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7 Quantum spin systems, quantum comput-

ing

7.1 Quantum mechanics

We start with a crash course in the basics of quantum mechanics that is
relevant to quantum spin systems and quantum computation.

In classical mechanics the state of the system is given by some point in
the phase space. There is an energy function (Hamiltonian) defined on the
phase space. This is just an ordinary real-valued function. If we have a single
particle this is a function of its position x and momentum p. The equations
of motion (Hamiltonian formulation) are then

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
(1)

In quantum mechanics the state of the system is given by a unit vector
ψ in some compex Hilbert space. The energy of the system is now a linear
operator H acting on this Hilbert space and the equations of motion are the
Schrodinger equation

iℏ
∂

∂t
ψ(t) = Hψ(t) (2)

Consider a single particle moving in a potential V (x). Classically the

energy is p2

2m
+ V (x), where p is the momentum of the particle and x is its

position. A point in phase space is (x, p). In QM the Hilbert space is L2(R3)
over the complex numbers. p is replaced by the operator iℏ∇, V (x) becomes
the operator of multiplication by V (x) and the Schrodinger eq. is

iℏ
∂ψ(x, t)

∂t
=

[
− ℏ2

2m
∆+ V (x)

]
ψ(x, t) (3)

Note that this is an unbounded self-adjoint operator on L2(R3). We will not
be considering such systems. From now on we will choose our units so that
ℏ = 1.
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The simplest system is a single spin 1/2 particle. Its state space is a two
dimensional complex Hilbert space. (All Hilbert spaces in this chapter will
be complex.) The spin operator is a vector of operators.

S =
1

2
(σx, σy, σz) (4)

With the standard choice of basis, the Pauli spin matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

If you take a classical charged particle and spin it about some axis, clas-
sical E and M says it will have a magnetic moment µ proportional to its spin
angular momentum S. So µ = γS where µ and S are vectors and γ is a
scalar. So if you put it in a magnetic field B, the energy will be H = −µ ·B
where µ is a the magnetic moment (a vector).

If we put our quantum mechanical spin 1/2 particle in a magnetic field
B then the Hamiltonian is H = −γB · S where the constant γ depends on
the type of particle. Electrons and protons are both have spin 1/2 but the
electon has a much larger γ.

Suppose the field is in the positive z direction with magnitude B, so H =
−γB

2
σz. We can easily solve the Schrondinger equation since H is diagonal.

Let (a, b) be the state at time 0. So a, b are complex with |a|2 + |b|2 = 1 Let
ψ(t) = (a(t), b(t)). Note that since H does not depend on time, the solution
of the SE can be written in terms of a matrix exponential

ψ(t) = exp(itH)ψ(0) (5)

Since σz is diagonal it is trivial to compute the matrix exponential

exp(itH) = exp(itγBσz/2) =

(
exp(itγB/2) 0

0 exp(−itγB/2)

)
(6)

So we have

ψ(t) = (a exp(iγBt/2), b exp(−iγBt/2)) (7)

Now suppose we put the field in the x direction. The solution of the SE
is

exp(itH) = exp(itγBσx/2) (8)
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Since σx is not diagonal the matrix exponential is not trivial, but it is still
pretty simple since (σx)2 = 1 Expand the exponential in a power series and
we find

exp(itγBσx/2) = cos(tγB/2)I + i sin(tγB/2)σx (9)

Apply this to the intial vector and we find

ψ(t) = cos(tγB/2)(a, b) + i sin(tγB/2)(b, a) (10)

= (a cos(tγB/2) + ib sin(tγB/2), b cos(tγB/2) + ia sin(tγB/2))(11)

7.1.1 Measurement

Quantum Mechanics is intrinsically random. If we have a single particle
with wave function ψ(x, t), then the particle is not located at a single point.
Instead |ψ(x, t)|2 is the probability density that the particle is located at x.
Explain density

If O is a self-adjoint operator with discrete spectrum and we measure O,
then the possible outcomes are the eigenvalues of O. If λ is an eigenvalue
and Pλ the orthogonal projection onto its eigenspace, then the probability
of getting λ when we measure O is < ψ|Pλ|ψ > where ψ is the state of the
system. Note that since

∑
λ Pλ = I and ||ψ|| = 1, the sum of the probabilities

is 1 as it must be.
If we put our single spin 1/2 particle in a magnetic field then the Hamil-

tonian is H = −h
2
σz. This will cause the spin to precess. See the notes

provided by Prof. Faris for details of this.

