the characteristic function compute moments just as with the
mgf. (You get a power of i that you have to take care of.) The same calcu-
lation that shows if X and Y are independent then MX+Y (t) = MX(t)MY (t)
also shows φX+Y (t) = φX(t)φY (t).
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4.4 Poisson as limit of binomial

We will use mgf’s to see that the Poisson distribution is a limiting case of the
Binomial distribution. Fix a λ > 0. Consider a Binomial distribution with
n trials and parameter p = λ/n. We want to see what happens as n → ∞.
So the number of trials is getting very large but the probability of success on
any one trial is getting very small. Note the the mean is np = λ. The mgf
of our binomial is

M(t) = [1− p+ pet]n =

[

1−
λ

n
+

λ

n
et
]n

=

[

1 +
λ

n
(et − 1)

]n

(2)

Recall a fact from calculus:

lim
n→∞

(1 + x/n)n = ex (3)

So the limit M(t) as n → ∞ is exp(λ(et − 1)). This seems to indicate (but
is not quite a proof) that in this limit we get the Poisson distribution with
parameter λ.

This connection with the binomial can be used to see how the Poisson
distribution can occur in practice. Suppose we have something that happens
at random times, the probability it happens during a time interval of length
∆t is proportional to ∆t and the events that it happens in disjoint time
intervals are independent. Examples: a piece of radioactive material, the
something is that one atom in the sample decays and emits a particle, an
email arrives in my inbox, netflix gets a request to watch ...

Sketch proof that pmf converges
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