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1974) for many-body systems, concern lattices with classical (je. co
n-component spin variables, where ¢ =4 — d (d is the dimcnsi(\,q,l-

the lattice) has to be used as an expansion parameter for physica] ~UC]: ity of
Here we shall be concerned with spins which can assume only the -J'.(H'Uljmles.
Such a limitation, though certainly not essential (e.g. Nihat B&y;-i\f,}rq‘] ac il
for the method outlined here, greatly simplifies the introduction-;p} 975)
malization transformations and the actual calculation of the freq me?orh
including its critical singularities, from these transformations. Ty,

The essence of the renormalization transformation approach 1o Syste
with many degrees of freedom is a stepwise evaluation of the free enerms
Starting with the partition function of N spins s; on a lattice, as the sun Ofgr'
all configurations {s}, this summation is carried out under the restrictio
that the configurations {s} match with a given cell spin configuration {
Here the N’ cell spins s, assume the values +1 and are located on a latlticé
which is isomorphic with the original site lattice. The cell spin lattice i
smaller by a scale factor N'/N = I~ ¢, where [ is the linear dimension of the
cell in units of the site lattice. The result can be written as the free energy of
the cell spin configurations, which in turn defines uniquely a Hamiltonian
for the cell spins.

Instead of summing over all the cell spins to obtain the free energy of the
original site system, one considers the transition of the Hamiltonian de-
scribing the site system to the Hamiltonian describing the cell system. This
transition obviously is a transformation in the space of Hamiltonian para-
meters for the site lattice: the renormalization transformation. Since the
cell lattice is isomorphic with the original lattice, this transformation in the
space of Hamiltonian parameters can be iterated and one is most interested
in the cases where the sequence of Hamiltonians approaches a non-trivial
limit (fixed point).

For the usefulness of a renormalization transformation it is essential that
it is regular in the domain of interest in the space of Hamiltonian parameters.
In that case the free energy of the cell system and the site system must exhibit
the same singularities and one might call the two systems, which are con-
nected by the transformation, thermodynamically equivalent. In general 1t
is quite easy to write down a renormalization transformation, but h?fd to
assess whether it is regular, particularly near its non-trivial fixed points: 2
special criterion that has to be satisfied is that critical systems ar¢ carrie
over into critical systems. For a certain class of renormalization trans-
fOI:ma‘Fions, those where the cell spins and the site spins are linearly relate®
this criterion is satisfied automatically.

We shall, however, pay little attention to these “linear” transform
but concentrate on transformations where the relation between the €

site spins is non-linear. One of the main points, which now become

lmml()us)
b

ations
Il and
muCh

i



7. Renormalization theory for Ising-like spin systems 427

mbersome, is to discuss the behaviour of the correlation functions,
which will be dope n Section.III: But apart from considerations about the
correlation functions one can mdlcate_the.usefulness of the renormalization
theory for critical phenomena by considering the fluctuations,

One knows from the work of Lgndau that the critical singularities are
caused by long wave!ength ﬂUCEUELtIOI“lS. A long wavelength fluctuation will
manifest itself more m'the conhgqratmn of cell spins than in the site spin
configurations compatible therewith. One might say that by leaving the
cell spin variables in the problem the important fluctnations are still kept in
the system. Therefore the transformation, which involves only a sum over
site spins for a given cell spin configuration, does not involve the “dangerous”
fluctuations and will thus be regular.

The cell spin Hamiltonian may even be seen as an expression for the energy
of the fluctuations of the site spins. The fluctuation energy is expressed with
respect to a mean value, which is going to play a fundamental réle in our
treatment. This mean value is a kind of background energy with respect to
which fluctuations are measured energetically. On repeating the renor-
malization transformation the free energy is gradually expressed as a sum
over this background energy. Near the fixed point this sum builds up the
typical critical singularities.

The theory for the correlation functions is set up in a similar way. In
terms of fluctuations the argument runs parallel; when a spin pair correla-
tion function is long-ranged, this is a result of the long wavelength fluctua-
tions. It turns out that by applying the renormalization transformation
repeatedly, the full correlation function is expressed in terms of a regular
short-ranged part, in some analogy with the Ornstein-Zernike theory.

In Section I we start with definitions and introduce the basic concepts such
as cell spins, fixed points, eigenvectors, critical exponents and scaling fields.
In Section II the thermodynamic implications of the renormalization theory,
including the spontaneous magnetization, are discussed, and similarly in
Section I1I the implications of the renormalization transformations for the
Correlation functions. In Section IV a number of computational methods are
Introduced and in Section V a survey of the results obtained so far is given.
The paper closes with a discussion, Section VI, of several questions that have

been raised in the preceding sections.

more cu

l. Definitions

1“: consider a lattice with a spin s, = +1 on every site. The subscript i
:tlaels the lattice sites; for the case of d-dimensional lattices i usually
" 0ds _for d labels iy,...,i, to mark the coordinate in every direction
“Spectively,
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Let a be a subset of sites and define s, as

Sg = H Si

iea

(1.1)

The most general Hamiltonian describing an Ising-like system car, then be
written as
H(s) = 2 K3, (1.2)
a
where the usual Boltzmann factor —f§ = —1/k,T has already beep absorbed
in the Hamiltonian, i.e. the “actual” interaction par-ameters are J = K Jk,T
For future convenience the total energy is shifted in such a way that
2 H(s) =0 (1.3)
s}

. ) i -
where the symbol X, will always mean a summation over all

configurations. Also a in £, of (1.2) runs throu
sites.

The interaction parameters K, can be formally obtained from H(s) via
the relation

K,=27"% s #(s) (1.4)
s}
where N stands for the number of lattice sites. Equation (1.4),

interaction parameters K, from the Hamiltonian #
actual numerical calculations.

In practice we shall mostly deal with homogeneous Hamiltonians (1.2),

Le. Hamiltonians with the following property: let o be the class of all sub-
sets a of sites which can be identified

% may e.g. stand for “single site” (K
neighbour pair”, etc. We shall re
dea have the same value K, F
can be rewritten as

the spin
gh all non-empty subsets of

recovering the
(s), is of importance for

» then being a magnetic field), “nearest
strict ourselves to systems where all K, of
or these homogeneous Hamiltonians, (1.2)

#) =Y Ks, =YK, Y s, -
Obviously ( 1.5) can be written in a lesg formal way as
%”(s):HZsi+K Z $i8; + ... (16)
i @
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Specific examples of homogeneous systems (1.5) for which exact solutions

are known are €.g.:
(a) “Pure” Ising systems defined by the Hamiltonian

H(s) =K Y s,
~ s 5;8; (1.7)
for the linear and 2-dimensional lattices (Onsager, 1944).

.(b) The trlplfa-spm interaction model, which is defined on the 2-dimensional
triangular lattice by the Hamiltonian (Baxter and Wu, 1973)

H(s) =K ) 8;8 1Sy
Gy ky

e sites of the vertices of any triangle.
1971, 1972) model), which
quadratic lattice by the

(1.8)

where the symbol (i, j, k) stands for th
(c) The symmetric 8-vertex model (or Baxter (

can also be expressed as an Ising-like system on &
following Hamiltonian (i = (i, i,) is the site position):

H(s) = K Z [Si 8 +1,i+1 T Si1+1,izsi1,i2+1]
1,12
+ AN S 0,Si 1, ip+ 150+ 1,025, i2+ 1 (1.9)
nce of a magnetic field, the Hamiltonians (1.7) and

Note that, by the abse
which are even in the spin variables, whereas

(1.9) both only contain terms
(1.8) only contains a term which is odd in the spin variables.

Now, returning to the general theory, consider a set of N’ so-called cell
spins s/, = +1 (the reason for this nomenclature will soon become clear).
The index i refers to the i'-th cell of a lattice isomorphic to the original lattice.
All quantities pertaining to the cell spin system will be labelled with primes.
Furthermore, let P(s’, s) be @ weight factor, which depends on the cell spin

and site spin configurations {s'} and {s}, with the properties

P(s,s) =0, Vs (1.10a)
and
Y P(s,s) = 1 (1.10b)
{s}
We now define a Hamiltonian #'(s") for the cell spin system by
exp[G + H'(s)] = gP(s’, s) exp A (5) (1.11)
{s
and
wapm (1.12)
{s"} .
n configurations {s'}and s defined by imposing

G is independent of the cell spi : an®
the condition (1.12) on the cell spiD Hamiltonian ()
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The restriction (1.10a) has been imposed on P(s', s) in order {0 gugra.
that the right-hand side of (1.11) i.s positive and that thus G 4y Tf//"(;)n}ee
real quantities. As (1.10a) is sufficient but by. DO means necessary, this cgre
dition is sometimes relaxed in some calculations. n-

The second condition, (1.10b), leads to the following imporian; relatiop.
ship between the free energy F’ of the cell system and the free o

1€rgy F of
the site system:
G+ F =In) exp[G+ #'(s')] =In {Z}{E;P(S', 5) exp H#(s)
{SI} S S
=1In) exp #(s) = F (1.13)
®

A third condition will be imposed on P(s', s) as well, in order to guarantee
that the cell spin Hamiltonian #7(s') has the same symmetries as the site

spin Hamiltonian #7(s). To elucidate this we decompose H'(s") by means of
(1.4) as

H'(s') =Y Kl.s., (114
e

where d' runs through all non-empty subsets of cells. Then we require

P(s', s) such that for subsets a' of a certain class «, the cell interaction para-

meters K, are all equal to a certain value K, 1.e. #'(s") can again be written as

