
Math 466/566 - Homework 5 Solutions

1. Book, chapter 7, problem 4.

Solution: The expected value of the sample mean is always the popula-
tion mean, so the sample mean is always an unbiased estimator. The variance
of a Poisson RV is equal to its mean, θ. So the variance of the sample mean
is θ/n. To find the Cramer-Rao bound we must compute I(θ).

f(x|θ) =
θxe−θ

x!

where x = 0, 1, 2, 3, · · ·. So

ln(f(x|θ)) = x ln(θ)− θ − ln(x!)

∂ ln(f(x|θ))
∂θ

=
x

θ
− 1

∂2 ln(f(x|θ))
∂θ2

=
−x

θ2

Since the Poisson RV is discrete, I(θ) is given by a sum, not an integral

I(θ) =
∞∑

x=0

x

θ2
f(x|θ) =

1

θ2

∞∑
x=0

x f(x|θ)

Note that the last sum is just the expected value of X and so is θ. So
I(θ) = 1/θ. So Cramer-Rao says the variance of an unbiased estimator is at
least θ/n. So the sample mean has minimal variance.

2. Book, chapter 7, problem 5. Solution: Some computation gives

∂2 ln(f(x|θ))
∂θ2

= 2
(x− θ)2 − s2

(s2 + (x− θ)2)2

So

I(θ) =

∫ ∞

−∞
2

(x− θ)2 − s2

(s2 + (x− θ)2)2
f(x|θ) dx =

2s

π

∫ ∞

−∞

(x− θ)2 − s2

(s2 + (x− θ)2)3
dx
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A nasty integral, but we can simplify it a bit. A simple change of variables
x → x + θ shows

I(θ) =
2s

π

∫ ∞

−∞

x2 − s2

(s2 + x2)3
dx

Then another change of variables (x → sx) shows

I(θ) =
2

πs2

∫ ∞

−∞

x2 − 1

(1 + x2)3
dx

You can do the integral using tables, a software package or even contour
integration if you’ve taken complex variables. I think you get I(θ) = 1/(2s2).
So Cramer Rao says the variance of any unbiased estimator is at least 2s2/n.

3. Consider the exponential distribution f(x|θ) = θ e−θx where θ > 0. As
always, we have a random independent sample X1, X2, X3, · · · , Xn. The mean
of this distribution is µ = 1/θ.

(a) Find the maximum likelihood estimators of the mean µ and of θ.

Solution:

f(x1, x2, · · · , xn) = θn exp(−θ

n∑
i=1

xi)

So

ln(f(x1, x2, · · · , xn)) = n ln(θ)− θ

n∑
i=1

xi

Take derivative with respect to θ and set it to zero to find the maximum:

n

θ̂
−

n∑
i=1

xi = 0

So the MLE for θ is

θ̂ =

(
1

n

n∑
i=1

xi

)−1

=
1

X̄n
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Since MLE’s satisfy the principle of functional invariance, the MLE of µ =
1/θ is

µ̂ = X̄n

(b) By appealing to a theorem, show that for large n, the MLE for θ is
approximately normal, with mean θ and variance θ2/n.

Solution: We use theorem 8.5 in the book. It says that θ̂ is approxi-
mately normal with mean θ and variance [nI(θ)]−1. To compute I(θ),

I(θ) = −
∫

∂2 ln(f(x|θ)
∂θ2

f(x|θ) dx =

∫
1

θ2
f(x|θ) dx =

1

θ2

So the variance is approximately θ2/n.

4. Consider the geometric density f(x|p) = p(1 − p)x where x = 0, 1, 2, · · ·.
We have a random independent sample X1, X2, X3, · · · , Xn. Find the maxi-
mum likelihood estimator of the mean and of p.

Solution:

f(x1, x2, · · · , xn) = pn (1− p)
Pn

i=1 xi

ln(f(x1, x2, · · · , xn)) = n ln(p) +
n∑

i=1

xi ln(1− p)

Take derivative with respect to p and set it to zero to find the maximum:

n
1

p̂
−

n∑
i=1

xi
1

1− p̂
= 0

Solving for p̂, we find the MLE for p is

p̂ =
1

1 + X̄n

The mean of the geometric distribution is given by µ = (1 − p)/p. So by
functional invariance, the MLE for the mean is

µ̂ =
1− p̂

p̂
= X̄n
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5. Consider the uniform distribution on [0, θ]. We have a random sample
X1, X2, · · · , Xn.

(a) Find the maximum likelihood estimator of θ. Hint: don’t use derivatives.
Just try to maximize the likehood given X1, · · · , Xn.

Solution: The likelihood function is θ−n when x1, x2, · · · xn all belong to
[0, θ]. Otherwise it is zero. So we can write it as

f(x1, · · · , xn|θ) = θ−n 1(xi ≤ θ, i = 1, · · · , n) = θ−n 1(max xi ≤ θ)

We want to maximize this as a function of θ. This is equivalent to maximizing
θ−n subject to the constraint max xi ≤ θ. The max occurs at θ̂ = max xi. So
θ̂ is X(n), the largest order statistic.

(b) Find the MLE of the mean µ = θ/2.

Solution: By the principal of functional invariance, the MLE of the mean
is µ̂ = X(n)/2.

(c) (566 only) Now suppose that we have the uniform distribution on [θ1, θ2]
with both θ1 and θ2 unknown. Find the MLE’s of θ1 and θ2 and of the mean
µ = (θ1 + θ2)/2.

Solution: Now we must maximize (θ2 − θ1)
−n as a function of θ1 and θ2

subject to the constraints θ1 ≤ min xi and θ2 ≥ max xi. The max occurs at

θ̂1 = X(1), θ̂2 = X(n)

By functional invariance, the MLE of µ is (X(1) + X(n))/2.

6. (566 only) Book, chapter 7, problem 6.
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