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Chapter 1

Introduction

A Monte Carlo method is a compuational method that uses random numbers to compute
(estimate) some quantity of interest. Very often the quantity we want to compute is the mean
of some random variable. Or we might want to compute some function of several means of
random variables, e.g., the ratio of two means. Or we might want to compute the distribution
of our random variable. Although Monte Carlo is a probabilistic method, it is often applied to
problems that do not have any randomness in them. A classic example of this is using Monte
Carlo to compute high dimensional integrals.

Monte Carlo methods may be divided into two types. In the first type we generate
independent samples of the random variable. This is usually called direct, simple or crude
Monte Carlo. The latter two terms are rather misleading. We will refer to these types of
methods as direct Monte Carlo. In this type of Monte carlo the samples Xi that we generate
are an i.i.d. sequence. So the strong law of large numbers tells us that the average of the Xi,
i.e., the sample mean 1

n

∑n
i=1Xi, will converge to the mean of X as n→ ∞. Furthermore the

central limit theorem tells us a lot about the error in our computation.

The second type of methods are Markov Chain Monte Carlo (MCMC) methods. These
methods construct a Markov Chain whose stationary distribution is the probability measure
we want to simulate. We then generate samples of the distribution by running the Markov
Chain. As the chain runs we compute the value Xn of our random variable at teach time step
n. The samples Xn are not independent, but there are theorems that tell us the sample mean
still converges to the mean of our random variable.

We give some examples.
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Example - Integration: Suppose we want to compute a definite integral over an interval like

I =
∫ b

a
f(x) dx (1.1)

Let X be a random variable that is uniformly distributed on [a, b]. Then the expected value of
f(X) is

E[X] =
1

|b− a|
∫ b

a
f(x) dx (1.2)

So I = (b− a)E[X]. If we generate n independent sample of X, call them X1, X2, · · · , Xn,
then the law of large numbers says that

1

n

n
∑

i=1

f(Xn) (1.3)

conveges to E[X]. The error in this method goes to zero with n as 1/
√
n. If f is smooth,

simple numerical integration methods like Simpson’s rule do much better - 1/n4 for Simpson.
However, the rate of convergence of such methods is worse in higher dimensions. In higher
dimension, Monte Carlo with its slow rate of convergence may actually be faster. And if the
integrand is not smooth Monte Carlo may be the best method, especially if simplicity is
important.

Example - more integration: Suppose we want to evaluate the integral
∫ 10

0
e−x2

(1.4)

We could follow the example above. However, e−x2

is essentially zero on a large part of the
interval [0, 10]. So for most of our samples Xi, f(Xi) is essentially zero. This looks inefficent.
A large part of our computation time is spent just adding zero to our total. We can improve
the efficiency by a technique that is called importance sampling. We rewrite the integral we
want to compute as

∫ 10

0

e−x2

ce−x
ce−x dx (1.5)

where the constant c is chosen so that
∫ 10
0 ce−x dx = 1. Let g(x) = e−x2

/ce−x. If X is a
random variable with density ce−x, then the expected value E[g(X)] is the integral we want
to compute. As we will learn, it is quite easy to use uniform random numbers on [0, 1] to
generate samples of X with the desired density. (It is not so easy to generate samples with
density proportional to e−x2

on [0, 10].)

Example - yet more integration: Another example of the need for importance sampling is
the following. Suppose we want to compute a d-dimensional integral over some region D. If D



is a parallelepiped, it is easy to generate a random vector uniformly distributed over D. But if
D is a more complicated shape this can be quite difficult. One approach is to find a
parallelepiped R that contains D. We then generate random vectors that are uniformly
distributed on R, but we reject them when the vector is outside of D. How efficient this is
depends on the ratio of the volume of D to that of R. Even if it is very difficult to generate
uniform samples from D, it may be possible to find a domain D′ which contains D and whose
volume is not too much bigger than that of D. Then generating a uniform sample from D′

and rejecting it if it is not in D can be a much more effecient method that generating a
uniform sample from a parallelepiped that contains D.

Example - shortest path in a network: By a network we mean a collection of nodes and
a collection of edges that connect two nodes. (Given two nodes there need not be an edge
between them). For each edge there is a random variable that give the time it takes to
traverse that edge. There random variables are taken to be independent. We fix a starting
node and an ending node in the graph. The random variable we want to study is the
minimum total time it takes to get from the starting node to the ending node. By minimum
we mean the minimum over all possible paths in the network from the starting node to the
ending node. For very small networks you work out the expected value of this random
variable. But this analytic approach becomes intractable for every modest size networks. The
Monte Carlo approach is to generate a bunch of samples of the network and for each sample
network compute the minimum transit time. (This is easier said than done.) The average of
these minima over the samples is then our estimate for the expected value we want.

Example - network connectivity or reliability We now consider a network but now it is
random in a different way. We fix the nodes in the network. For each possible edge e, there is
a parameter pe ∈ [0, 1]. We include the edge in the graph with probability pe. The edges are
independent. Now we are interested in the probability that there is some path that connects
the starting and ending nodes. Probabilties can be thought of as expected values and the
strong law still provides the theoretical basis for a direct MC simulation. We can
approximately compute the probability by generating a bunch of samples of the network and
for each sample checking if the starting and ending nodes are connected. Our estimate for the
probability of a connection is the number of samples that have a connection divided by the
total number of samples.

Example - network connectivity with dependence In the previous example, if we let Ee

be the event that the graph contains edge e, then these events are independent. In this
example we again we fix the nodes in the network and make the edge configuration random.
However, now the edges are not independent. There are many models that do this. Here is a
relatively simple one. Let se be 0 if the edge e is not present, 1 if it is. So the graph is
specified by the set of random variables se. Let s denote the collection {se}. We take the



probability density to be

P (s) =
1

Z
exp(−

∑

e

cese +
∑

e,f

ce,fsesf ) (1.6)

where ce and ce,f are parameters. The sum of pairs of edges e, f is only over e 6= f . The
constant Z is determined by the requirement that this must be a probability measure. Even
though the probability measure is quite explicit, there is no practical way to directly sample
from it. In particular, computing Z is not feasible unless the number of nodes is small. But
we can generate dependent samples of this distribution using a Markov Chain. Possible states
are the possible edge configurations. If we are in state s the chain can transition to a new
state s′ which differs from s in only one edge. In other words, the transitions consist of either
deleting an edge that is there or adding an edge that is not present. If we choose the
transition probabilities for these transitions appropriately, the stationary distribution of the
Markov chain will be P . So we can compute the probability that the starting and ending
nodes are connected by running the chain.

Example - self-avoiding walks To be concrete we describe this in two dimensions on the
square lattice. An N -step self-avoiding walk (SAW) is a nearest neighbor walk on the square
lattice that does not visit a site more than once. We take all the N -step SAW’s that start at
the origin and put the uniform probability measure on this finite set. This is a really simple
(to define) probability measure, but the number of such walks grows exponentially with N .
So for large values of N there is no practical way to generate samples. We have to use a
MCMC method.

Overview of the topics to be covered

Chapter 2 will introduce the basic idea of direct Monte Carlo and how one estimates the error
involved. All Monte Carlo simulations require a source of randomness. Usually the starting
point for this randomness is a pseudo-random number generator that produces numbers in
[0, 1] that look like they are uniformly distributed on the interval and independent. In chapter
3 we will look at the general structure of such generators and how one tests them. In chapter
4 we will study how you can use random numbers that are uniformly distributed on [0, 1] to
generate samples of a random variable with either a continuous or discrete distribution.

For all Monte Carlo methods the error in our estimate of the quantity we want to compute is
of order σ/

√
n. In direct Monte Carlo the constant σ is just the standard deviation of the

random variable whose mean we are computing. For MCMC σ is more involved. Obviously
we can improve the estimate by increasing n, i.e., generating a larger number of samples. One
can also attempt to reduce σ. This is known as variance reduction. We study some techniques
for variance reduction in chapter 6. An important such technique that we touched on on some
of the examples is importance sampling. All of chapter 7 is devoted to this topic.