H'($) =YK, Y s, (L15)

aea

Note that we do not use primes on the classes of sets of cells; they are super-
fluous since e.g. the class of nearest neighbours is a definition which is
independent of whether we are working in the cell or in the site system.
Now consid¢r F" and F as functions of the interaction parameters K, and
K, (abbreviated to K’ and K). In the thermodynamic limit (no long-range
forces present) F' and F assume the form F' = N'f(K') and F = Nf (K)

with in both cases the same function f. G also becomes an extensive function
G = Ng(K) in the thermodynamic limit with N/N’' = I constant (d =
dimensionality of the system)

: : - Inserting these relations into (1.13) leads ©
the following basic renormalization relation for the free energy per site:

J(K) = g(K) + I-9(K") L

. ) . . seof
ObV{ously Lis also the linear distance between the cells measured in Uit
the site lattice.

o , : ‘he three
s relat{on (1.11) is called a renormalization transformation. ]heiety in

aboye-mentloned restrictions on P(s, s) still allow an enormous va[rnation.

choice for P(y, 5), each leading to a different renormalization transfor
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A trivial choice would be to take P(s', s) independent of &', which in view of

(1.10b) leads to
P(s', s) = 27N (1.17)

This makes the right-hand side of (1.11) independent of s and therefore
'%ﬂ/(s’)z()andG:F. - | | |

As an example, to which we sgaﬂ return r(:peaiodl}/ in Sections IV and V
and for which extensive calculatgs_n‘isz hzwp been '(;arrlec.i out, we give here a
more interesting choice for a 2-‘dlr.mv;;;.sjolml triangular lattice (Niemeijer
and van Leeuwen, 1973, 1974). C@n‘sidcr z‘i.-triang'ulaf latti(fc where cell
spins have been placed in the centre of three sites as indicated in Fig. 1a.

53.3 / /// » 3 4

() (b)

Fic. 1

Note that the cell spins are again located on a triangular lattice. Now define
the weight-factor

P(s',s) = [T3[1 + si(st + 2 + 57 — sis?sd)/2] (1.18)
with S,-lf, sf and sf denoting the sites in cell i'. One easily verifies that. (1.18)
fulfils the conditions (1.10a and b). The symmetry condition on this par-
tcular P(s' s) is not quite fulfilled, but this can be remedied by averaging

over all six triangle positions i’ = (i, 1, 2) etc. indicated in Fig. 1b. The choice
(1.18) is special, since P(s', s) is either 0 or 1. P(s', s) equals 1 when

s, = sign (s} + 57 +57) (1.19)

and is zero otherwise. With the P(s’,s) given by (1.18) the transformation
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P - .3
6,=0: st =52 =353

i 1 1 L

> ST E R N

F G.i' = ] ‘ —bi, = ")i, e bi'
“ s

£ ". ST 3

Oi’ = 2: Sy = Sy = S

v AU

Gi' = 3 bi' — bi, — 51.,

So effectively the summation in (1.11) over {s} runs over 1,

figurations {¢} and one may write (1.11) as

exp[G + H'(s)] = ) exp #(s).

1
{o}

K’ = K'(K).

(1.11) can be interpreted differently. F Orfg given value of 5/, (. sescil
| bouring site spins can still be in four configurations, labelled 1y, S T Meigy

A choice as (1.18) has computational advantages in limiting the Number of
configurations to be summed over. The relation between cc '
as implied by (1.18) may be compared to the election of del
system with only two parties present. The site spins (voter
determine the cell spin (delegate) by a majority rule. (We note here i
that the square of the transformation (1.18) is not equal
based on taking a “super cell” of three cells as the basic unit, just
minority may elect the president by an advantageous distribution of the
votes over the districts. In this respect (1.18) is an example of a non-l
weight-factor which we shall discuss in Section I11.)

Returning to (1.11), we view this as a transformation from the interaction
parameters K to the renormalized interaction parameters K, in short

oy

e ¢

(].2()},

- POssible Con.

(1.21)

-1l and site gpip
gates in a distrig
s) of a cell ( district)

Nl passing

to the transformation

ac +thas
as the

near

(1.22)

One can consider G(K) as a special K, with ¢ corresponding to the empi
set. Equations (1.22) will be taken as the renormalization equations, “;h‘;f
together with (1.16) determine the free energy f(K). The strategy of %

renormalization theory will be to obtain the singularities of the free _eneri
J(K) from the regular functions g(K) and K'(K). There is, however ©

a.priori guarantee that g(K) and K'(K) will be regular in the re
since the choice (1.17) shows that ¢(K) = f(K) and g(K) then has
J(K). It is part of the renormalization problem t©
way that g(K) and K'(K) are regular in the re atioDs
¢ important concept of a fixed point of the €q

set K* such that

KK = KE oot
Of course the transformation (1 .22) can in general have several fixed

singularities of
P(s, 5) in such 4

We now introduce th
(1.22). A fixed point K* i 4

gion of interest.

all the
choos®
Jevant doma’™

(1.5
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very one ill have o

but not every ot ,Of them W’l_l h‘.‘W physical significance for critical phe

mena; €.g. one trivial fixed point is the set K* with =R
Ta

K*¥ =0
| (1.24)

corresponding to the infinite temperature limit of any spin system (since th
g=—1 /kBY" hz}s been absorbed in the interaction parzktmeters)e
f the basic requirements of the renormalization approach lh;tt'
1 of thei "C‘filiical exponents of a class of Ising syqtems’
behaviour, the K| are regula fons ’
K, near the non-trivial fixed points. For the (llitleerilllil:;tgglr]]dcl)(fmtshgfftrge
energy of a specific spin system we shall need g(K) and the transformatior?

(1.22) to be regular in a much larger region of the parameter space.
For later results we shall need the linearized form of the transformation

(1.22), i.e. the matrix

parameter —

It is one O
for the determinatior
which have the same critica

oK. JoK, = Ty (1.25)

arized transformation in the fixed

A very special role is played by this line
fixed point will be denoted by an

point (the fact that it is linearized at the
asterisk)
(0K, /0K g« = T%. (1.26)
neighbourhood of K* the transformatio
K, — K* = ¥, TH(K, = K2
B

ri one cannot be sure that its

n can be written as:

So in the
(1.27)

The matrix T3, is not symmetric, so d prio
which will turn out to be directly related to the critical exponents,

of T}, in many applications is, that its elements
1ly much smaller than those above the diagonal.
type of normal coordinates in which the
le form. Let T}, have eigenvalues 4; with

eigenvalues,
are real. A general feature

below the diagonal are usua
It is convenient to introduce a

transformation (1.27) takes a simp
associated left eigenvectors @5’
(1.28)

; 0, Tap = 2i9p-

Then construct “normal” coordinates u; as
(1.28) transform as

such that the u, according to (1.27) and
- K’;) = l,ui

u =Y oK, — K) =4 ; @p(Kyp
f u, beyond the linear

(1.30)

One may extend the definition 0 regime in such a way
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ite u,. F that pu se (1.2 48 ta k
that (1.30) also holds for finite u,. For that purpose (1.27) 1, (,, he CXPande
further as
1 i *
K. — K* =Y T%(K, — K) + 5,,2., T Ky — KI(K - K*).. 134
as well as (1.29)

oo i ”
u =Y gi(K, — K¥) + 2—!Zﬂ<pa,,(1<a, ~ KK, - 5. (1.3
*

~2 - - G " i
where T.* ;. = (0°K, /0K ;0K ... In order to ensure that

!/
0, == /liui

(1.33)
also holds to second order, one should relate @,y to T* g2 @ the solutiong of
the linear set of equations

Z q)itv[liéuaévﬂ - T;fan]}] = Z A
U v

p woou,af’ (134)
The solutions of (1.34) are
; 1 ; . . .
Py = 2. 7 A 2 O T Wikl ok, (1.35)
J k7 "k yap
(where /' is the ath component of the right eigenvector of T7, with eigen-
value 1,).

To find the u, as functions of K, it is for

practical purposes more convenient
to use the relation

A K) = uf(K') or 2ru(K) = u(K™) (1.3
in which K is the ima

ge of K after n transformations. By choosing K in the
neighbourhood of the

fixed point K* one finds (except under special cir-
cumstances) values of u,(K™®) further away from K*. The set {u(K)} may &
considered as the curvilinear coordinates adapted to the transformation
(Wegner’s scaling fields, Wegner, 1972). Note that the u, are defined up 0@
constant factor, since the eigenvectors are only defined up to a constant

factor. It should alse be pointed out that both procedures fail in case of 40
c1genvalue 4 = 1 (a so-called marginal eigenvalue).

Il. General Theory

s Section w . 16}
vTigxs Section will be devoted to the consequences of the basic formula (1

J(K) = g(K) + I74(K")
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which in terms of the scaling fields u, can be written as:
flu,u,,...)=glu,u y 4+ 1Y (Auy, A
Uy} = glly, gy ) + 1 WA B AP s ) (2.1

Qur bas.lc assumption is that the scaling fields u; are regular functions of the
lnte.ractlon parameters K, and that g(u,, u,,...) s a regular function of the
scaling fields u,.