7.1.2 Combining two quantum systems

In quantum mechanics if we combine two systems, one of which has state
space H1 and the other has state space H2, then the state space for the
combined system is the tensor product H1 ⊗H2.

Review tensor product of two Hilbert spaces
If the two systems are just two spin 1/2’s, then the state space for the

two spins is C2 ⊗ C2 which is 4 dimensional.
Define spin operators for 1 and 2.
Recall that in the classical setting, the ferromagnetic interaction between

two spins (with values in SN−1) was −σ1 · σ2. In the quantum case the
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ferromagnetic interaction betwen the two spins is the operator

H = −S1 · S2 (12)

We now find the eigenstates of H. Up to a factor of 1/4 this is the same
as finding the eigenstates of σ1 · σ2. We start by considering ground states -
the states with the smallest eigenvalue. First consider the Hamiltonian σ1 ·σ2
for two spins. We split it into two pieces σx

1σ
x
2 + σy

1σ
y
2 and σz

1σ
z
2 which we

will refer to as the jump piece and the diagonal piece. The Hilbert space is
4d with a basis |++ >, |−− >, |+− >, |−+ >. The diagonal piece acts as

|++ > → |++ >, | − − >→ | −− >, (13)

|+− > → −|+− >, | −+ >→ −| −+ > (14)

while the jump piece acts as

|++ > → 0, | − − >→ 0, (15)

|+− > → 2| −+ >, | −+ >→ 2|+− > (16)

So we we consider the operator E12 =
1
2
(σ1 · σ2 + 1) then we have

E12 |++ >→ |++ >, E12| − − >→ | −− >, (17)

E12 |+− >→ | −+ >, E12| −+ >→ |+− > (18)

Note that E12 just interchanges the spins at 1 and 2. (We called it E12

for exchange.) The operator E12 has two eigenvalues. Eigenvalue +1 has
multiplicity 3 and eigenvalue -1 has multiplicity 1. The eigenvectors for
eigenvalue 1 are

|++ >, | − − >,
1√
2
(|+− > +| −+ >) (19)

and the eigenvector for eigenvalue -1 is

1√
2
(|+− > −| −+ >) (20)

There is a triplet (3d subspace) of ground states (spin 1) and a singlet
(1d subspace) of an excited state. If we consider the antiferromagnet then
we have a 1d ground state and a 3d excited state.
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7.2 Quantum spin systems

We consider spin 1/2 quantum spin systems. We will consider general spin
later.

Suppose we have a finite subset Λ of a lattice. At each site in the lattice
we have a two dimensional state space for the spin 1/2 at that site. So the
state space for the system on Λ is the tensor product over i ∈ Λ of Hi. So
the state space for Λ has dimension 2|Λ|. The ferromagnetic Hamitonian with
open boundary conditions is

H = −
∑

<ij>

σi · σj (21)

For the antiferromagnetic Hamiltonian the definition is the above without the
minus sign. Unlike the classical case, even if the lattice is bipartitite these
two Hamiltonians are not equivalent. More precisely there is no unitary
operator on the Hilbert space which transforms the ferromagnetic H into
the antiferromagnetic H. This is an important point. The physics of the
ferromagnet and the antiferromagnet are different.