In chapter 8 we will give a crash course on Markov chains, including the central idea of



MCMC. Chapter 9 will study some particular MCMC methods - the Gibbs sampler and the
Metropolis-Hastings algorithm. In Chapter 10 we will look in more detail at the statistical
analysis of what comes out of our Monte Carlo simulation. Further topics may include
stochastic optimization, rare event simulation, perfect sampling, simulating annealing and
who knows what.





Part I

Independent Monte Carlo
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In chapter 2 we recall the strong law of large numbers and how it is the basis of Monte Carlo
methods in which the samples are independent. Any Monte Carlo method needs a source of
randomness. In chapter 3 we take a look at random number generators with the goal being to
understand how they work at a somewhat abstract level and various tests for random number
generators. These random number generators produce a real number that is uniformly
distributed on [0, 1]. In chapter 4 we study how one uses such random numbers to generate
samples of random variables and vectors, both continuous and discrete, with prescribed
distributions.





Chapter 2

Basics of direct Monte Carlo

2.1 The probabilistic basis for direct MC

We start our study of Monte Carlo methods with what is usually called direct or simple
Monte Carlo. We will refer to it as direct Monte Carlo.

We assume that our original problem can be put in the following form. There is a probability
space (Ω, P ) and a random variable X on it. The quantity we want to compute is the the
mean of X which we denote by µ = E[X]. (The sample space Ω is the set of possible
outcomes. Subsets of Ω are called events, and the probability measure P a function that
assigns a number between 0 and 1 to each event. Usually the probability measure is only
defined on a σ-field F , which is a sub-collection of the subsets of Ω, but we will not worry
about this.) We emphasize that the original problem need not involve any randomness, even
if it does the probability space we use for the Monte Carlo may not have been part of the
original problem.

Let Xn be an independent, identically distributed (iid) sequence which has the same
distribution as X. Recall that saying Xn and X are indentically distributed means that for all
Borel sets B, P (Xn ∈ B) = P (X ∈ B). A standard result in probability says that if they are
equal for all B whic are intervals, then that is sufficient to insure they are equal for all Borel
sets. The key theorem that underlies direct Monte Carlo is the Strong Law of Large Numbers.

Theorem 1 Let Xn be an iid sequence such that E[|Xn|] <∞. Let µ = E[Xn]. Then

P ( lim
n→∞

1

n

n
∑

k=1

Xk = µ) = 1 (2.1)

11



The conclusion of the theorem is often written as limn→∞
1
n

∑n
k=1Xk = µ a.s. Here a.s. stands

for almost surely.

Suppose we want to compute the probability of an event rather than the mean of a random
variable. If E is the event, we can think of its probability P (E) as the expected value of the
indicator function of E, i.e., P (E) = E[1E]. In this case the sample is bunch of 0’s and 1′s
indicating whether or not the outcome was in E. The sample mean is the fraction of
outcomes that were in E is usually denoted p̂n. In this situation the strong law says that p̂n
converges to P (E) almost surely.

We have seen several examples of direct Monte Carlo in the introduction. The integration
examples and the network examples with independent edges were all examples of direct
Monte Carlo. Note that in the network example where we were concerned with connectivity,
we were computing a probability. The network example in which the edges are not
independent and the self-avoiding walk example cannot be studied with direct Monte Carlo.
Unless the network or walk is really small, there is no practical way to generate samples from
the probability distribution .

2.2 Error estimation

The strong law says that we can approximate µ by generating a sample X1, X2, · · · , Xn and
then computing the sample mean

µ̂n =
1

n

n
∑

k=1

Xk (2.2)

Note that µ is a constant while µ̂n is a random variable. In the language of statistics, µ is a
parameter and µ̂n is a statistic that estimates µ. We follow the notational convention of using
a hat to denote the statistic that estimates the corresponding parameter.

The strong law tells us that µ̂n converges to µ but it does not tell us anything about how
close µ̂n is to µ for a given value of µ. In any Monte Carlo simulation we do not actually let n
go to infinity, we only use a (hopefully) large value of n. So it is crucial to address this
question of how close our approximation is. µ̂n is a random variable. Since all the random
variables Xi in our sample have mean µ, the mean of the sample mean is

Eµ̂n = µ (2.3)

In the language of statistics, µn is said to be an unbiased estimator of µ. We assume that the
Xi have finite variance. Since they are identically distributed, they have the same variance



and we denote this common variance by σ. Since the Xi are independent, we have

var(
n
∑

i=1

Xi) = nσ2 (2.4)

and so the variance of the sample mean is

var(µ̂n) =
1

n2
var(

n
∑

i=1

Xi) =
σ2

n
(2.5)

Thus the difference of µn from µ should be of order σ/
√
n.

The 1/
√
n rate of convergence is rather slow. If you compute a one dimensional integral with

Simpon’s rule the rate of convergence is 1/n4. However, this rate of convergence requires some
smoothness assumptions on the integrand. By contrast, we get the 1/

√
n rate of convergence

in Monte Carlo without any assumptions other than a finite variance. While Simpson’s rule is
fourth order in one dimension, as one goes to higher dimensional integrals the rate of
convergence gets worse as the dimension increases. In low dimensions with a smooth
integrand, Monte Carlo is probably not the best method to use, but to compute high
dimensional integrals or integrals with non-smooth integrands, Monte Carlo with it slow
1/
√
n convergence may be the best you can do.

The central limit theorem gives a more precise statemnt of how close µ̂n is to µ. Note that
since µ̂n is random, even if n is very large, there is always some probability that µ̂n is not
close to µ. The central limit theorem says

Theorem 2 Let Xn be an iid sequence such that E[|Xn|2] <∞. Let µ = E[Xn] and let σ2 be
the variance of Xn, i.e., σ

2 = E[X2
n]− E[Xn]

2. Then

1

σ
√
n

n
∑

k=1

(Xk − µ) (2.6)

converges in distribution to a standard normal random variable. This means that

lim
n→∞

P (a ≤ 1

σ
√
n

n
∑

k=1

(Xk − µ) ≤ b) =
∫ b

a

1√
2π

e−x2/2 dx (2.7)

In terms of the sample mean, the central limit theorem says that (µ̂n − µ)
√
n/σ converges in

distrbution to a standard normal distribution.

The statement of the central limit theorem involves σ2. It is unlikely that we know σ2 if we
don’t even know µ. So we must also use our sample to estimate σ2. The usual estimator of



the variance σ2 is the sample variance. It is typically denoted by s2, but we will denote it by
s2n to emphasize that it depends on the sample size. It is defined to be

s2n =
1

n− 1

n
∑

i=1

(Xi − µ̂n)
2 (2.8)

(sn is defined to be
√

s2n.) A straightforward calculation show that Es2n = σ2, so sn is an

unbiased estimator of σ2. This is the reason for the choice of 1/(n− 1) as the normalization.
It makes the estimator unbiased. An application of the strong law of large numbers shows
that s2n → σ2 a.s. Since (µ̂n − µ)

√
n/σ converges in distribution to a standard normal

distribution and that s2n → σ2 converges almost surely to σ2, a standard theorem in
probability implies that (µ̂n − µ)

√
n/sn converges in distribution to a standard normal. (In

statistics the theorem being used here is usually called Slutsky’s theorem.) So we have the
following variation on the central limit theorem.

Theorem 3 Let Xn be an iid sequence such that E[|Xn|2] <∞. Let µ = E[Xn] and let σ2 be
the variance of Xn, i.e., σ

2 = E[X2
n]− E[Xn]

2. Then

(µn − µ)
√
n

sn
(2.9)

converges in distribution to a standard normal random variable. This means that

lim
n→∞P (a ≤ (µn − µ)

√
n

sn
≤ b) =

∫ b

a

1√
2π

e−x2/2 dx (2.10)

The central limit theorem can be used to construct confidence intervals for our estimate µ̂n for
µ. We want to construct an interval of the form [µ̂n − ǫ, µ̂n + ǫ] such that the probability µ is
in this interval is 1− α where the confidence level 1− α is some number close to 1, e.g., 95%.
Let Z be a random variable with the standard normal distribution. Note that µ belongs to
[µ̂n − ǫ, µ̂n + ǫ] if and only if µ̂n belongs to [µ− ǫ, µ+ ǫ]. The central limit theorem says that

P (µ− ǫ ≤ µ̂n ≤ µ+ ǫ) = P (−ǫ ≤ µ̂n − µ ≤ ǫ)

= P (−ǫ
√
n

sn
≤ (µ̂n − µ)

√
n

sn
≤ ǫ

√
n

sn
) ≈ P (−ǫ

√
n

sn
≤ Z ≤ ǫ

√
n

sn
) (2.11)

Let zc be the number such that P (−zc ≤ Z ≤ zc) = 1− α. Then we have ǫ
√
n

sn
= zc, i.e.,

ǫ = zcsn/
√
n. Thus our confidence interval for µ is

µ̂n ±
zcsn√
n

(2.12)
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Common choices for 1− α are 95% and 99%, for which zc ≈ 1.96 and zc ≈ 2.58, respectively.
The central limit theorem is only a limit statement about what happens as the sample size n
goes to infinity. How fast the distribution in question converges to a normal distribution
depends on the distribution of the original random variable X.