If a field u, scales under the renormalization transformati
J.| > 1 (<1) it is called relevant (irrelevant). In the special case that 4; = 1
the field is called marginal. In order to appreciate further the notion of scaling
fields we point out that, obviously, the values of the relevant fields increase
upon performing a transformation, whereas the irrelevant fields decrease.
The fixed point itself, as defined in {1.23) corresponds to all u; = 0. The set
of points which ultimately end up in the fixed point is called the domain of
attraction: this set of points forms a hypersurface (Fig. 2) in the parameter
space of the interactions. If there are n interactions and m relevant variables,
the dimension of this hyper surface is n — m. For reasons which will become
clear later on, the domain of attraction is also called the surface of criticality.
If e.g. u, and u, are relevant fields, the surface of criticality is defined by

on with a factor

K3
FiG. 2

il ek N e
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Ie

0 1t
> Y210 tha
e

Another general distinction .hclwccn the scfalir‘lg .ﬁck'lﬂ, can be
basis of symmetry. Each #(s) is made up of fin ‘u’/cn pm which i nvarig
under a flip of all spins, and an odd part, which Lhéngct,.g}wi under j gpj i
Now, if all P(s', s) are chosen such that they are invariant ., 2 Simujy,,
neous flip of s and s, then it follows thqt the suhspdu of ”}flf /, nteractiy,
of H(s) is invariant undcr‘lhe tr.an.sfom.]all()n. I'hence it follows thy g
subspace of the even part of #(s) is invariant under thc_ transfc
as a consequence, in most cases, such as (1.9) and (1.7), fixe

VT 7%«
YHiNation, and
y All()

1 :
! ™ 1t -
1;),‘“’ AT

¥ A1C f()un,j
in the subspace of even interactions. For an “even fixed poine~, matri,
T.¥, breaks up into an even-even and an odd-odd part a5 cun 4y seen by
differentiating (1.11) with respect to a K :
y ! ) et Tow(\AK
[0G/0K, + o#'(s')/0K ] e* ™) = éP(.s ,5) e [0#(s5)/0K ] 22
Then, using that
OH(s))0K, = Y. s,
aea
and
oAH'(s)OK, =) [8K;,/0Ka]|: > .s;,:| (2.3)
a’ a' ea’

one may write (2.2) in the form

0G/oK, + Z[ ¥ s;] [0K,/0K,] =( ¥ s> 24)

o ‘ea’ aca . s’
where the average with the subscripts ¢ )_, to remind one of the dependence
on {s'}, is defined as

(A>y =Y P(s,5)e*¥ A(s)/ Y P(s, 5) e 15
{s} {s}

From (2.5) it follows that for a Hamiltonian #(s) with only even interacuoz;;

(4>, and A will have the same symmetry. So in (2.4) for o even only &

o appear, and for odd g onl

d
: y odd o will appear. Thus T}, has even and 0d
eigenvalues and related even and odd scaling fields.

s tef
The distinction between scaling fields in odd and even symmetry chara®

g iscuss
can be extended to more complicated symmetries; this will be disct
In connection

. with the symmetric eight-vertex model in Section V1.
In this Section we discuss:

n between the el

tion of the critical temperature;

n of the free energy from (2.1);
OuUs magnetization,

genvalues of T}, and critical expo
B. the determing

C. the calculatio
D. the spontane
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A. Eigenvalues and critical exponents
We shall start off with a short reminder of the nomenclature of a few critical

exponents for magnetic systems. For the sake of convenience we shall
restrict ourselves to ferromagnetic systems; extensions to antiferromag;letic
systems can be found e.g. in Stanley (1971).

We define the dimensionless distance t from the critical temperature

T.by
v=(T - T)L (2.6)

The singular behaviour of the specific heat, spontaneous magnetization,
magnetic susceptibility and the response to an external magnetic field at T,
&

are respectively characterized by the exponents o, f, 7 and 8: Cy =17,
me (=1, gy >t 7 and H = Im|°. If < O the critical exponents usually
are primed. In Table 1I.1 we give the numerical values of the critical ex-
ponents for the Ising-like systems defined by the Hamiltonian (1.7) on a
quadratic and a triangular lattice (1.8) and that of the symmetric eight-

vertex model defined by (1.9).

TabLE I1.1. Critical exponents for several Ising-like systems. The modcl§ have been
defined in the text. Those marked by * and T are conjectures by Suzuki (1974) and
Barber and Baxter (1973) respectively. s(4) = n/[n — arccos (tanh 24)]; A has been

defined in (1.9). //
y b

Model o =0 p y=7
. 15

2-d Ising 0(log) 1/8 U
2-d triplet interation 2/3 1127 7/6*8 ig;
symmetric 8-vertex 2 — s(4) s(A)/16T Ts(2)/81

The connection between the eigenvalues 4; of the matrix 15 alnd gleh(:‘tg)ci
exponents is most easily established by asking ‘Ygleth?l; ;‘ (s;r;;);uTa; b:gin with
in A free energy 18 compatible with (2.2

powers of the u; for the I gy pehaviour like A lu, | for

— 0 and assume a

‘t.h.is into (2.1) and equa

ting the powers of uf’ (which
0,...)do not appear in g)

let us put u, = u; =
leads to the

f(u,,0,0,...). Inserting
by the regularity assumption of guy» 0,
equality
_d a1 2.7
Alug | =1 AlAy44]

implyi
plying for the exponent &, (2.8)

a, = d log l/lOqu'-
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The conclusi
the exponent @,
(2.8) that only the rel

on on the one hand is that if a singular power i, ,, .,

is gi ‘ough (2.8). On the 1 Would o,

is given by 4, through (2.8). On the other by W “Cur,
- : Ve ¢ Yo

evant scaling fields (4; > 1) qualify on pfy.i. - Tom

. L w ol "" ;lr,
for a singular behaviour as the exponent should be positjye to & nd,

.t ” 18 ¢ ieal anamets P the
frec energy finite at u, = 0. The exppnent a, 1s a ph){mu}l quantity 4,4 ”h,
5. should vary as a power of [ for different renormalization (r,,,. Mg
\,‘ N -

1(

X . g Tatie.,
with different [. Theretore, following Wegner (1972), we write for (.. Ong

s ‘!{rf.:](- y
cigenvalues (which are assumed to be real and positive) SVany)
/{_ e l)'i

[ (2.9)
such that @, and y, are related as
= dlv..
a, / Vi 0 ]U)
We note that the amplitude 4 drops out of (2.7). Since A could be yer, o
may not invert the argument. A relevant eigenvalue does not nc%mm;

lead to a singular behaviour. This point is investigated further under ¢

Next we look into the dependence on two scaling fields u, and u, and
determine the singular powers |u, |*|u,[™ which are allowed by (2,
Comparing exponents left and right yields the relation

a;y; + a,y, =d. (2.11)

For positive g, at least one of the y; has to be positive. A combination of 4
relevant scaling field (y, > 0) and an irrelevant one (y, < 0) leads to a value
of a, larger than d/y, and therefore is a less singular contribution in 4,
than the previously found power d/y,. Such corrections to the most singular
part will be discussed in C. For the remaining case of two relevant scaling
fields a combination of the possible powers u$'u3* forms with (2.11) the
functions

, )y 7 12
|u1 ld/nfl(uz/l u, |)2/};) (2.12)
or
- b1/ 2.13)
|up [P (/| u, [P2). :
These are solutions of the scaling relation
(2.14)

LeailV s P1,) = ’dfsing(ul’ Uy)-

Except for the fact that here | is a discrete variable, (2.14) is similar t0 Wi(-iom :

fs‘atic scaling hypothesis (Widom, 1965, b), which is usually written '
orm

@2.15

Lan(2™%, X™h) = xf.
where h is a dimensionless magnetic field.

(t, h)

ing




» - )| s < Y OLT e
; < Lal t . y |\Ii] ,“ |k( F y
Re“(””]‘l!?]“( n h(‘(” !(” B (x I Spin ¢ 7[(“"" 4!9

In order to make the ¢ oot :
e WS e cl,onn(*z‘uml} with the usual scaling theory of criti

show that n the appropriate cases a f‘ixci; poimt“}:“l

[ AW Iy ¢ I] (’.is

w ev 1 : |
two relevant variables u, and u,, one of which, e.g. u, is t
h, e.g. uy, i1s temperature-like

and the other, u,, field-like.
. As ha}s already been mentioned (if the Hamiltonian contai
1nt§ract10ns), a “normal” fixed point will lie i,nA il'{c ;llll;kvb)(’nl\t\mns Ollly.cvcn
actions. A change of temp_erm'u;:'e is a chaunge of J'nagi'litu:{cd;; ;ﬁ _CVc‘nllm.(:r_
constants' K, -Tht}s a variation of the temperature in thé fixo(d 11]>tb.rdcuon
the Hamiltonian in the even subspace and the temperéture .Soml i
the even scglmg. fields. Similarly a change of the magﬁetic fi \Tclj ‘COUplC .
the odd scaling fields. We leave the confirmation of this picturI: t CSOUPIGS H
where several specific cases are treated, and give here c;nly the reloqtiecnof1 ]'kY :
thermodynamic critical exponents and the two exponents yr (e\‘/en(;nazdt yC
H

(0dd) of the relevant variables

o =2 —dfyr

p=1- Y/ Vs (2.16)
y = Qyy — DY |

8 = yu/ld — yu)

from which immediately follow the well-known scaling laws

a+28+y=2 and a+ 6 +1)=2 (2.17)

We note here again that the relation (2.14) does not determine the functions

f, ot f,. A determination of f, and f, follows in C.
As noted before, a difference between (2.14) and (2.15) is that x is a con-

tinuous parameter whereas [ ue for a renormalization trans-
formation.

Eor more than t
points) one has similarly to (2.14) for

has a fixed val

(which happens in special fixed
ular part the scaling relation:

(2.18)

wo relevant variables
the sing

fSiﬂg(lylul’ l}’zuz’ wae ly"un) = ldfsing(ul’ Ugyervo u )

our in the fixed point
ttraction, which is by
t. However, having
| values of the rele-
systems must
f systems with

Up till now we have only been discussing the behavi
and we must extend the conclusion to the domain of a

(2.1) thermodynamically equivalent tO the fixed poin
observed that the (possible) singularities occur for smal

vant scaling fields, we may already conclude that the cr?tical
f attraction as this is the collection ©

be found in the domain O
all relevant scaling fields uy = 42 ="~ u, =0
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B. Determination of the critical temperature

The domain of attraction or the surface of criticality is determ;

the relevant scaling fields equal to zero. Restricting ourse s o o g
subspace and assuming that there is only one relevan: eigenyzlye
corresponding scaling field u;, the equation for the syrr,.. ..
becomes with (1.32) icality

] it - ,
Vs, == ;‘PZ(Ka - K¥) + —2—35(’0"[‘”(“ — Kf)(Kg — K*) 4

| 7

For a given set of interaction parameters J — keTK, equation ¢ 19) 4
determines the critical temperature T(J). Writing K — 7/t T(nn

substituting in (2.19) the function T'(J) has to be such N

tillad
1 ] 1

If one approximates the surface of criticality by a plane which i +o.._. .