In the classical case the Heisenberg Hamiltonian has a rotational symme-
try - if we rotate the spins at all the sites by the same rotation, then the
value of the Hamiltonian is unchanged. There is a similar symmetry for our
quantum model with Hamiltonian (21). To be precise, it is an SU(2) sym-
metry rather than an SO(3) symmetry. We illustrate it with a special case
of the “rotation”. Let Ui(θ) = exp(iθσz

i ). This is a unitary operator whose
inverse is Ui(−θ) = exp(−iθσz

i ). Clearly, Ui(−θ)σz
iUi(θ) = σz

i . A little com-
putation shows that the same conjugation transforms the 2d vector (σx

i , σ
y
i )

into R(σx
i , σ

y
i ) where R is a rotation in the xy plane. It follows that if we

define U =
∏
Ui, then U

−1HU = H.
As we will see, even the ground state can be very non-trivial. Previously

we found the eigenstates, in particular the ground states, for a quantum spin
system with just two sites. Now consider more than two sites. So for the
ferromagnetic case we consider

H = −
∑

<ij>

Eij (22)

The state with + at all sites is an eigenstates with eigenvalue E equal to
minus the number of bonds. Same for the state with - at all sites. But that
is only two ground states. We expect more given the symmetry (infinitely
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many in the infinite volume limit). For a subset X of Λ, let ΨX the the state
with + on X and − on Λ \X. Fix a integer k and consider the state

Ψk =
∑

X:|X|=k

ΨX (23)

It is easy to see that for every bond < ij > we have EijΨ
k = Ψk Hence

Ψk is an eigenstate of H with the same eigenvalue as the all + state. This
construction gives |Λ|+ 1 ground states. These ground states are said to be
unfrustrated. For every bond < ij > the energy < Ψk|Eij|Ψk > is equal to
the smallest eigenvalue of Eij.

The ground states of the antiferromagnet are more complicated. We first
consider a ring of four sites. So

H = E12 + E23 + E34 + E14 (24)

One can explicitly diagonalize this Hamiltonian (the matrix is 16 by 16 but
there is a lot of symmetry). You find there is a unique lowest eigenstate, and
its energy it strictly greater than four times the lowest eigenvalue of a single
Eij. We say the system is frustated.

We can see this frustration without explicitly digaonalizing H. First
consider just E12 + E34. Its unique ground states is the spin singlet on sites
1,2 tensor with the spin singlet on spins 3,4. But this state is not an eigenstate
of the rest of the Hamiltonian E23 +E14. So the expectation of E23 +E14 is
this state will be greater that the lowest eigenvalue of E23+E14. Is impossible
to find a state that simultaneously minimizes the energy of each individual
term in the Hamiltonain.

So far we have been considering the quantum analog of the N = 3 model
from the last chapter (in which the spins took) values on the usual sphere in
R3. The quantum analog of the rotator model (N = 2 - spin values on the
circle) is

H = −
∑

<ij>

(Sx
i S

x
j + Sy

i S
y
j ) (25)

This is often called the quantum XY model. The above is the ferromagnetic
model - note the minus sign. For this model the ferromagnet and the anti-
ferromagnet are equivalent in the sense that there is a unitary operator U
such that UHFU

−1 = HAF . For spins 1/2 we can take U to be

U =
∏

i:even

σz
i (26)
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where the product is over the “even” sublattice. Note that since (σz)2 = 1,
U−1 = U . And U is self-adjoint, so it is unitary. A little calculation shows

σz
i σ

α
i σ

z
i = −σα

i (27)

for α = x, y. So UHFU
−1 = HAF .

The analog of the classical model with N = 1, the Ising model, is

H = −
∑

<ij>

Sz
i S

z
j (28)

This is an operator on a Hilbert space, but it is a diagonal operator. So in
fact this quantum model is just the usual (classical) Ising model.

General spin
For spins 1/2, at each site there is a two-dimensional Hilbert space and

a triplet of operators Sx, Sy, Sz acting on it. One can easily check that they
satisfy the commutations relations

[Sα, Sβ] = iϵαβγS
γ (29)

where ϵαβγ is zero if α, β, γ are not all different and is ±1 if they are different.
The sign is +1 if α, β, γ are in cyclic order and −1 if anticyclic order. These
are the commutation relations of the Lie algebra su(2). (There is a factor
of i difference ...) Spin 1/2 is a two dimensional representation of su(2).
Particles can have spin S = 1/2, 1, 3/2, 2, ... For spin S the spin operators
still satisfy the above commutation relations but now they act on a space
of dimension 2S + 1. (So Sx, Sy, Sz are 2S + 1 by 2S + 1 matrices. For a
quantum spin system we then have a Hilbert space of dimension 2S + 1 at
each site and we tensor them together.