Suppose we are using direct Monte Carlo to compute the probability p = P (E) of some event
E. As discussed above we can think of this as computing the expected value of 1E. The
central limit theorem still applies, so we can construct confidence intervals for our estimate.
The variance of 1E is easily found to be p(1− p). So we can use our estimate p̂n of p to
estimate the variance by p̂n(1− p̂n) rather than sn. Thus the confidence interval is

p̂n ±
zc
√

p̂n(1− p̂n)√
n

(2.13)

This is one possible problem with the above. Suppose p is very small, so small that np is of
order one. There is some chance that none of the outcomes in our sample will lie in the event
E and so p̂n = 0. In this case the above confidence interval would be [0, 0]. This is clearly
nonsense. The problem with the above derivation of the confidence interval in this case is that
if np is not reasonable large, the central limit theorem is not a good approximation. When
p̂n = 0 a reasonable confidence interval can be obtained as follows. Obviously the confidence
interval should be of the form [0, p0]. Note that P (p̂n = 0) = (1− p)n. If p is not small enough
this is a small probability. But p̂n did in fact equal 0. So we will choose p0 so that
(1− p0)

n = α, where 1− α is the confidence level, e.g., 95%. This is the same as
n ln(1− p0) = ln(α). Since p0 is small, ln(1− p0) ≈ −p0. So we let

p0 =
− ln(α)

n
(2.14)

With α = 5%, − ln(α) is approximately 3, so the confidence interval is [0, 3/n].

Another approach to treating p̂n is the Agresti confidence interval. See Owen for a discussion.

2.3 Accuracy vs. computation time

We have seen that the error in a Monte Carlo computation is proportional to σ/
√
n.

Obviously we can reduce the error by increasing the number of samples. Note, however, that



to reduce the error by half we must increase the number of samples by a factor of four.
Another way to improve the accuracy is to reduce the variance σ2. We will study this topic in
detail in a later chapters.

It is important to keep in mind that from a practical point of view, what is important is not
how many samples are needed to achieve a given level of accuracy, but rather how much CPU
time is need to achieve that accuracy. Suppose we have two Monte Carlo methods that
compute the same thing. They have variances σ2

1 and σ2
2. Let τ1 and τ2 be the CPU time

needed by the methods to produce a single sample. Then with a fixed amount T of CPU time
we can produce Ni = T/τi samples for the two methods. So the errors of our two methods
with be

σi√
Ni

=
σi
√
τi√
T

(2.15)

Thus the method with the smaller σ2
i τi is the better method.

It is also important to keep in mind that the time needed to compute a sample typically
consists of two parts. First we have to generate a sample ω from the probability space. Then
we have to evaluate the random variable X on ω. In many applications this second step can
be as time consuming (or more so) than the first step. As an illustration, consider the
network reliability example from the introduction. To generate a sample, all we have to do is
generate a uniformly distributed random number from [0, 1] for each edge and compare that
random number with pe to decide if the edge is included in the network or not. This take a
time proportional to the number of possible edges. Finding the shortest path in the resulting
network can take much longer.

Many problems involve a size or scale. In the network examples there is the number of edges.
In the self-avoiding walk we have the number of steps. In integration problems there is the
dimension. One should pay attention to how the times required for different parts of the
Monte Carlo simulation depend on n. In particular one should keep in mind that while one
part of the computation may be the most time consuming for moderate values of n, for larger
values of n another part of the computation may start to dominate.

2.4 How good is the confidence interval

Our confidence interval was chosen so that the probability that the confidence interval
contains the mean µ is the given confidence level 1− α. In working this out we used the
central limit theorem which is only an approximation which gets better as n increases. If the
distribution of X is normal, then for any n the distribution of µn is a well-studied distribution
known as student’s t distribution. One can use this distribution (with n− 1 degrees of



freedom) in place of the standard normal. Of course this is only a reasonble thing to do if the
distribution of X is approximately normal. Unless n is pretty small, the effect of using
student’s t instead of normal is negligible. With a confidence level of 95%, the critical z from
the normal distribution is 1.960 while the critical t value for n = 100 is 1.984 and for n = 20 is
2.086. So unless you are in the very usual situation of doing a Monte Carlo with a very small
number of samples, there is no need to use students t.

Even if n is not small, one can still worry about how much error the central limit theorem
approximation introduces, i.e., how close is P (µ̂n − zcsn√

n
≤ µ ≤ µ̂n +

zcsn√
n
) to 1− α? Typically

it is off by something of order 1/n, so this is not really an issue for large values of n.

If we want to be really paranoid and we have an a priori upper bound on σ2, then we can use
Chebyshev’s inequality. It says that for any ǫ > 0,

P (|µ̂n − µ| ≥ ǫ) ≤ 1

ǫ2
E[(µ̂n − µ)2] =

1

ǫ2
var(µ̂n) =

1

nǫ2
σ2 (2.16)

Suppose we know that σ2 ≤M . Then the above is bounded by M/(nǫ2). If we set this equal

to α, we get ǫ =
√

M
nα
. So if we take the confidence interval to be

µ̂n ±
√

M

nα
(2.17)

then Chebyshev insures that the probability µ is not in this confidence interval is at most α.
Comparing with our central limit theorem confidence interval we see that zcsn has been

replaced by
√

M/α. If M is close to σ2, then sn is close to
√
M and so the effect is to replace

zc by 1/
√
α. For α = 5% this amounts to replacing 1.96 by 4.47. So we can get a confidence

interval for which we are certain that the probability the interval does not capture µ is at
most 5%, but at the expense of a much wider confidence interval.

Finally, if one does not have a bound on σ2, but the random variable X is known to always be
in the interval [a, b], then one can use Hoeffding’s inequality in place of Chebyshev. See Owen
for more on this.

2.5 Estimating a function of several means

Sometimes the quantity we want to compute is the quotient of two means

θ =
E[X]

E[Y ]
(2.18)

Suppose we generate an independent samples ω1, · · · , ωn from our probability space,
distributed according to P . We then let Xi = X(ωi) and Yi = Y (ωi). We want to use the



sample (X1, Y1), · · · , (Xn, Yn) to estimate θ. Note that in this approach Xi and Yi are not
independent. The natural estimator for θ is

θ̂ =
Xn

Y n

(2.19)

Here we use the notation

Xn =
1

n

n
∑

i=1

Xi, Y n =
1

n

n
∑

i=1

Yi (2.20)

for the two sample means. The nontrivial thing here is to find a confidence interval for our
estimate. We do this using the Delta method.

There is nothing special about ratios. More generally we can consider a function of several
means. So we assume we have a random vector (X1, X2, · · · , Xd) and we want to estimate a
function of their means

θ = f(E[X1], · · · , E[Xd]) (2.21)

for some function f on Rd. Since we are using subscripts to indicate the components, we will
now use superscripts to label our samples. We suppose we have n i.i.d. samples of our
random vector. We denote them by (X i

1, · · · , X i
d) where i = 1, 2, · · · , n. We let µ̂n

j be the
sample mean of the jth component

µ̂n
j =

1

n

n
∑

i=1

X i
j (2.22)

The natural estimator for θ is

θ̂ = f(µ̂1, · · · , µ̂d) (2.23)

To get a confidence interval we need a multivariate version of the central limit theorem. We
first recall a couple of definitions. The covariance of X and Y is
cov(X, Y ) = E[XY ]− E[X]E[Y ]. Letting µx = E[X] and µy = E[Y ], the covariance can also
be written as

cov(X, Y ) = E[(X − µx)(Y − µy)] (2.24)

The correlation of X and Y is

ρ =
cov(X, Y )

σxσy
(2.25)

where σ2
x, σ

2
y are the variance of X and Y . We let σ2

j be the variance of Xj, and let ρj,k be the
correlation of Xj and Xk. So the covariance of Xj and Xk is ρj,kσjσk. As j, k = 1, 2, · · · , d this
gives a d× d matrix which we denote by Σ. It is called the covariance matrix.