-

it in the fixed point, (2.19) reduces to the following equation for 717 -

Oy §
VL 11J

ksT(J) = ). 07 J./3 o7 K2,

This yields the critical temperature with the fixed point as reference point

Dalton and Wood ( 1969) have studied the variation of the critical

- T O e e
woAitiiadl ISINpe

ture 7(J) due to the admixture of nearest-neighbour interactions 1

the “pure” Ising system (1.7) as a reference point. In order to compar

i) { c
SOVULLIDAIV

(2.20a) with their data we first notice that (2.20a) yields for the pure Ising
system critical temperature T’

kyT. = @T_J TR*. (2206
B~ ¢ n.n.“ n.n QDI z

where the subscript n.n. stands for nearest neighbour. Then using (2.20b) in

(2.202) one obtains the equation for T(J) in the form of Dalton and Wood
(1969):

-~

TO=T{i+ ¥ e, 0] R

Z2¥n.n

C. Calculation of the free energy +

From the previous section it follows that from (2.1) alone, the free e0¢r=

cannot be determined in terms of g(u,, u,,...) since the singular part -
the homogeneous

: . : ua-

; €quation with g = 0. As in the theory of dlfferenufﬂ ﬁiw
tions one needs 4 boundary condition to specify the amplitude of the SO
of the inhomo

. 1o solution
: geneous equation which has to be added to a particular sol
of the inhomogeneous equation.

A point in the neighbourhood of the domain of attraction (see FI&

N shet (1975
f Nauenberg and Nienhuis (1974b) Nightingale 't Hoo Nelson and F
and L and 't Hooft (1975), Ne

van Leeuwen (1975a),

2

P
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of a non-trivial fixed point first moves, upon repeated application of the
renormalization transformation. along the domain of attraction towards
the fixed point. If it originally was not exactly in the domain of attraction,
it bends away from the fixed point. usually towards another fixed point
with a higher dimensional domain of attraction. For the ferromagnetic
fixed point in the even subspace a point outside the domain of attraction
moves either to a region with very large interaction parameters (i.e. T = 0)
or to a region with very small interaction parameters (i.e. T = ). Both
limiting situations can be considered as fixed points. The behaviour of the
free energy in the neighbourhood of these (trivial) fixed points determines the
singular behaviour in the neighbourhood of the domain of attraction of the
original fixed point. It is of course possible that there are several fixed points,
each having its own domain of attraction. which leads to a more compli-
cated picture.

Let us illustrate the general procedure by taking the following one-
dimensional example. Consider the subspace of one relevant (even) scaling
field u, setting all other u, = uy = ... = 0. Then (2.1) simplifies to

flw) = gw) + I"FAw) (2.21)

(dropping the index 1 of u,). Iterating (2.21) n times yields
n—1
flu) =Y 170 + 17 (2") (2.22)
j=0

Now we take as boundary condition that we may let n — 0 in (2.22) and
drop the term /~™f(+"u) in that limit:

lim [~™f (") = 0, (2.23)
Whether this is permitted or not must be verified in specific cases. The idea
behind this boundary condition is that the free energy behaves sufficiently

well for large values of the scaling fields (T =0 or T = o0), in the sense that
it does not compensate the power /~™. Thus we take for f the expression

fw) = 3 1 4g() (2.2
j=0

_ Without detailed calculation this expression already suggests that u = 0
Is a possible singular point. For u > 0, f(u) is determined by the values of
gforu >0, and f for u < 0 is determined by g for u < 0. If there 1s no sym-
metry relation between g for u > 0 and u < 0, two different functions f may
result for ¥ > 0 and u < O respectively, which join continuously at the value

£O) = 3 177g(0) = gO/1 — 179, (2.25)
j=0
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We shall define the scaling field w in such a way that y
temperatures below the critical temperature,

We shall now first co_nstruct l‘hc' !‘cgulur part f (1) (,1- £, Singe i
is a regular function it will, by definition, have a power serics o

- () ('nl’l'(‘:—;pnll(lx lo

SPansion
gw) = 3. gy 2.26)
Inserting this into (2.24) and substituting for f(u) yiclds
Frt) = 3, St (2.27)
) n=(

One finds the coefficients f, as
fn = C]"/(l - l"d/{n). (-) “z

We see that the case 4" = [ must be discussed separately as will be done at the
end of this section. J1eg 18 @ particular solution of (2.21) characterized by the
fact that it is regular at the origin. From (2.28) ‘we see that the radius of
convergence of f is larger by a factor 4 than that of g.

Returning to the expression (2.24) we shall denote by n, the first power for
which 2" > I and write

ng— 1

gu) = Y gu" + g, (u) (2.29)
n=0

(where the subscript “rem” stands for remainder). We note that for an irrele-
vant scaling field (A < 1), 2* will never exceed I, such that n, = o and
9rem(t) Will disappear. Inserting (2.29) into (2.24) one observes that for the
first n, powers the summation over J converges and using (2.28) one finds

no— 1 00 -
S) = QZ VAT ) (2.30)
n=0 j=0
For the remainder we write
« o0 -1 P
z l‘jdg lju = —Jd Jny -jd ijll) (2\1)
j=0 rem( ) j’-"z—oo l grem(’1 U) z 1 grcm(

ji==w

" 3 ‘ "S
The part that js added and subtracted can be evaluated by a power s

expansion of Grem(tt)

» . 2.32)
o g A = P |
Collectj ; e 4
ollecting (2.30), (2.31) and (2.32) together one arrives at 2.34)
( o>

f(U) = frog(u) + fslnu(u)
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with f;, () given as

L) = Z:, [~itg (Au) (2.34)

ing\

Of course f;, () fulfils the condition of homogeneity
fsing(;iu) = [({fsing(a) (?35)

2.21). Equation (2.34) is an explicit solution of
only the remainder of g appears in (2.34),
d not be extended to j = —oo and that in

turn is necessary to fulfil (2.35). On the upper side j = oo the convergence is
determined by the behaviour of g(u) for large u, since the subtracted terms
do not influence the convergence. This again has to be checked in every
specific case. If the convergence at the upperside j = 0 would become
questionable it should be taken as a signal that the boundary condition in
(2.23) has to be reconsidered.

Having obtained an explicit expression for fing

discuss the question whether [ indeed behaves as
the value of the amplitude A. We define an amplitude A(u) as

since [, (1) 1s a solution of (
(2.35). It should be noted that
otherwise the summation coul

we are in a position to
Alu[ and to determine

Alu) = |u|-d/>'j=\;w 1=ig  (Mu). (2.36)

on A(Au) = A(u). Thus A(u) tal_ces
ments ...A %t 2~ Y, u, Ay A%, - of Whlch
is a limit point. This, however, is not sufficient

ly on the sign of u), since
g 4. Thus we

A(u) then automatically satisfies the relati

on equal values In all argu
sequence u = 0 (the fixed point)
to guarantee that A(u) is a constant (depending on :
(2.36) allows for a periodic function in log|u| with period 10

write
Au) = i A% exp[2min log |u]/log ]
n=—
o i A:t |u|27u'n/log A. (237)
tinguish the functions A(u) for u 2 0.

to dis
roduced to 2.36) a5

ts are obtained from

|- i l'f"grem(/lju)}l
J

The signs + are int

The fourier coefficien
- | — 2nin/log A (2~38)

1 log 4
: = dlogu{lu

logj. 0 = — 00
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Changing to the variable ¢ = Au| in the jth term, the summatio,

. . . ‘\\\'L\r 8
leads to a sum over intervals in ¢ which spans the range [0, 0] ]
e [f5 dt (- t)t=2%on
fiy = > EahT FremtL Tkt T
" “logd), O+ Jrem (239)

The result (2.37) with A* given by (2.39) is somewhat disconcert
since it does not follow from other renormalization procedures. Howey
it is unlikely that the oscillatory terms (n # 0) will actually exist, because they
imply that the free energy has an oscillation in log |u| of period log /., super-
imposed on the power |u|*”. But A contains the scaling length | which cap
be changed by choosing a different renormalization transformation. I
fact, if two renormalization transformations exist with asymptotic, ie, for
u— 0, equivalent scaling fields and incommensurate log/, and log,
such oscillating terms cannot exist.t But if we stick to one particular renor-
malization transformation, as we shall do in this paper, we can only hope that
the A= for n # 0 are found to be zero from (2.39). Actual calculations so
far have always led to no noticeable A for n # 0.

So we assume that only A7 exists with the result that

Ing
€T,

TN 2R S
SIS = +1) = A%, 2.40)
(u) 0 log ;‘ J‘O t(l + d/y) grcm( —_ ) (
Thus the resulting Jingtt) TEQdS, With (2.34), (2.36), and (2.40),
T =A={ul>  uz0. (2.41)

The general situation, with more than one scaling field present, can be
treated quite similarly. With the same boundary condition
lim I=™f(A%u,, Au,,..) = O (242)

n—+w

the solution of (2.1) is given by
Syt = 3 1 gy, A ) 24)

Again g is split into two parts: one part containing the power combinations
for which (2.43) converges and a remainder. The first part leads to @ prce
of the regular part of the free energy f egltiys Ui, ) Which is construc
from the power series of g(u,, W)

N It 2 (2.4‘4)
G Uy )= Y Gay M UT
ny, na,...=0
- 245)
as freg(u1) uz, . .) = Z fnl,nz, N .uilu;2 e (

ny,n2,...=Q

1 This argument is due to D. R. Nelson (private communication). The possib
oscillatory terms was noted by Nauenberg (1975b).

le eXlStence Of
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with f,, ,, . given by
Suin. = Gupm, S = 179252 (2.46)

In the second part of the summation over j = —oo to —1 is added and sub-
tracted and evaluating this sum through power series expansion one re-
covers the second piece of f, .. So again one finds f as

flugsthyy o) = fregltys Ugs oo ) + fingltti- g, - ) (2.47)

r[?g~
with fy;,, given by
Sainglystigsec) = [ (Au,, Mu,,...) (2.48)
_]: =)

eing fulfils the homogeneity property.