Until now we have focused on the ground states which are relavant for
zero temperature. We now consider nonzero temperature (finite β). In the
classical setting we had a probability measure defined on spin configurations.
Review this

For quantum spin systems exp(−βH) is an operator. The partition func-
tion is

Z = Tr(exp(−βH)) (30)

For our models the state space at each site is finite dimensional, so if we
consider a finite volume then H is an operator on a finite dimensional space
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and we can think of it (and of exp(−βH)) as a giant matrix. The trace is
then the usual matrix trace. For an operator O (an “observable”) on the
Hilbert space we define its expected value at inverse temperature β to be

< O >
1

Z
Tr(O exp(−βH)) (31)

Examples of some O’s:

• H itself. Then < H > is the average energy

• For a unit vector n, consider n · σ0. Its expectation is the average
magnetization at site 0.

• σ0 · σj. If we look at < σ0 · σj > − < σ0 > · < σj > this is like the
covariance between the spin at the origin and the spin at 0. We can
look for LRO by seeing whether < σ0 ·σj > converges to zero (no LRO)
or not (LRO). We are thinking of the ferromagnet here.

Infinite volume limit
First consider a finite volume. An observable just means an operator

on the state space of the finite volume system. Let AΛ be the space of
observables on the space for Λ. A state ω is a linear operator from AΛ to C
on the space of observables such that
(1) ω(A∗A) ≥ 0 for all A ∈ AΛ (positive)
(2) ω(I) = 1 (nonnegative)

Unit vectors in the state space give states but there are states that do
not come from unit vectors. MORE

The observables are bounded linear operators on a finite dimensional
Hilbert space, so they are a C∗ algebra. It is possible to take a limit of this
algebra to construct the space of quasi-local observables. Then an infinite
volume state ω on the space of quasi-local observables is a linear functional
that is positive and normalized.

Intuitively ground states are states with the lowest eigenvalue. An infinite
volume ground state is a state ω such that

ω(A∗[H,A]) ≥ 0 (32)

for all local observables A. Explain why [H,A] makes sense.
Intuition behind this def
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It is possible to define the spectral gap in the infinite volume limit, but
you need the GNS construction for this.

Interesting questions:

• Is there LRO - breaking of the continuous (or in some cases discrete)
symmetry at low temperatures? This would mean that there are mul-
tiple equilibrium states.

• Do correlations decay like a power law or exponentially for low tem-
peratures?

• Is there a spectral gap?

• For the antiferromagnet is there LRO in the ground state, and hence
multiple ground states in the infinite volume limit?

• Do correlations in the ground state(s) decay like a power law or expo-
nentially?

quantum fluctuations can act like thermal fluctations
Uniqueness of the ground state: A word of caution. It is tempting to

study the ground state for a finite system and use this to conclude whether
or not there is a unique or multiple ground states in the infinite volume limit.
Don’t do this. Explain why

Spectral gap: This refers to the gap (or lack of a gap) between the
ground state energy and the first excited state. There is a definition in the
infinite volume limit but we did not give it. Again, it is tempting to try to
study this by studying the difference between the lowest eigenvalue and the
next to lowest for a finite system and seeing what happens as the volume
goes to infinity. Don’t do this. Explain why

In the antiferromagnet if there is LRO the spin will tend to have nearest
neighbors anti-aligned. This is calle Néel order. For the antiferromagnet we
should look at

lim
|j|→∞

(−1)j < σ0 · σj > (33)

where (−1)j is defined to be 1 on the even sublattice and −1 on the odd
sublattice.
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Exercises:

7.2.1 (3 points) Let n be a 3d unit vector. Let Ui = exp(iθn · σi). Let
U =

∏
i Ui. Note that the Ui and U are unitary operators. Show that

U(−θ)HU(θ) = H where H is the Heisenberg Hamiltonian (ferromagnetic or
antiferromagnetic). This is the SU(2) symmetry of the quantum Heisenberg
model.