Theorem 4 Let (Xn
1 , · · · , Xn

d ) be an i.i.d. sequence of random vectors with finite variances.
Let µj = E[Xn

j ], let σ
2
j be the variance of Xn

j and ρj,k be their correlations. Then

1√
n

n
∑

k=1

(Xk
1 − µ1, · · · , Xk

d − µd) (2.26)

converges in distribution to a multivariate normal random variable with zero means and
covariance matrix Σ.

The crucial fact we will need about a multivariate normal distribution is the following. Let
(Z1, Z2, · · · , Zd) be a multivariate normal distribution with zero mean and covariance matrix
Σ. Then the linear combination

∑d
j=1 cjZj is a normal random variable with mean zero and

variance equal to

d
∑

j,k=1

cjckΣj,k (2.27)

Now we turn to the delta method. The idea is simple. We just use a first order Taylor
expansion of f about (µ1, · · · , µd) and use the central limit theorem.

θ̂ = f(µ̂1, · · · , µ̂d) ≈ f(µ1, · · · , µd) +
d
∑

j=1

fj(µ1, · · · , µd)(µ̂j − µj) (2.28)

where fj denotes the jth partial derivative of f . The mean of the right side is f(µ1, · · · , µd).

This says that to first order the estimator θ̂ is an unbiased estimator. It is not exactly
unbiased. By looking at the second order Taylor expansion one can see that the bias is of
order 1/n. The central limit theorem says that the vector with components µ̂j − µj has
approximately a multivariate normal distribution with covariance matrix Σ/n. So the
variance of θ̂ is

var(θ̂) =
1

n

d
∑

j,k=1

fj(µ1, · · · , µd)fk(µ1, · · · , µd)Σj,k (2.29)

This can be written more succintly as (∇f,Σ∇f)/n

Before our application of the central limit theorem involved σ which we do not know. So we
had to replace σ by sn. Here there are several things in the above that we do not know: µi

and Σ. We approximate fj(µ1, · · · , µd) by fj(µ̂1, · · · , µ̂d). We denote the resulting

approximation of ∇f by ∇̂f . We approximate Σ by Σ̂ where the entries are

Σ̂j,k =
1

n

n
∑

i=1

(X i
j − µ̂j)(X

i
k − µ̂k) (2.30)



So our estimate for the variance of θ̂ is (∇̂f, Σ̂∇̂f)/n. Thus the confidence interval is

θ̂ ± zc√
n

√

(∇̂f, Σ̂∇̂f) (2.31)

We can now return to the problem of estimating the ratio θ = E[X]/E[Y ]. So n = 2 and
f(x, y) = x/y. Some computation leads to the follows. The variance of θ̂ is approximately

1

n
(∇̂f, Σ̂∇̂f) = 1

n

∑n
i=1(Yi − θ̂Xi)

2

nX
2 (2.32)

where X and Y are the sample means for X and Y and θ̂ = X/Y .

2.6 References

Most books on Monte Carlo include the topics in this section. Our treatment follows Owen
closely. Fishman’s A first course in Monte Carlo has some nice examples, one of which we
have used (networks).



Chapter 3

Pseudo-random numbers generators

3.1 Basics of pseudo-random numbers generators

Most Monte Carlo simulations do not use true randomness. It is not so easy to generate truly
random numbers. Instead, pseudo-random numbers are usually used. The goal of this chapter
is to provide a basic understanding of how pseudo-random number generators work, provide a
few examples and study how one can empirically test such generators. The goal here is not to
learn how to write your own random number generator. I do not recommend writing your
own generator. I also do not recommend blindly using whatever generator comes in the
software package your are using. From now on we will refer to pseudo random number
generators simply as random number generators (RNG).

The typical structure of a random number generator is as follows. There is a finite set S of
states, and a function f : S → S. There is an output space U , and an output function
g : S → U . We will always take the output space to be (0, 1). The generator is given an initial
value S0 for the state, called the seed. The seed is typically provided by the user. Then a
sequence of random numbers is generated by defining

Sn = f(Sn−1), n = 1, 2, 3, · · ·
Un = g(Sn) (3.1)

Note that there is nothing random here. If we generate a sequence of numbers with this
procedure and then generate another sequence using the same seed, the two sequences will be
identical. Since the state space is finite, Sn must eventually return to a state it was in some
time earlier. The smallest integer p such that for some state the function f returns to that
state after p iterations is called the period of the generator. Obviously, longer periods are
better than short periods. But a long period by itself certainly does insure a good random
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number generator.

We list some of the properties we want in our generator. Of couse we want it to produce an
i.i.d. sequence with the uniform distribution on (0, 1). That by itself is a rather abstract
mathematical requirement; the first two properties below make it more practical.

1. Pass empirical statistical tests These are tests where you generate a long sequence
of random numbers and then perform various statistical tests to test the hypothesis that
the numbers are uniformly distributed on [0, 1] and are independent.

2. Mathematical basis There is a lot of mathematical theory behind these random
number generators (at least some of them) including properties that should produce a
good random number generator. Obviously, we want a large period, but there are more
subtle issues.

3. Fast (and not a lot of memory) Most Monte Carlo simulations require a huge
number of random numbers. You may want to generate a large number of samples, and
the generation of each sample often involves calling the random number generator many
times. So the RNG needs to be fast. With most generators memory is not really an
issue, although some can take up a lot of cache.

4. Multiple streams It is easy to use parallel computation for Monte Carlo. But this
requires running multiple copies of your random number generator. So you need to be
sure that these different streams are independent of each other.

5. Practical concerns Ease of installation and ease of seeding. Some random number
generators are quite short and only take a few lines of code. Others are considerably
more complicated. Some like the Mersenne twister require a rather large seed. Many of
the better generators use 64 bit integers. So be sure you are working on a 64 bit system
and type your variables appropriately.

6. Reproducibility For debugging and testing purposes you want to be able to generate
the same stream of random numbers repeatedly. For any random number generator of
the form we are considering this is easy - just start with the same seed.

3.2 Some examples

We do not attempt to give all the different types of generators. We discuss a few different
types with some specific examples.



3.2.1 Linear congruential generators

The state space is {0, 1, 2, · · · ,m− 1} where m is a positive integer.

f(X) = aX + c mod m (3.2)

where mod m means we do the arithmetic mod m. The constants a and c are integers and
there is no loss of generality to take them in {0, · · · ,m− 1}. For the output function we can
take

g(X) =
X

m
(3.3)

The quality of this generator depends on the choice of the constants a and c. There is a lot of
mathematics behind how these constants should be chosen which we will not go into.

Example: Lewis, Goodman, and Miller, proposed the choice a = 75 = 16807, c = 0 and and
m = 231 − 1 = 2147483647. It has period 231 − 2.

drand48(): This is a linear congrutial generator which uses m = 48,
a = 5DEECE66D16 = 2736731631558, c = B16 = 138. It is part of the standard C library. It
is not recommended.

A bunch of examples of (not necessarily good) LCG is at :

random.mat.sbg.ac.at/results/karl/server/node4.html

3.2.2 Multiple-recursive generators

We take the state space to be {0, 1, 2, · · · ,m− 1}k and define the function f by

Xn = (a1Xn−1 + a2Xn−2 + · · · akXn−k) mod m (3.4)

The notation is inconsistent here. Before Xn was the state at time n. Now the state at time n
is (Xn, Xn−1, · · · , Xn−k+1). Then the output is Un = Xn/m. With suitable choices of m and ai
we can get a period of mk − 1.