An interesting aspect of more than one scaling field is the interplay of the

relevant variables and the réle of the irrelevant variables. If we take u,
as a relevant variable and write u, = v,|u, 7%, uy = vsu, [+ etc., then

Uy = lu, | = Y. l"j"grem(l{ul,)fzvzfulfyz”",...) (2.49)

j=-o

A (vy, 05, .-

has the property that A;(vy, V3, - s Auy) = Ag(vg 03015 u,), as before im-
plying that A4, is periodic in log |u, | with period log 4,. We shall again assume
that the oscillatory terms vanish and that A, is completely determined by
its zeroth fourier component, which reads in analogy with (2.40)

©
: J‘ —L grem( t+i, Uztn/yl’ 03ty3/yl’ o ) (250)

- (1+d/5)
log 4, t

Thus we obtain for f,, the expression
L) = Jug [ AT (o o, ugfJug )

Af (v, 055+ 2)
0

j;ing (ula Uy, Uy, - (251)
ation of (2.12). We now point out a difference between the

relevant and irrelevant variables. SUppose that u, is another rellevar}llt varlabiie
and u,, etc. irrelevant variables. Then ys = 0....and for small u, the second,

third etc. argument become small. To leading order we have

L) = |uy I"/”‘Ai‘(uz/lu1 [21,0,0...)

This is a generaliz

(2.52)

lead
smet g U, Uss -
of the irrelevant vari-

s independent :
er a universal

n we have to leading ord i
bles. Eqn (2.52) shows that (2.12) 18
1ds for the whole domain of attrac-

urface of criticality.

showing that the most singular part i
ables. So around the domain of attractio
singular behaviour in the relevant varia
not only restricted for the fixed point but holds
tion, which is therefore correctly identified with the s
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For the next order we obtain (due to the u;-dependence)

Nt
CAT b
ne @=yaiya | L ( y2/y1 \
next — u,/\u sVUay.. ) |
; ning(ul’u2au3"") u3|u1| [ 81)3 2/| ll g & ) j“,.m
and similar expressions for the corrections to scaling (Wegner, 1979,

lact A1,
ICSU (Cilieres

the other variables. The largest y, (<0) yields the smal
power of |u, | with respect to the leading power.
For the relevant variable u, we have to keep the whole ¢

1,
1€

-pendence of
A, on v,, since u,/|u, "*** may be small or large depending on i

ine values of
u, and u,. A has been given a subscript 1 simply because u . has been singled
out as a relevant variable. Choosing u, as a relevant variable would haye led
to different expressions (of the second type of (2.13)) where the réles of U,
and u, would have been interchanged.

Finally we have to consider the case, as mentioned before, that a power
A" is equal to I, or more generally that a combination APA%2 ... = . Now
one can follow two different procdures: either treat the “dangerous” power
combination separately from the start or take the limit in the final formulae
as obtained by treating (one of) the eigenvalue(s) as a continuous parameter.

In either case the result is the appearance of a logarithmic term. As the deri-

vation closely parallels the one already given, we shall present here only
the result.

Define f, (u;,u,,...) as before with the exception that for the coefficient

Jus,my, ... Of the “dangerous” power for which A%'A% .. = [ not the relation
(2.46) is used but instead

Sovr . =30y (2.54)

Now g, (u,, U,,...)is defined as g(u, u,,...) minus the

“dangerous” power
and the summable powers. The amplitude A5 (

Uy, V,,...) is defined as

1 . y2/y1
Af . Jrem( T, 0,827 )
1 (1)2, 1)3, & % .) log Al[j‘o dt t(l .

" j " e el EL 0P ) g (g e s
i ¢ (L +d]yp)

Then the singular part of the free energy reads:

Singtis g, . ) = Ju, v 4 Fluy/|u, P )

e gnla na, ...

(2.56)
log 4,

Wi .. log |u,|

; d the
i—lere ?f course ny,n,... is the combination for which A1'A% ... = I ..F(zfz 56)
-as¢ ol a single relevant variable, u, = Uy = ... =0, the first term 10 r.tO
1§ a regular power of 4 1 Since then d/y is an integer and the singular pa
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the free energy is a pure logarithmic term. As with most logarithmic termes, its
coefficient 1s simply given by the coefficient of the “dangerous” power in
gl tgs - - Whereas in general the coefficient of the singular power |u, [*7*
is different for u; > 0 and u, < O respectively (i.e. below and above T),
the coefficient of the logarithmic term is equal, as was already noted by
Wwidom (1965a, b).

D. The spontaneous magnetization

So far only critical singularities have been discussed. However, in a ferro-
magnetic phase transition the critical point is also the onset of the appearance
of a spontaneous magnetization for lower temperatures. In terms of the
free energy the problem is to understand from (1.16) why, for zero magnetic
field H, the derivative ¢f/CH (magnetization) vanishes for T > T and has a
non-zero value for T < T. In order to discuss this phenomenon we have to
restrict ourselves to a ferromagnetic phase transition. How a ferromagnetic
phase transition manifests itself in the context of the renormalization theory
has yet to be explained. To simplify the discussion we restrict ourselves to a
renormalization transformation where the weights P(s', s) are either 1 or 0,
such that a well-defined class of allowed site spin configurations belongs to
every cell spin configuration.

We will sketch here, without proof, the picture that emerges from the
example to be treated in Section V. Consider a fixed point in the even sub-
space and a neighbouring point in the direction of the relevant (even) eigen-
vector. We take the direction of the eigenvector such that it points to systems
with larger K_ (i.. in the direction of lower temperatures). If the neighbouring
point is repeatedly transformed the K, will grow indefinitely to arbitrarily
large values. On the other hand, a point close to the fixed point but in the
direction opposite to the relevant eigenvector will decrease to vanishing
values of K. In the latter case the point approaches the trivial fixed point
K =0 (oo temperature). We shall argue that in the low-temperature limit
also a new fixed point is approached, which has, however, the somewhat
awkward position K = oo or at least a position with some of the K, = 0.

The oo-temperature properties of the matrix ¢K/,/¢K, are casily obtained
by the cumulant expansion given in the next Section. It suftices here to state
that all the eigenvalues stay below I. The T = 0 limit is more difficult to
discuss. The key idea is that for the transformation (1.11) in the limit K, — o0
8”" (or a finite number) of the configurations {s} starts to contribute
dg;l;nam]y' In appen'dix Bit will be shown that excitations with respect go this
ens nant configuration contribute only to order exp(—A) where A is the

T8y of the excitation. The dominant state {5} = {§(s")} does depend

on the cell state {s'}. In fact it is the state which maximizes P(s’, s) exp # (3)
as function of {s}

.
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For the triangular lattice transformation (1.18) it is possible o suﬁ\xi:rmiiitc
this idea by examples. We denote by {s, } the site spin configuration wigp all
spins s; = | and by {s_} the configuration with all 5 = — 1. When aJ| the

i . § ;
K, =0 (for even and odd o) the state {s,} maximizes H(s). For the ¢
% 2 : -1 jo i@ v

spin configuration {s', } the site spin configuration {5} is allowed and thus

By ={s ), K, >0 (2.57)
When {s'} differs from {s',} in one cell. i' with s}, = — L, we must find {§(y))
between the site spin configurations with at least two site spins do
cell i'. Without the relative strengths of the K, known, one does not know
whether #(s) possibly increases by turning some more spins, but when the
magnetic field is sufficiently strong one should keep the number of down
spins to a minimum and the 3 states with only two spins down maximize

A (s) for that {s'}. For the case where all even K, = 0and odd K, < 0 one has

wn in the

K,>
K, <

)= 5]

0 oeven 259
0 oodd

and similar considerations for {s'} differing from {s
Neglecting the excitations and using that P
reduces for low temperatures to

" }in a few cells.
(s, 3(s")) = 1, the transformation

G+ H'(s) = H(5(5")) + log n(s') (2.59)

where n(s") is the degeneracy of the maximizing state §(s'). For sufficiently low
temperature the logn(s') term becomes negligible with respect to the large

energy term . Under the circumstances given in (2.57), viz. (2.58), # )
will also be maximal for {s', } viz. {s"_ § showing that these absolute maximum
states {s,} (ground stateg

) are invariant under the transformation. The sub-
space with the odd K, = 0 separates the two domains where {s } and {s-)
are the groundstates. In the even subspace # (s, ) and #(s_) are equal.

Now we apply the low-temperature limit also to (2.4) in the same sense as
(2.59), by only takin

) g the dominant state(s) into account in the average
(% Then (2.4) becomes for T -, ¢

a'e

S Z( 2 89')(‘3K;r/al<a) =[] Y s e
" & deg aca
where £, js ¢

he sum ove
(2:60) for s

- ider
, r the degenerate maximizing states §(s'). We cons
+} and write

2.61)
a;z (S:t)“ = Xa:th' (
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’ . . . o ¢ \
Jere [} ; W 3 ¥ & y & A . ‘
Here x,5 is the number of intevactions of type o per site in state s, . One
has c.g.
.- l it :
7 N o - single site
" | " 74 7 YO TN “ . < ¢
%y z/2 o = nearesl neighbours, z coordination number.
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is an eigenvector with eigenvalue [*. The eigenvector
he odd directions, since z, = %, for the even o.
nportant result. Going from a fixed point

showing that x,” — X,
has components only in

Equation (2.63) constitutes an i
K* along an el gendirection in the even subspace to a low-temperature regime

where K, = 0,(2.63) applies and one moves towardsa T = 0 fixed point having
an eigenvalue [ The eigenvalue clearly arises out of competition of the two
ferromagnetic states {5 and {s_}. A fixed point with these properties will
be associated with a ferromagnetic phase (ransition. As we shall argue 1n the
discussion, the transformation (1.18) 1s implicitly designed to focus attention
on the ferromagnetic phase transition and so are most other proposed

renormalization transformations.