7.2.2 (4 points) Consider the quantum spin antiferromagnet on a ring of four
sites with S = 1/2. So the Hamiltonian is

H = E12 + E23 + E34 + E14 (34)

where Eij is the exchange operator that interchanges the spins at sites i and
j. The Hilbert space has dimension 24 = 16. The lowest eigenvalue of Eij

is −1. So H ≥ −4. Find lowest eigenvalue of H. You should find that
it is stricly greater than −4. Remark: The brute force approach is to just
diagonalize the 16 by 16 matrix using a computer. This model has a lot
of symmetry. (You can rotate the square of sites and reflect it. Also the
operator σz

1 +σz
2 +σz

3 +σz
4.) All this symmetry can reduce the search for the

ground state to eigenproblems with small dimension.

7.2.3 (4 points) Let Ψk be the ground state for the ferromagnet defined
in (23). Let i, j be sites (not necessarily nearest neighbors). Compute the
expectation of σi · σj in the state Ψk, i.e., compute < Ψk|σi · σj|Ψk >. Hint:
you can rewrite σi · σj in terms of Eij.

7.3 Existence of long range order - symmetry breaking

Just as in the classical case, a continuous symmetry in two dimensions pre-
cluded LRO.

Theorem 1. (Hohenberg - Mermin - Wagner) Consider the quantum rotator
model in two dimensions on a square lattice with nearest neighbor coupling.
Then for all temperatures the rotation symmetry is not broken - no LRO.

In three and higher dimensions we expect broken symmetry (LRO) at
low temperatures in both the ferromagnet and antiferromagnet. But this
has only been proved for the antiferromagnet.
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Theorem 2. (Dyson,Lieb,Simon) Consider the quantum Heisenberg model
in three and more dimensions on a square lattice with nearest neighbor cou-
plings. For all spins (S = 1/2, 1, 3/2, · · ·) the antiferromagnet has Néel LRO
at low temperatures. There are multiple equilibrium states which break the
continuous symmetry

Theorem 3. Consider the quantum Rotator model in three and more di-
mensions on a square lattice with nearest neighbor couplings. For all spins
(S = 1/2, 1, 3/2, · · ·) the ferromagnet has LRO and the antiferromanet has
Néel LRO at low temperatures. There are multiple equilibrium states which
break the continuous symmetry

Open problem: Prove LRO in the ferromagnet at low temperatures for
d ≥ 3.

The ground state of the antiferromagnet is quite nontrivial and in two
dimensions it is an interesting, non-trivial question whether or not there is
LRO (and hence multiple ground states that break the symmetry).

Theorem 4. In three dimensions in all the cases where it is proved that there
is LRO at low temperatures there is LRO in the ground state. Furthermore,
in two dimensions there is LRO in the Heisenberg model ground states if
S ≥ 1 and in the rotator model for all S.

Open problem: Prove LRO in the Heisenberg antiferromagnet ground
states for two dimensions and S = 1/2.

Anisotropic model - Peierls argument

7.4 Quantum spin chains

For quantum systems there can be interesting physics in the ground state of
one dimensional systems.

For spin 1/2 in one dimension the model is Bethe ansatz solvable. This
solution shows that there is power law decay of the correlations in the ground
state.

Digression on translation symmetry breaking in classical sys-
tems

Frustrated spin 1/2 chain
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H =
∑

i

σi · σi+1 + g
∑

i

σi · σ + i+ 2 (35)

with g > 0. Explain why this is frustrated
For g = 0 this is the usual nearest-neighbor Heisenberg spin 1/2 chain.

The Bethe ansatz solution shows it has power law decay of the two point
function.

For g > 0.2411... the translational symmetry is broken - there are two
ground states related by a translation by one lattice site. Picture:

If g = 0.5 the ground states are simple and explicit One ground state is
formed by put the pairs {1, 2}, {3, 4} into the single state and then taking a
tensor product of these states. This model is known as the Majumdar-Gosh
model.

two dimensions - VBS and RVB
Spin 1 and the Haldane phase
The Heisenberg model has an su(2) symmetry. It is also translation

invariant. Are there any other Hamiltonians with these properties. (Of
course one can mutiply the Hamiltonian by a constant and add a constant
to it.) We could try to construct others by adding in powers of Si · Sj.
However, (σi · σj)2 is a linear combination of σi · σj and the identity, so
for spin 1/2 we do not get any new Hamiltonians this way. In fact, the
Heisenberg Hamiltonians is the only translation invariant, nearest-neighbor,
su(2) invariant Hamiltonian.