There are more complicated linear generators, e.g., matrix multiplicative recursive generators,
generalized feedback shift registers, and twisted generalized feedback shift registers, but we do
not discuss them. A widely used example of the latter is the Mersenne twister, MT19937,
invented by Matsumoto and Nishimura. It is implemented in MATLAB and SPSS. It has a
very large period, 219937 − 1. Code for it can be found at

http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html



3.2.3 Combining generators

A common trick in designing random number generators is to combine several not especially
good random number generator. An example is the Wichman-Hill generator which combines
three linear congruential generators. The state space is
{0, 1, 2 · · · ,m1 − 1} × {0, 1, 2 · · · ,m2 − 1} × {0, 1, 2 · · · ,m3 − 1}. We denote the state at step n
by (Xn, Yn, Zn). Then the generator is

Xn = 171Xn−1 mod m1

Yn = 172Yn−1 mod m2

Zn = 170Zn−1 mod m3 (3.5)

with m1 = 30269,m2 = 30307,m3 = 30323. The output function is

Un =
Xn

m1

+
Yn
m2

+
Zn

m3

mod 1 (3.6)

The period is approximately 712, large but not large enough for large scale Monte Carlo.

We can also combine multiple-recursive generators. L’Ecuyer’s MRG32k3a is an example
which employs two MRGs of order 3:

Xn = (1403580Xn−2 − 810728Xn−3) mod m1

Yn = (527612Yn−1 − 1370589Yn−3) mod m2 (3.7)

with m1 = 232 − 209, m2 = 232 − 22853. The output function is

Ut =

{

Xn−Yn+m1

m1+1
, if Xn ≤ Yn,

Xn−Yn

m1+1
, if Xn > Yn,

(3.8)

The period is approximately 3× 1057. This generator is implemented in MATLAB.

Some very simple and fast RNG Marsagalia’s KISS generators. He posted some of these in
the forum:

http://www.thecodingforums.com/threads/64-bit-kiss-rngs.673657/

Some more examples like this can be found in the article by David Jones (reference at end of
section).
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3.3 A little statistics

We briefly explain two statistical tests - χ2 goodness of fit and the Kolmogorov-Smirnov
goodness of fit tests. These are worth discussing not just because there are used in testing
random number generators but also because they are used to analyze what comes out of our
Monte Carlo simulation.

The χ2 distribution: Let Z1, Z2, · · ·Zk be independent random variables, each of which has
a standard normal distribution. Let

X =
k
∑

i=1

Z2
i (3.9)

The distribution of X is called the χ2 distribution. Obviously, it depends on the single integer
parameter k. k is called the “degrees of freedom.” The density of X can be explicitly found:

fX(x) = cxk/2−1e−x/2, x > 0 (3.10)

The multinomial distribution: This is a discrete distribution. Fix an integer k and
probabilities p1, p2, · · · pk which sum to one. Let X1, X2, · · · , Xn be independent random
variables with values in {1, 2, · · · , k} and P (Xj = l) = pl. Let Oj be the number of
X1, X2, · · · , Xn that equal j. (O stands for observed, this is the observed number of times j
occurs.) There is an explicit formula for the joint distribution of O1, O2, · · · , Ok, but we will
not need it. We will refer to the parameter n as the number of trials. Note that the mean of
Oj is pjn.

Suppose we have a random variable X with values in {1, 2, · · · , k}. We want to test the
hypothesis that X has a prescribed distribution P (X = j) = pj. We generate n independent
samples Xi of X, and let Oj be the number that take on the value j as we did above. We let
ej = npj, the mean of Oj under the null hypothesis, and consider the statistic

V =
k
∑

j=1

(Oj − ej)
2

ej
(3.11)

Theorem 5 If X has the distribution P (X = j) = pj, then as n→ ∞ the distribution of V
defined above converges to the χ2 distribution with k − 1 degrees of freedom.

Any software package with statistics (or any decent calculator for that matter) can compute
the χ2 distribution. As a general rule of thumb, the number of observations in each “bin” or
“class” should be at least 5.

The Kolmogorov-Smirnov goodness of fit test is a test that a random variable has a particular
continuous distribution. We start with an easy fact:



Theorem 6 Let X be a random variable with a continuous distribution function F (x). We
assume that F is strictly increasing on the range of X. Let U = F (X). Then the random
variable U is uniformly distributed on [0, 1].

Proof: Since F is strictly increasing on the range of X. So we can define an inverse F−1 that
maps (0, 1) to the range of X. For 0 < t < 1,

P (U ≤ t) = P (F (X) ≤ t) = P (X ≤ F−1(t)) = F (F−1(t)) = t (3.12)

QED.

Now fix a distribution with continuous distribution function (CDF) F (x). (This test does not
apply to discrete distributions.) We have a random variable and we want to test the null
hypothesis that the CDF of X is F (x). Let X1, X2, · · · , Xn be our sample. Let
X(1), X(2), · · · , X(n) be the sample arranged in increasing order. (The so-called order
statistics.) And let U(i) = F (X(i)). Note that U(1), U(2), · · · , U(n) are just U1, U2, · · · , Un

arranged in increasing order where Ui = F (Xi). Under the null hypothesis we expect the U(i)

to be roughly uniformly distributed on the interval [0, 1]. In particular U(i) should be roughly
close to (i− 1/2)/n. (The difference should be on the order of 1/

√
n.)

D =
1

2n
+ max

1≤i≤n
|F (X(i))−

i− 1
2

n
| (3.13)

=
1

2n
+ max

1≤i≤n
|U(i) −

i− 1
2

n
| (3.14)

Note that if the null hypothesis is true, then the Ui are uniform on [0, 1] and so the
distribution of D does not depend on F (x). It only depends on n. There is a formula for the
distribution of D involving an infinite series. More important, software will happily compute
p-values for this statistic for you.

3.4 Tests for pseudo-random numbers generators

In the following we let Un be the sequence of random numbers from our generator. We want
to test the null hypothesis that they are independent and each Un is uniformly distributed on
[0, 1] In the following the null hypothesis will always mean the hypothesis that the Un are
i.i.d. and uniform on [0, 1].



3.4.1 Equidistribution tests

One way to test that the Un are uniformly distributed is to just use the Kolmogorov-Smirnov
test. Here F (x) = x. Note that this does not test the independence of the Un at all.

Another way to test the uniform distribution is the following. Fix a positive integer m. Let

Yn = ⌊mUn⌋ (3.15)

where ⌊x⌋ is the floor function which just rounds x down to the nearest integer. So Yn takes
on the values 0, 1, 2, · · · ,m− 1. Under the null hypothesis the Yn are independent and
uniformly distributed on {0, 1, · · · ,m− 1}. So we can do a χ2 test using V above, where Oj is
the number of times Yi equals j + 1. Note that this only tests that the Un are uniformly
distributed on [0, 1].

To test the independence (as well as the uniformity) we can do the following. Fix another
integer d. Use the random number generator to generate random d-tuples of numbers:
(U1, U2, · · · , Ud). Generate n such d-tuples, call them (U1

i , U
2
i , · · · , Ud

i ) where i = 1, 2, · · · , n.
(So we call the RNG nd times.)

Y j
i =

⌊

mU j
i

⌋

(3.16)

Then the (Y 1
i , Y

2
i , · · · , Y d

i ) should be uniformly distributed over {0, 1, 2, · · · ,m− 1}d. We can
test this with χ2 test. This tests the independence to some extent, but it only tests if d
consecutive calls to the RNG are independent. Note that the number of cells in the χ2 test is
md, so d cannot be too large.

3.4.2 Gap tests

Fix an interval (α, β) ⊂ (0, 1). Let Tn be the times when the random number is in (α, β). Let
Zn be the gaps between these times, i.e., Zn = Tn − Tn−1. (We take T0 = 0.) If the random
numbers are i.i.d. and uniform, then the Zn should be i.i.d. with a geometric distribution
with parameter p = β − α. We can test this with a χ2 test. Fix an integer r and take the
classes to be Z = 0, Z = 1, · · · , Z = r − 1 and Z ≥ r.

A special case is (α, β) = (0, 1/2) which is called runs above the mean. With (α, β) = (1/2, 1)
it is called runs below the mean.