With this preparation we now return to the problem of the spontaneous
magnetization. Let K be a point in the even subspace and K, an odd inter-
action constant. Differentiation of ( 1.16) with respect 10 K, yields

YK) _ - ofK) 0Ky (q 0dd)
oK, 2 0K, 0K,
¢ that dg/oK, vanishes

(2.64)

for a odd. [terating (2.64) n

vyhcrc we use again the fac
times leads to
K" 0Ky (qodd) (269
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i o) the jth
The derivative oKU*+!YoKY) must be evaluated al the

times transform ofufﬁ'o initi’al point K. -

ti
Now first take K in the neighbour oqd of th? ﬂxcc‘i 501:28 b on Arguc
(or opposite to) the relevant (even) cigenvector
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An infinitesimal perturbation oK, (o odd) removes the degene

acy (=2 for
i ferromagnet ! all up or down) and adds an amount

of = x.!|6K,|.
S0 we conelude that for K~ o
J(K)/OK, = A ’)(,,,I == Xr,' (o odd) (2.67)
and we obtain for (2.59)

Since ' becomes an cigenvalue for J =» o0 the infinite product will have a
liniting value,

The result (2,68) i not limited to a specific path from the fixed point to
K ~ o bul doey ecqually well apply to points on the same temperature side
ol the critical surface, When only one even relevant eigenvalue is present
points on the low-temperature side of the critical surface move towards the
path along the releyvant eigenvector (“gully bottom” in Wilson’s (1971a, o
terminology). Similarly we find no spontancous magnetization on the high-
lemperature side of the critical surface. :

W‘v point out that the expression (2.68) relates the derivatives to those ol
(267) at a more attractive fixed point. In this case the derivatives at K = :r
cnu!d h}: determined directly, but in general one should also use _thc .ren‘OLf‘_
malization theory (o determine the derivatives in terms of the derivatve
GYen more attractive fixed points, etc,
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arbitrariness of the weight functi N e
ght function P(s, s) does not permit us

because the
arguments, as we shall show below

to follow the usual
The standard correlation function g(r) is defined as
gir; — K'_;) = (88,7 (3.1)

where 1; — T; 1s_the relatnje position vector between sites i and j, which is
ts of the site lattice spacing. For simplicity we restrict our-

measured in uni
selves to even hamiltonians such that g(r) decays to zero for large separations
We intend to establish a connection between g(r) and the corresponding

quantity g'(r) for the cell system. g'(r’) is defined as
g(r" - r}/) = <S;/S;-,>/

1

(3.2)

relative position between the cells i and j measured
in units of the cell lattice spacing. The primes on g'(r) and { )" are to remind
us that the quantities refer to the renormalized hamiltonian #(s").

It is not possible to derive directly a connection between the g and g’ as
was done for the free energies, unless P(s, s) has special additional properties.
To see this we form ¢’ according to the prescription (3.2) and use the renor-

malization transformation (1.11)

b — 1) = Y s, exp [G + AT exp G+ F )=
{s'} {s")

where r;, — T, IVeS the

g
=Y ) sy P(s, s) exp A (s)/Y. exp A (3) (3.3)
) 15 &
such that |
g, — 1) = Y, S:.,S},<P(S', $)>. (3.4)

1
Without further specification of P(s', s) the relation (3.4}) is of little use. F ora
special class of P(s', s), sometimes misleadingly called linear rransformations,
(3.4) is an interesting relation. We <hall discuss this in part A. In B we rett}rﬁ
to the more general problem and give a simplified treatment qf g(tf). whic

brings out the most essential features. The complete discussion 15 rat? =
involved and is outlined in C. In the last part, D, we return (o relatlo‘n‘(.oAz
and present an interesting connection between eigenvectors and eriticd

exponents which is due to Kadanofl and Houghton (1975)-
A. Linear wei '

ght-factors P(s’, s)T ' ﬁ . b
In practically all applications the weight-factor P(s’,s)1sapr :SU“ of weig
factors associated with the cells. Then P(s, s) can be written

¢ ool §2
Pis,s) = 1200 + . p(8i S+ ))-

i
ght-factors is discuss

(3.5)

ed by Bell and Wilson (1974)

tT : ) , .
he relation of linear versus non-linear Wel
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Note that P(s', 5) fulfils condition (1.10b). In order thyy (l.l(;;,) ? fulfy
! J {;

iy |p| should not exceed | for any combinatioy of ity ,
If p(s),...)is a linear function of the spins of cell ', we eyl P(
weight-factor (rather than calling the transformatioy, based .

3 v 1 » 2 Q1 s '»Ii ()n IJ{', ,“r
lincar transformation). Let us consider the simplest line,, wei i

q th(;
W,Ul’n(;m,‘

2 . | 2
p(Slll, bl:, .. .) T (‘Sl’ + bll +

C)p ,
, . 36
where p is as yet an arbitrary constant. Inserting (3.6) and (3 5)in (34
. iq ) . . })’ ‘
first performing the summation over {s'}, one selects oy (o the ) and

the cells precisely the factors corresponding to cell /

product OVer
cell factors yield 1). So one finds

and j (a]] the Other

g = 1)) = Pt + )6 4

se )/
The interesting property of (3.6) is that g'(r') is related to 9(r) for differe;
distances r formed by taking a site in cell i and one in o] '

. . ], A]thf)ugh ifi
general complicated, (3.7) becomes simple when the distance between the

cells i" and j' is large with respect to the difference in position insid

(37,

e the cells

Then
r =l = r =t =l|r, — 1| 38)
for all choices s and ¢ out of cells 7 and J'- Thus (3.7) becomes asymptotically
g'(r'y =~ p**g(lr') (39)

(ignoring the possible an gular dependence of g(r)).
This equation is very similar in structure to the general homogeneous

cquation for the free energy (2.35). Let us make the notation more explict

by considering the dependence on thermodynamic variables through 2
(relevant) scaling field ur. Then (3.9) may be written as

- 3100
g(uT, T') = l"d+2"ﬂg(u{r, r’) — l_“z""g(l”TuT,l lr) |
where we have put tentatively:

(3.113
p2 — l—d-2+n’

Using the property (2.13

e
) for generalized homogeneous functi®
for g(u,, r)

t}.!:’
Yup, r)y = r~ @240 A(y r’") o

o field for "™
that 1/r has the status of a scaling g: i where "
y one writes the correlation function as a funwogcﬁnins v
correlation length, (3.1 ) can be cast in that form by e

G m Ur Wt o gmr

(one should realize
Usual]

the
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This relation implies I,!j'fj?‘ the gorr?i;mon length < depends asymptotically
on the temperature dz}'::r:mm : mth the exponent v = [/y,. The relation
(3.11) is, however. curous. bf:&.‘:'.,a;xc it relates the physical exponent n o a
seemingly arbitrary mathematical parameter p of the transformation (3.6).
It would be better to reverse ait:-;az-_:umcnt and see relation (3.11) as a restric-
tion on the choice of a meaningful p. Linear weights, more general than (3.6),
lead to the same problem, to which we shall return in the discussiont.

For non-linear weight-factors e.g. (1.18) for the triangular lattice, the
spin pair correlation fur?cimn IS, h}‘ (3.4), gwuplcd to higher-order corre-
Jation functions (triplet-singlet and triplet-triplet correlation functions in the
case of (1.18), as we shall show in D).

B. Simplified treatment of g(r)

The discussion of the correlation functions will be undertaken by considering
them as derivatives of the free encrgy. Suppose we add a perturbation to the
Hamiltonian #(s) of the type

dH(s) = ) O0H s, (3.14)

which is a spatially dependent magnetic field H, at site i. 6.# will lead to a
change in the free energy oF

P = N exp [ A(s) + 0A(s)]. (3.15)

(s}

Differentiating (3.15) with respect to dH, and 6H, and setting 6H(s) = 0
afterwards, yields the correlation function

G(r, — 1) = 8*F/SHSH, = (55, — {5045 (3.16)
Now we apply the renormalization transformation (1.11) to AH(s) + 6H(s)
XP[G + H#'(s) + 6C + sH(s)] = §P(s’, s)exp[#(s) + 6A(s)]  (3.17)
and make the simplifying assumption that 6#'(s') is given by
OH'(s) = Y OH,s, (3.18)
i

t;. that only new (spatially dependent) magnetic fields §H), are generated for
€ cells by §.#(s).