For S = 1, (Si · Sj)
2 is not a linear combinations of I and Si · Sj. So we

can consider a more general Hamiltonian

H = J1
∑

i

Si · Si+1 + J2
∑

i

(Si · Si+1)
2 (36)

Of course the physics really only depends on the ratio J2/J1. This is the
most general translation invariant, su(2) invariant Hamiltonian for S = 1.
(For S = 1 (Si · Sj)

3 is a linear combination of I, Si · Sj and (Si · Sj)
2.)

Initially people thought that the S = 1 Heisenberg model (J2 = 0) be-
haves like the S = 1/2 model. Duncan Haldane argued that it (and all integer
spin chains, i.e., S = 1, 2, 3, ... should behave quite differently - exponential
decay of correlations and a spectral gap.
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For J2/J1 = 1/3 this model is solvable (not Bethe ansatz). One can
compute the correlations and see they decay exponentially with correlation
length 1/ ln(3). This model has also been proved to have a spectral gap.
These results have been extended to a small neighborhood of J2/J1 = 1/3.

To explain why this particular model is solvable we need a bit of discussion
of the tensor product of two spin 1’s. Some representation theory shows that
this tensor product is the direct sum of three subspaces - one each for spin
= 0, 1, 2. We have

H =
∑

i

[
1

3
+

1

2
Si · Si+1 +

1

6
(Si · Si+1)

2

]
=

∑

i

P
(2)
i,i+1 (37)

where P
(2)
i,i+1 is the orthogonal projection onto the states on sites i and i+ 1

with spin 2. If it is possible to find a state whose restriction to any two
adjacent sites has no component in the spin 2 subspace, then that state is
a ground state. If this is possible then there is no frustration in the model.
More results for this model are explored in one of the homework problems.

Figure 1 shows the conjectured phase diagram.

Exercises:

7.4.1 (3 points) Consider the Majumdar-Gosh model.

(a) Show that the two states we said were ground states are indeed ground
states.

(b) (3 points) Compute the correlation functions < σi · σj > and < σi > in
one of these ground states. Here σi is the usual vector of sigma matrices. So
< σi > is a vector (whose components are complex numbers).

7.4.2 Consider the spin-1 chain with Hamiltonian

H =
∑

i

[
1

3
+

1

2
Si · Si+1 +

1

6
(Si · Si+1)

2

]
=

∑

i

P
(2)
i,i+1 (38)

where P
(2)
i,i+1 is the orthogonal projection onto the states on sites i and i+ 1

with spin 2. An orthonormal basis for the states on two sites with spin 2 is

e1 = (++), e2 = [(+0) + (0+)]/
√
2 (39)

e3 = [2(00) + (+−) + (−+)]/
√
6 (40)

e4 = [(−0) + (0−)]/
√
2, e5 = (−−) (41)
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70

J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)
2

Figure 1: Conjecture phase diagram of general S = 1 spin chain. Courtesy
of Bruno Nachtergaele, Robert Sims.

With periodic boundary conditions there is a unique ground state. The
basis in which the Sz

i are diagonal can be denoted by |A > where A ranges
over all strings of +, 0,−. For an A in which the the number of +’s equals
the number of −’s and the non-zero entries alternate between + and − we
define

ψ(A) = (−1)m 2k (42)

where k is the number of pairs of +,− and m is the number of odd sites with
+ or −. For example, ψ(0 − + − 00 + −0+) = 23 since k = 3 and m = 2.
For all other A define ψ(A) = 0. Then we let

Ω =
∑

A

ψ(A)|A > (43)

(a) (3 points) Show that P
(2)
i,i+1Ω = 0 for all i, and hence it is a ground state.

(b) (5 points) Compute < Ω|Si · Sj|Ω >. For a simpler computation you can
compute < Ω|Sz

i S
z
j |Ω >. Conclude that the correlation length is 1/ln(3).
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