3.4.3 Permutation tests

Use the RNG to generate random d-tuples of numbers: (U1, U2, · · · , Ud). For each d-tuple let
π be the permutation which puts them in increasing order, i.e., Uπ(1) < Uπ(2) < · · · < Uπ(d).
Under the null hypothesis that the random numbers are i.i.d. uniform, the permutations will
have the uniform distribution on the set of d! permutations. We can test this with a χ2 test.

3.4.4 Rank of binary matrix test

This one looks pretty crazy, but it has been useful in showing some RNG’s that pass some of
the simpler tests are not good.

Convert the i.i.d. sequence Un to an i.i.d. sequence Bn which only takes on the values 0 and 1
with probability 1/2. For example let Bn be 0 if Un < 1/2, Bn = 1 if Un ≥ 1/2. Fix integers r
and c with r ≤ c. Group the Bn into groups of size rc and use each group to form an r × c
matrix. Then compute the rank of this matrix using arithmetic mod 2. There is an explicit
formula for the distribution of this rank under the null hypothesis. (See Kroese review article
for the formula.) We can then do a χ2 test. For example, take r = c = 32. The rank can be at
most 32. Note that it is very unlikely to get a rank a lot less than 32. So you don’t want to
take classes running over all possible values of the rank. With r = c = 32 we could take the
classes to be R ≤ 30,R = 31, and R = 32, where R is the rank.

3.4.5 Two-stage or second order tests

Consider one of the above tests (or many others). Let T be the test statistic. We assume that
the distribution of T under the null hypothesis is known. The simple test is to generate a
sample, compute the value of T and then compute its p-value. (Explain what a p-value is). A
small p value, e.g., less than 5% means we got a value of T that is pretty unlikely if the null
hypothesis is true. So we reject the null hypothesis (and so conclude our RNG is suspect).
Now suppose we repeat this 50 times. So we get 50 values T1, T2, · · ·T50 of the test statistic.
We then get 50 p-values. Even if the null hypothesis is true, we expect to get a few p-values
less than 5%. So we shouldn’t reject the null hypothesis if we do. But we can use our 50 values
of T to carry out a second order test. If the null hypothesis is true, then T1, T2, · · ·T50 should
be a sample from the known distribution of the test statistic. We can test this with the KS
statistic and compute a single p-value which tests if the Ti do follow the known distribution.



3.4.6 Test suites

We end our discussion of testing with a few of the well known packages for testing a RNG.

George Marsaglia developed a suite of 15 tests which he called the diehard suite. Marsaglia
passed away in 2011, but google will happily find the diehard suite. Robert Brown at Duke
expanded the suite and named it dieharder:

http://www.phy.duke.edu/ rgb/General/dieharder.php

A comprehensive set of tests is the TestU01 software library by LEcuyer and Simard:

http://www.iro.umontreal.ca/ lecuyer/myftp/papers/testu01.pdf

Another important use of random numbers is in cryptography. What makes a good RNG for
this (unpredictability) is not exactly the same as what make a good one for Monte Carlo. In
particular, speed is not so important for some crytography applications. So in looking at test
suites you should pay attention to what they are testing for.

3.5 Seeding the random number generator

How you seed the random number generator is important.

For parallel computation we certainly don’t want to use the same seed.

MT and bad seeds

The seed of a RNG is a state for the RNG and so is typically much larger than a single
random number. For the MT the seed requires ?? So it is nice to have an automated way to
generate seeds.

A cheap way to generate a seed is to use some output from the operating system and then run
it through a hash function. For example, on a unix system

ps -aux | md5sum

will produce a somewhat random 128 bit number. (The output is in hexadecimal, so it is 32
characters long.)

A more sophisticated approach on unix system is to use /dev/urandom. This uses “noise” in
the computer to generate a random number. Note that it tests how much entropy has
accumulated since it was last called and waits if there is not enough. So this is too slow to be



used for your primary RNG. On a unix system

od -vAn -N4 -tu4 < /dev/urandom

will give you some sort of random integer. (Need to find out just what this returns.)

3.6 Practical advice

• Don’t use built in RNG unless you know what it is and how it has been tested.

• Design your code so that it is easy to change the RNG you use.

• Use two different RNG and compare your results. This is not a waste of time as you can
always combine the two sets of data. Or if you do not want to go to the trouble of a
second generator, try things like using only every fifth random number from the
generator.

• Don’t use too many random numbers from your generator compared to your period.
There are many ad hoc rules of thumb : use at most P/1000,

√
P/200 or even P 1/3.

3.7 References

I have followed the chapter on random number generation in Kroese’s review article and also
taken some from “Good Practice in (Pseudo) Random Number Generation for Bioinformatics
Applications” by David Jones. It is a nice practical discussion of picking a RNG. It can be
found at

http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf

For an interesting example of how supposedly good RNG lead to wrong results, see

Monte Carlo simulations: Hidden errors from “good” random number generators Alan M.
Ferrenberg, D. P. Landau, and Y. Joanna Wong, Phys. Rev. Lett. 69, 3382 (1992).
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Chapter 4

Generating non-uniform random
variables

4.1 Inversion

We saw in the last chapter that if the CDF is strictly increasing, then F (X) has a uniform
distribution. Conversely, it is easy to show in this case that if U is uniformly distributed on
[0, 1] then F−1(U) has the distribution F (x). For this we do not need that the CDF is strictly
increasing. In this case the usual inverse function need not be defined. We define

F−1(u) = inf{x : F (x) ≥ u} (4.1)

for 0 < u < 1. (really should not denote this by F−1 since it is not the inverse of F .)

Theorem 7 Let F (x) be a CDF. Define F−1 as above. Let U be uniformly distributed on
[0, 1]. Then the CDF of F−1(U) is F (x).

Proof: Consider the set {x : F (x) ≥ U}. Since F is non-decreasing it must be of the form
(c,∞) or [c,∞). The right continuity of F implies it must be [c,∞). We need to compute
P (F−1(U) ≤ t). We claim that F−1(U) ≤ t if and only if U ≤ F (t). (This is not quite as
trivial as the notation makes it look since F−1 is not really the inverse function for F .) The
claim will complete the proof since the probability that U ≤ F (t) is just F (t).

First suppose F−1(U) ≤ t. Then t must belong to the set {x : F (x) ≥ U}. So F (t) ≥ U . Now
suppose that U ≤ F (t). Then t belongs to {x : F (x) ≥ U}. So t is greater than or equal to
the inf of this set, i.e., t ≥ F−1(U).

31



QED

In principle this allows us to generate samples of any distribution. The catch is that it may be
difficult to compute F−1. Note that this works for any CDF, continuous or discrete.

Example (exponential) The CDF of the exponential is

F (x) = 1− exp(−λx) (4.2)

and so

F−1(u) = − ln(1− u)

λ
(4.3)

So if U is uniform on [0, 1], then − ln(1− U)/λ has the exponential distribution with
parameter λ. Note that if U is uniform on [0, 1] then so is 1− U . So we can also use
− ln(U)/λ to generate the exponential distribution.

Example - discrete distributions Let x1 < x2 < · · · < xn be the values and pi their
probabilities. The CDF is piecewise constant and F−1 only takes on the values x1, x2, · · · , xn.
The value of F−1(U) is xk where k is the integer such that

k−1
∑

i=1

pi < U ≤
k
∑

i=1

pi (4.4)

This corresponds to the obvious way to generate a discrete distribution.

To implement this we need to find the k that satisfies the above. We can do this by searching
starting at k = 1 and computing the partial sums as we go. This takes a time O(n).

If we are going to generate a random variable with this same set of pi many times we can do
better. To implement this we first set up a table with the partial sums above. This takes a
time O(n), but we do this only once. Then when we want to generate a sample from the
distribution we have to find the k that satisfies the above. If we use a bisection search we can
reduce the time to O(ln(n)). Explain bisection So there is a one time cost that is O(n) and
then the cost per sample is O(ln(n)).

If we have a discrete distribution with an infinite number of values we can still do inversion.
Doing this by starting at k = 1 and searching for the k that satisfies the above is
straightforward. How long does this take on average? Is there a version of bisection that does
better?