T “a
(wﬁ‘fh Cf,’"f‘““ (1.10a) is violated by (3.11) since (1.10a) requires | p| < /™% while forn > 2 — d
olds for d > 1) (3.11) implies |p| > I
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For the excess free energy 6F we have corresponding to (| 13y

OF = 6C + OF'. 319,
By (3.18) 6F' is a function of the 0H;, such that we have for (3 1,
G@r, —r) = Clr, — 1) + ;;G’(r;, — V) (6HJOH ) (6H' [611 )
+ ;(6F’/5Hj.,)((32II;,/(SH,,()!/I; (3.20)
with C(r; — r)) defined by
Cr, — 1)) = 6*C/6H 0H . (3.21)
The derivative matrix
Ty = oH;[oH, (322
follows by differentiating (3.17) with respect to 6H, and use of (3.1%)
6C[6H; + 3 8; Ty = <3y, (3.23)

where ) is defined in (2.5).
Differentiating once more yields

Clr —x) + LS8 HSHSH, = (s = Cs)uC5), B2

For further simplification we may restrict ourselves to an even # (s). Then tl:}e
averages { ) on the right-hand side of (3.23) and (3.24) are odd and even In

s’ respectively and thus 6C/6H, and 6*H'/6H 6H ; vanish in that case. 50
(3.20) may be written as

G — 1) =Clr, —r) + ¥ ¥ G}, — ¥))T,, T} (3.23
i’ J

This is the desired transformation law for the correlation function which 5
the analogue of the free energy transformation (1.16). By choosing the sy
bols G and C we want to stress also the analogy with the Ornstein—Zernike
relation, where the correlation function G is expressed in terms of the sup-
posedly short-range direct correlation C. Here we shall also assume
Clr) is short-ranged, which is a natural extension of the regularity assv™?

. . . : )‘
tion for g(K) entering in the free energy equation. By summing (3.24) O

and using the derivative of (2.4) with respect to the magnetic field 00

the following relation between C and g.

» ibution G *°
ymbol G for the correlation function and the “empty set °°°m$;co F
ch we hope will not lead to confusion. However, we have denot
'8y G by Cin (3.17) and (3.19) to avoid misunderstanding.

the free energy, whj
part of the free ene
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yCr— 1) = - [<Z 5 Zsi> — {2 > <Z -*'.,-> ] = 0g7/cH? (3.26)
: NINT T /s N7 /s\T /s

J

(ignoring in both (3.24) and (2.4) higher-order terms in s').

In fact one should run the argument backwards and base the regularity of g
on the short-rangedness of C(x). The right-hand side of (3.24) may be con-
sidered as the correlation function for a given cell configuration s’ as con-
straint. Essentially one supposes that the constrained correlation function is
short-range. The degrees of freedom left over in the partial average do not
include the long-wavelength fluctuations which are responsible for the
long-range correlations (and the thermodynamical singularities). These
come about by the summation over the cell configurations, which amongst
others describe the long-wavelength fluctuations. So the restricted averages
on the right-hand side of (3.24) do not lead to long-range behaviour and
associated thermodynamic singularities.

The analysis of (3.25) is, as for the Ornstein—Zernike equation, relatively
simple, due to the translational invariance of T,. We define the fourier

transform T'(k) of T, as
Tk) =5 T, expik-(r, — 1) (3.27)
where both r, and r,, being the positions of cell i’ and site i, are measured in

units of the site lattice spacing. We note that T(0) in the approximation

(3.18) (or (3.23)) has the meaning of the magnetic eigenvalue 4, when worked
out at the fixed point :

THO) = Ay = P=, (3.28)
Now multiplying (3.25) with exp ik (r; — r;) and summing over i and j

yields - - - ~
NGKk) = NCk) + N'T(-k)T(k)G'(k'). (3.29)

- The argument k’ of G follows by rewriting the position vectors r, and r;. in

‘;:erms of the positions r, and r’, which are measured in the cell lattice spacing.
Or some renormalization transformations we have a simple scale factor

_ r !
r, —r; =l r) (3.30)

i

:1‘;:) there are cases (as in the triangular exam.ple) where thf: cell systen} s
is of i’ﬁﬁltffd over an angle with respect to the site system. This complication
With th'e Importance because in all e)famples we know of, one can do away
S0 we 1S rotation by considering higher powers of the: transformation.

restrict the discussion to case (3.30) which implies k' = kl. Thus

(3.2

-29) becomes

Gk) = Ck) + I"*T(—k)T &G (k). (3.31)
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The form (3.31) is almost the same in mathematical nature ag .
formation law (1.16) for the free energy. The wave vector i o '?fﬂa\; © lrang.
of an additional scaling field with exponent y = 1. The differe. f“k role
is that the k-dependent combination I™¢T(—k)T'(k) replaces ah:-l‘;(‘:;(m (L.1g)
This complication will be removed in a way that prepares fo; (1. ‘OT I~
discussion of the next section. Define the regular function W(k) 1 - SElerg]

recurrence relation

Py (kl) = T(k)(k)

with boundary condition y*{@) = 1. In order to explain (3.3
this relation at the fixed point

Pry*(kl) = T*(k)y*(k).

By power series expansion in k the y*(k) may be found for small k and thep
recursively for larger k by direct application of (3.32a) as in the case of
scaling fields. Near the fixed point and for small k one may obtain y(k)
from (3.32) by simultaneous power series expansion in k and the scaling

fields. Through application of (3.32) the functions (k) may be obtained
further out.

Now multiply (3.31) by y(—Kk)y(k) and with (3.32) one obtains
1K) = (k) + 74" 2= (k) (3.33)
with the definitions
k) = GRW(K)y(—k),
(k) = CRW(K)y(—k).

The analogy with (1.16) is now complete and we may use the analysis f’f
Section IIB for the discussion of the small k behaviour. We shall do this in
the next section for the more general case. It suffices here to point out that
the singular part of G(k) behaves at the fixed point as

Gk) ~ 70) ~ |kt~ e
which implies for # (see (3. 12)) the scaling relation
(3.36)
n=d+2 -2y,
This is a hyperscaling law equivalent to the relation
«.37)
6=(+2—nfd—2+n) -

due to Fisher (1969).
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C. General discussion of the correlation functions
ifor & generalization of the previous discussion, which hinged on the sim-
lifications (3.18) and (3.25), we have to generalize the idea of scaling to
atially dependent interactions. Once this has been achieved the treatment

sp

follows rather closely the lines of the simplified version IIB.
Instead of considering the special magnetic perturbation (3.14) we employ

the general expression

SH(s) = ), 0K,s,. (3.38)
ation of the excess free energy 6F with respect to 6K, and 0K,

— 0 afterwards) we obtain the general correlation function

G, = 62F /0K 0K, = {5,5/) — (s, 08y (3.39)
the correlation func-

By differenti
(setting 6

By taking a and b equal to the sites i and j one recovers

tion G(r; — T;)-
n transformation (1.11) to # + S5H yields

Applying the renormalizatio
an excess 6C + 0.4 where 64" will now (instead of (3.18)) be represented by

the general expression
SH(s) = Y, 0 KiySir (3.40)
Again the excess free energy fulfils the relation (cf. (3.19))
6F = 6C + OF (3.41)
from which the following relation between the correlation functions can be
derived by differentiating with respect to 0K, and 0K,
G, = Cp + 33 Glpl6K, 0K, (OK/0Ky) + ;(5F’/5K;f) (0K, /0K 0Ky
" (3.42)
with the definition
Cop = 52C/0K 0K,y (3.43)
The other derivatives in (3.42) will be denoted by
T, = 0K, /0K, (3.44)
Tow= 62K;,/5K‘,5K,,
and follow from the constraint averages
(345

<Sa>s’ = 6C/6Ka + Z S;,T;,a
(S,,Sb>., - <s¢>l'<sb>l’ = Cup + ;:sa'n’.ab'
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T., is a generalization of T, and yields

T, upon summation over
follows from (2.4)

Z = Lo (3.46)
where o' is the class to which @’ belongs. In contrast to the previous dis
we may not drop T, ,. We shall incorporate the additional term iy _,'42)
involving T,, ,, by taking suitable combinations of the 0K as new o orq;.
nates (scaling fields) for which the second derivatives vanish. 1. fiew
coordinates u,(k) depend on a wavenumber k and an index i giving the 1 yi% of

combination similarly to the index of the scaling fields. We will require thay
u,(K) transform as:

a, as

IOH

ou(kl) = [*ouk) (3.47)

where y, is the same as the exponent of the scaling field u, defined earlier
For the formation of the du, (k) we consider first the fourier transforms+

K (k)= N"*Y 6K, expik-r,,
aca (3.48)
=Y 6K (k) exp —ik-r,
k

where r_ is the position of set a on the site lattice and where the summation
over k runs through all wave vectors fitting the periodic boundary conditions

of the site lattice. Then we construct in analogy of (3.27) a k-dependent
matrix

Tap(k) =Y T,,expik-(r, — r;) (3.49)
bep

In view of (3.46) we have T, (ﬂ) Wlth (3.49) we derive the (first order)
transformation law for the fourler coeﬂiments 0K, as (see also appendix A)

SK/ (k) = (N')~! z 0K, expik'*r

a'ea

= (N)"! z Z {Z ﬁ(k)éKﬁ(k)} expi[k'-1, — k'r,]. (3.

a'ea

0)

N

In the sum over d/, it should be remembered that r/. measures the position
of set @ (of cells) in the cell system while r, gives the position of @ in the Site

system. So r,. = I/, and thus
(N~ Z expilk'r, — ker,] = 3, - (351

of X
;‘ In order not to complicate the notation we change in the following the |nterpf‘?““‘°::pc
rom being the class of all sets a which can be identified with each other by a symmetry
tion on the lattice to the class of sets g which can be identified by a translation.