Example - Normal distribution At first glance it looks like we cannot use the inversion
method for the normal distribution since we cannot explicitly compute the CDF and so
cannot compute its inverse. Nonetheless, there are very fast methods for computing F−1 to
high accuracy. See Owen for more details.



Scaling and shifting For many families of random variables there is a parameter that just
corresponds to scaling the random variable, i.e., multiplying by a constant, or a parameter
that corresponds to shifting the random variable, i.e., adding a constant.

For example consider the exponential random variable which has density

f(x) = λ exp(−λx), x ≥ 0 (4.5)

If Y is exponential with parameter 1 and we let X = λY then X is exponential with the
above density.

The normal density with mean µ and variance σ2 is

f(x) = c exp(−1

2
(x− µ)2/σ2) (4.6)

If Z is a standard normal then X = σZ + µ will have the above density.

The above can be thought of as applying an affine transformation to our random variable. If
g(x) is an increasing function and we let Y = g(X) then the density of Y is related to that of
X by

fY (y) =
fX(g

−1(y))

g′(g−1(y))
(4.7)

4.2 Acceptance-rejection

The method of acceptance-rejection sampling is also called rejection sampling or
accept-reject. We discuss the case of continuous random variables. There is a similar method
for discrete random varibles. Suppose we want to simulate a random variable with density
f(x). We assume there is another density g(x) and a constant c such that

f(x) ≤ cg(x) (4.8)

Note that by integrating this equation we see that c must be greater than 1. (It can equal 1
only if f(x) = g(x).) We also assume it is relatively easy to generate samples with density g.
The algorithm is as follows.

repeat

Y ∼ g

U ∼ U(0, 1)



until U ≤ f(Y )/(cg(Y ))

X = Y

output X

The notation Y ∼ g means we generate a random variable with the density g. U(0, 1) denotes
the uniform distribution on [0, 1], and U ∼ U(0, 1) means we generate a random varible U
with this distribution. Note that the test U ≤ f(Y )/(cg(Y )) means that we accept Y with
probability f(Y )/(cg(Y )). Otherwise we reject Y and try again.

Theorem 8 With the reject-accept algorithm above, the probability density of X is given by
f(x).

Review the partition theorem for continuous RV’s

The acceptance-rejection algorithm can take multiple attempts to get a value of X that we
accept. So we should worry about how long this takes. The number of tries is random; in fact
the number of tries has a geometric distribution. Let p be the parameter for this geometric
distribution, i.e., the probability we accept on a particular attempt. Given Y = y, the
probability we accept is f(y)/(cg(y)). So

p =
∫

P (accept|Y = y)g(y) dy =
∫ f(y)

cg(y)
g(y) dy =

1

c
(4.9)

where “accept” is the event that we accept the first try. Note that the closer c is to 1, the
closer the acceptance probability is to 100%. The mean of a geometric is 1/p, so the mean
number of tries is c.

Proof: We will compute the CDF of X and show that we get P (X ≤ t) =
∫ t
−∞ f(y)dy.

P (X ≤ t) = P ({X ≤ t} ∩ A1) + P ({X ≤ t} ∩ Ac
1) (4.10)

where A1 is the event that we accept the first try. For the second term we use

P ({X ≤ t} ∩ Ac
1) = P (X ≤ t|Ac

1)P (A
c
1) (4.11)

If we reject on the first try, then we just repeat the process. So P (X ≤ t|Ac
1) = P (X ≤ t).

For the first term we use the continuous form of the partition theorem. Let Y1 be the Y
random variable on the first attempt. We condition on the value of Y1:

P ({X ≤ t} ∩ A1) =
∫

P ({X ≤ t} ∩ A1|Y1 = y)g(y)dy (4.12)



Note that P ({X ≤ t} ∩ A1|Y1 = y) = P ({Y ≤ t} ∩ A1|Y1 = y). This is zero if y > t and
P (A1|Y1 = y) if y ≤ t. Since P (A1|Y1 = y) = f(y)/(cg(y)), we get

P ({X ≤ t} ∩ A1) =
∫ t

−∞

f(y)

cg(y)
g(y)dy =

1

c

∫ t

−∞
f(y)dy (4.13)

So we have shown

P (X ≤ t) =
1

c

∫ t

−∞
f(y)dy + (1− 1

c
)P (X ≤ t) (4.14)

Solving for P (X ≤ t) we find it equals
∫ t
−∞ f(y)dy. QED

Example: Suppose we want to generate samples from the standard normal distribution. So

f(x) =
1√
2π

exp(−x2/2) (4.15)

We use

g(x) =
1

π

1

1 + x2
(4.16)

the Cauchy distribution. Let

c = sup
x

f(x)

g(x)
= sup

x

√

π

2
exp(−x2/2)(1 + x2) (4.17)

It is obvious that c is finite. A little calculus shows the sup occurs at x = ±1. So we get
c =

√

π
2
e−1/22 ≈ 1.52. Note that it is easy to sample from the Cauchy distribution. This

method will accept about 66 % of the time.

Exercise Consider the normal distribution again, but now we let g(x) = 1
2
exp(−|x|/2). Show

that this works for the acceptance-rejection method and compute the acceptance probability.

There is a nice geometric interpretation of this method. First a fact from probability.

Theorem 9 Let f(x) be a density function for a continuous random variable. Let A be the
region in the plane given by

A = {(x, y) : 0 ≤ y ≤ f(x)} (4.18)

So A is the area under the graph of f(x). Let (X, Y ) have the uniform distribution on A.
Then the marginal distribution of X is f(x).



Proof: Note that A has area 1. So the joint density function is just the indicator function of
A. To get the marginal density of X at x, call it fX(x), we integrate out y.

fX(x) =
∫

1A(x, y)dy = f(x) (4.19)

QED

The theorem goes the other way: if we generate X using the density f(x) and then pick Y
uniformly from [0, f(X)], then (X, Y ) will be uniformly distributed on A. To see this note
that we are making

fY |X(y|x) =
1

f(x)
10≤y≤f(x) (4.20)

So the joint density will be

fX,Y (x, y) = fY |X(y|x)f(x) = 10≤y≤f(x) = 1A (4.21)

Now consider the acceptance-rejection method. Let A be area under the graph of f(x) and let
B be the area under the graph of cg(x). By our assumption, A is contained in B. Note that
B is the area under the graph of g(x) stretched in the vertical direction by a factor of c. So if
we sample Y and sample U from the uniform distribution on [0, 1], then (Y, Ucg(x)) will be
uniformly distributed on B. (Notation is confusing.) The process of accepting it only if
U ≤ f(Y )/(cg(Y )) means that we accept the point in B only if it is in A

We have considered continuous random variables but the acceptance-rejection works for
discrete random variables as well. If we want to simulate a discrete RV X with pdf fX(x), i.e.,
fX(x) = P (X = x) then we look for another discrete RV Y with pdf fY (x) that we know how
to simulate. If there is a constant c such that f(x) ≤ cg(x), then we are in business. The
algorithm is essentially identical to the continuous case, and the proof that it works is the
same as the proof in the continuous case with integrals replaced by sums.

4.3 Alias method for discrete distribution

This is a method for generating a sample from a discrete distribution with a finite number of
values. Let n be the number of values. The method takes a time O(n) to set up, but once it is
set up the time to generate a sample is O(1). It is no loss of generality to take the values to
be 1, 2, · · · , n. Let pi be the probability of i.



Proposition 1 Given pi > 0 with
∑n

i=1 pi = 1, we can find qi ∈ [0, 1] for i = 1, · · · , n and
functions u(i), l(i) : {1, 2, · · · , n} → {1, 2, · · · , n} such that for each value i, we have

1

n

∑

k:l(k)=i

qk +
1

n

∑

k:u(k)=i

(1− qk) = pi (4.22)

DRAW A PICTURE.

The algorithm is then as follows. Pick k uniformly from {1, 2, · · ·} and pick U uniformly from
[0, 1]. If U ≤ qk we return l(k). If U > qk we return u(k). The equation in the proposition
insures that the probability we will return i is pi.