S
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Therefore (3.50) reads
(kD = 3 T:s K)OK k). (3.52)

' egular functions oi( i
Now if we define a set of regular functions (k) through the relation

i’(],]}"v Z’ Y\ i i
'Z:, oL (kDT 4 (k) = P'oyk) (3.53)
then the combinations
su k) = ¥ oLk)6K (k) (3.54)

rmation law (3.47). Equation (3.53) is the generalization of

fulfil the transfo
eigenvectors. At the fixed point and for k =0,

(3.32) but now referring to left

(3.53) reduces to
Y 0T} = Po5(0) (3.55)

such that the values @.(0) can be chosen to be equal to the left eigenvectors
boundary condition the functions ¢.(k) may

¢} defined in (1.28). With this
be obtained for non-zero k and in the neighbourhood of the fixed point
of (3.53) in k and the scaling fields u;.

by making a power series expansion _
By repeated use of (3.53) one may solve for ¢i(k) for larger values of k and

further away from the fixed point. L
In order to change back and forth from the du.(k) to the 6K, (k) we need

also the right eigenvector version of (3.53)
S T (k)W (k) = PY(kD) (3.56)
B

which defines the functions y/’(k) starting from the V. (0) = v .,deﬁned as the
right eigenvectors of T . BY multiplying (3.56) on the left by ¢ (k) and sum-

ming over o we find with (3.53)
piy. olllop®) = P T oKDV (337

Since the ¢ and the ¥, can be chosen orthogonal a
(3.57) to k # 0 and awa

k = 0, this orthogonality propagates by
fixed point:

o 3.58)

Y @ik = i (

also carries over fro

¢ the fixed point for
y from the

m the fixed

The completeness of the ¢, and ¥, then

point and k = 0 to (3.59)
5 YKok = S |
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With (3.59) one can invert (3.54) to
SR (K) = ¥ Yi(K)ou (k).

{3([)}

The next step would be to extend (3.54) to second order i 5K in
to take the second-order derivatives in the last term in (349, it s rde;
) / ItV CCUUT]'{_

The extension should be such that (3.47) remains true 1o -,

functions ¥, (k) as

Zij(k) = 52f/6ui( —k)éuj(k)
and a short-range correlation function ¥, (k) (c = C/N)

?ij(k) = 52C/5ui(_k)5uj(k)
From (3.41) and (3.47) it follows that they are related as
Ti/K) = 5,K) + 174y (k) (3.63)

This is obviously a transformation law for correlation functions of the desired
form. Note that in deriving (3.63) we have used the fact that new and old
scaling coordinates are related linearly.

Now two points remain to be dealt with: the solution of %:;(K) in terms of
7:/K) (for which the machinery developed in section IIC can be used), and
the connection between %:; and G, on the one hand and %;; and Cg, on the
other hand. For the latter point we do need the second-order extension of
(3.54) and (3.60). In Appendix A the straightforward but rather involved
formulae are given. We present here the result.

Consider the fourier transforms of Gpand C,

Gaﬂ(k) = bz}g G expik:(r, — r,)

_ (3.64)
C,s(k) = bzﬁ C,expik:(r, — r,).

Then Gaﬁ(k) and 7, (k) are related through the formula .

(3.60

Gl) = T 0K oW, k) + ¥ (@f/K,) Y ¥ 0)i(—k K-

. . . s the
Here ¢ (k. k,) is a regular function defined in appendix (A-jz;dTﬁu;.m
singularities of Gaﬂ(k) in the k variable are completely contall therllJI‘O‘
The short-range part of the correlation function contains also sOm¢

o : m.
dynamic singularities through the appearance of &f/¢K, in the last ©&f
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The connection between 7.(k) and C,4(K) is given by

5 (k) = K (—Kwik) — 3 (29/eK) Y ¢l 0)p"
7:1K) ZﬂCa,,( Wil —kWpk) — 2 (0g/eK,) 3 @;0)9"(~k k) (3.66)

a,

The function o"(k, .k ) is regular and defined in appendix (A.10). So §

is indeed short-ranged and regular in the thermodynamic varia.ble; ° 7l
The line of calculation is now as follows. First co'mpute fora cert\a.in trans

on the regular functions @' (k), Uik), ¢.,k, —k) and <p“f(——rlc<ml;

om (3.45) and (3.64) the C, (k) such I]]:i,{ 7. (k) can be calculat’cd

3.63) by the methods of Section [1C yielcﬁng 7. (k), which givcs.

. Of this process we outline t};Je determination

ation functions.

formati
as well as fr

Then solve (
with (3.65) the desired G,,k)
of the long-range behaviour of the correl

At criticality the singular part in k of 7,,(k) is given by

(7K Lsing = AR K[, (3.67)

and the amplitude /i‘.j(l'() given by

A, %) = [log ]’ f L

s in Section IIC: subtract the powers
For the irrelevant eigenvalues y; < 0,
ingular parts and amplitudes exist.)

(3.68)

where the subscript “rem” is defined a
k from 7, (K) for which 1P < 147777 (
Iso a remainder and thus s

y; <0, now a
The behaviour (3.67) implies that the exponent 77;; for the correlation func-
tion J,; is given by (cf. (3.36))

(3.69)

'7,'_,'=d+2_yi'—yj'

The behaviour near criticality will be described by taking one Felevant
into account, which couples to the temperature difference

scaling field u,
with the critical point. Using expression (2.41) we have
(%t k)] sing = Iklmj—zf"fij(ﬁ; “T|k|_w) (3.70)
with the amplitude given by the integral
zij(li; UT) = [log l] =& J dt t 1-d+nt3s [7,'.,'(‘&; UTt”)]rem’ (371)
0
For the spatial behaviour (3.70) implies
" A, (8 rug””) (3.72)
Y0 = —a=z¥ms
Thus a correlation length ¢
| (3.73)

-1
E=ur /yT
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appears, with exponent v = 1/y, (cf. (3.13)), which is the i for 4|
Jation functions. Orre
For the correlation function G ,(r) the result (3.67) yiclds

beniticality
G,lr) =~ Z(/)L(I)y’,/i”(i‘)/r“’ 24y i
J ;,.//1,}

As we are interested in the dominant decay we could drop the dependen
in @.(k) in (3.65). For the same reason in the summation in (3 14) over :’;,jr},i
j one should take only the term with the lowest n, for which 11, ’/wzﬂif;j«;,,
in front does not vanish; e.g. for & and f§ both referring o singic . ‘ '(r
couples to the combination i,j both equal to the relevant (o) ”Hwn‘:fr,j({
mode H.

The case where o and f# both refer to nearest-neighbour pair (ihe cnergy
energy correlation function for the Ising model) couples 1o i, j both cquyl 1
the relevant (even) temperature mode 7.

5
L

D. Connection between exponents and eigenvectors

After having analysed the general behaviour of the correlation function we

come back to the relation (3.4) for the correlation function which we generalize
to:

Guplty — ;) = ) 8, .8 KPS, 5)). (3.75)
{s’}

Rather than trying to present general formulae for arbitrary P(s,s) we
illustrate the content of (3.75) for the triangular (non-linear) weight-factor
(1.18)). First we study the case of the pair correlation function where 2 and f
both stand for “single site”. Then the sum over (3.75) selects out of the p.roducl
for P(s', 5) the factors referring to cells i’ and j'. Instead of (3.7) we obtain

gty — 1) = 3(s} + 52 + 53 — sks2s3) (S}, + st + b;’ — s}sf.s?))- (3.76)
Now there appear on the right-hand side singlet-singlet, singlet-triplet and
triplet—triplet correlation functions. Writing o = s for a single site and ¢ =1

for a triplet and using (3.74) for the asymptotic behaviour we obtain at the
fixed point

v Sy _ 1y B9 = )B4 — ¢4, (377
5 r'd-2+"‘f 4i,j (lrl)d—z‘f-mj h
. _ <t the
The leading terms on both sides have to be equal. For the odd # = nbxs [with
slowest decay comes from the magnetic (odd) eigenvalue yy. SO the ter

i =j = H must be equal on both sides in (3.77), which is the cas¢ of

Hongh = 394 1M
where we used (3.69) for ,, = d + 2 — 2yy.

(3.78)
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Equation (3.78) 1s a direct‘conmction between the exponent y,, and the
components @ of the (left) eigenvector. It replaces the relation (3.11) which
was derived for the linear weight- factor(3.6). The numbers 3 and  occurring
at the right-hand side of (3.78) are typical for the triangular weight-factor
(1.18). Since (3.77) includes only the dominant decay for each mode, we may
not draw further conclusions for the other modes in (3.77). Kadanoff and
Houghton (1975) have used a relation equivalent to (3.78) to optimize a
free parameter in their renormalization transformation. (See Section V.B.3).

Relations like (3.78) can be derived for other choices of « and f in (3.75),
but the equation soon becomes of hittle practical value. By taking o and f3
to be a pair of neighbouring cells (x = f = p) one can derive a relation
between the even relevant exponent y, and the corresponding eigenvector

ol of the type
1T =3 w gl (3.79)

a

where the w, are numbers involving nearest-neighbour pairs (¢ = p), other
more distant pairs, quartets and a sextet of sites (e.g. w, = 2).

IV. Computational Methods

The crux of the renormalization transformation (1.22) is to evaluate the
functions K'(K) to a sufficient accuracy, such that reliable conclusions can
be drawn from them. To that purpose the summation over the site spin
configurations {s} in (1.11) has to be carried out. #(s) is in general more
complicated than e.g. a “pure” Ising Hamiltonian. Moreover the summation
over {s} is constrained by the weight-factor P(s’, s), so its exact evaluation is,
except for a few cases, hardly feasible. Also, it is not the purpose of the
renormalization theory to add to the number of exactly solvable models,
bl}t.rather to provide for more realistic cases a computational scheme for the
critical singularities and the free energy.

1}1 this Section we treat approximation schemes of general character,
(‘:{fhéch are partly complementary. These schemes are more or less copies
rev.ompa.rable approximation schemes for the Ising model. Here we shall

IéW briefly the main methods that have been used so far:

g' :mele renormalization transformations on finite lattices;

C. the Cumulant appljoximation;
subdiy; dede‘ applications we are going .to deal with, the site lattice will be
Mately (s Into cells, the cell lattice havmg the 'same symmetry (or z‘lpprom-
lattice same symmetry) as the underlying site lattice. F or.the .trlanguﬂlar

4 Possible subdivision in cells has already been given in Fig. la. For