Proof: It is convenient to let Pi = npi. So the sum of the Pi is n and we want

∑

k:l(k)=i

qk +
∑

k:u(k)=i

(1− qk) = Pi (4.23)

If the Pi all equal 1 the solution is trivial. Otherwise we can find k,m such that Pk < 1 and
Pm > 1. Define q1 = Pk, l(1) = k, u(1) = m. This takes care of all of the “probability” for
value k. For value m it takes care of only some of the “probability”, 1− q1 to be precise. Now
let P ′

1, · · · , P ′
n−1 be P1, · · · , Pn with Pk deleted and Pm replaced by

Pm − (1− q1) = Pm + Pk − 1. Note that the sum of the P ′
i for i = 1 to n− 1 is n− 1. So we

can apply induction to define q2, · · · , qn and define l() and u() on 2, 3, · · · , n. Note that l(i)
and u(i) will not take on the value k for i ≥ 2.

QED

Another method for fast simulation of a discrete RV is the method of guide tables. They are
discussed in Owen’s book.

Stop - Mon, 2/1

4.4 Tricks for specific distributions

For specific distributions there are sometimes clever tricks for simulating them. We give a few
of them for distributions that are frequently used.



4.4.1 Box-Muller

Suppose we want to generate samples from the standard normal distribution. We can use
inversion, but then we have the nontrivial problem of inverting the CDF. We can also use
acceptance-rejection as we saw. Another method is called the Box-Muller method. It it based
on the following observation. Let X, Y be independent, both with the standard normal
distribution. So the joint density is

1

2π
exp(−(x2 + y2)/2) (4.24)

We change to polar coordinates, i.e., we define two new random variables Θ and R by

X = R cos(Θ) (4.25)

Y = R sin(Θ) (4.26)

Then the joint density of R,Θ is exp(−r2/2)r/(2π). This shows that R and Θ are
independent. Θ is uniform on [0, 2π] and R has density r exp(−r2/2).

We can go the other way; this is the Box Mueller algorithm. Generate Θ and R with these
densities. It is trivial to generate Θ. For R we can use inversion since the density function is
explicitly integrable. Define X and Y as above and they will be independent, each with a
standard normal distribution.

4.4.2 Geometric

We can use inversion to simulate the geometric distribution. If the mean is large this can be
slow. Here is another method. Recall that N has the geometric distribution with parameter
p ∈ (0, 1) if P (N = k) = (1− p)k−1p. Now let X have an exponential distribution with
parameter λ. So the density is

f(x) = exp(−λx)λ (4.27)

So

P (k − 1 ≤ X < k) =
∫ k

k−1
exp(−λx)λ dx = exp(−(k − 1)λ)− exp(−kλ) (4.28)

= exp(−(k − 1)λ)[1− exp(−λ)] (4.29)

So if we take p = 1− exp(−λ), then X round down to the nearest integer has the geometric
distribution. In other words N = ⌊X⌋ has a geometric distribution.



4.4.3 Random permutations

We are interested in the uniform distribution on the set of permutations on {1, 2, · · · , n}. If n
is fairly small we treat this as a discrete random variable with a finite set of values and use
techniques we have discussed. But the number of factorials is n! for this will be impractical
for even modest values of n. Here is an algorithm that generates a sample in time O(n). The
idea is simple. First randomly pick π(i). It is just uniform on {1, 2, · · · , n}. Now pick π(2). It
will be uniform on {1, 2, · · · , n} with π(1) removed. Then π(3) will be uniform on
{1, 2, · · · , n} with π(1) and π(2) removed. The slightly tricky part is keeping track of the
integers which are not yet in the range of π. In the following (k1, · · · , kn) will be the integers
which are not yet in the range.

Initialize (k1, · · · , kn) = (1, 2, · · ·n)
For i = 1 to n

Generate I uniformly from {1, 2, · · · , n− i+ 1}
Set Xi = kI
Set kI = kn−i+1

Return (X1, · · · , Xn)

4.4.4 RV’s that are sums of simpler RV’s

Suppose we want to simulate a binomial RV X with n trials. If Xi takes on the values 0, 1
with probabilities 1− p, p and X1, · · · , Xn are independent, then

∑n
i=1Xi has a binomial

distribution. The Xi are trivial to simulate. Of course if n is large this will not be a fast
method.

Similarly the χ2 distribution with k degrees of freedom is given by

k
∑

i=1

Z2
i (4.30)

where the Zi are independent standard normals.

4.4.5 Mixtures

A mixture means that we have random variables X1, X2, · · · , Xn and probabilities
p1, p2, · · · , pn. Let I be a random variable with P (I = i) = pi, independent of the Xi. Then we
let X = XI . The CDF of X is

FX(x) =
n
∑

i=1

piFXi
(x) (4.31)



If the Xi are all absolutely continuous with densities fXi
(x) then X is absolutely continuous

with densities

fX(x) =
n
∑

i=1

pifXi
(x) (4.32)

If we can sample the Xi then it should be obvious how we sample X.

4.5 Generating multidimensional random variables

We now consider the case of generating samples of a random vector (X1, · · · , Xd). If the
random vector (X1, · · · , Xd) is discrete with a finite set of values, then sampling from it is no
different than sampling from a random variable X that only takes on a finite set of values. So
we can use the techniques of the previous sections. Hence we will focus on continuous RV’s in
this section.

If the components Xi are independent, then this reduces the problem we have considered in
the previous sections. This section considers what to do when the components are dependent.

4.5.1 Composition method or conditioning

For simplicity of notation we consider the case of d = 2. We want to generate jointly
continuous random variables with density f(x, y). Compute fX(x) by integrating out y.
Define fY |X(y|x) in the usual way. Then we generate X according to fX(x) and then generate
Y according to fY |X(y|x). Then (X, Y ) will have the desired joint distribution. Several things
can do wrong. Computing fX(x) requires doing an integral which may not be explicitly
computable. And we need to be able to generate samples from fX(x) and fY |X(y|x).

4.5.2 Acceptance-rejection

The acceptance-rejection method generalizes immediately to random vectors. We consider the
case of a jointly continuous random vector. Suppose we want to sample from the density
f(x1, · · · , xd). If g(x1, · · · , xd) is a density that we can sample from and there is a constant c
such that

f(x1, · · · , xd) ≤ cg(x1, · · · , xd) (4.33)

then we generate a random vector ~Y = (Y1, · · · , Yn) according to g and we generate a uniform

RV U on [0, 1]. We accept ~Y if U ≤ f(Y1, · · · , Yd)/(cg(Y1, · · · , Yd)). If we reject we repeat.



This is useful only if we can sample from g. If g is the density of independent random
variables this may be doable. Note that g corresponds to independent components if (and
only if) g(x1, · · · , xd) factors into a product of functions gi(xi). So it is natural to seek an
upper bound on f(x1, · · · , xd) of this form.

If we want to generate the uniform distribution on some subset S of Rd and we can enclose S
in a hypercube, then we can do this with acceptance rejection. The acceptance ratio will be
the volume of S divided by the volume of the hypercube. If this is unacceptably small we can
try to do better by enclosing S in geometry that “fits” better but for which we can still
uniformly sample from the geometry.

4.5.3 The multivariate normal

The random vector (X1, · · · , Xd) has a multivariate normal distribution with means
(µ1, · · · , µd) and covariance matrix Σ if its density is

f(x1, · · · , xd) = c exp(−1

2
((~x− ~µ),Σ−1(~x− ~µ)) (4.34)

where c is a normalizing constant. This distribution is easily simulated using the following.

Proposition 2 Let Z1, · · · , Zd be independent standard normal RV’s. Let

~X = Σ1/2 ~Z + ~µ (4.35)

Then ~X has the multivariate normal distribution above and Σ1/2 is the matrix square root of
Σ.

Idea of proof: Diagonalize Σ and do a change of variables.

4.5.4 Affine transformations

Let ~X = (X1, · · · , Xd) be an absolutely continuous random vector with density f ~X(x1, · · · , xd).
Let ~Z = A ~X +~b where A is a d by d matrix. Then ~Z = (Z1, · · · , Zd) is an absolutely
continuous random vector with density

f~Z(z1, · · · , zd) =
1

|det(A)|f ~X(A
−1(~z −~b)) (4.36)



4.5.5 Uniform point in a sphere, on a sphere

Suppose we want to generate a point in Rd that is uniformly distributed in the ball of radius
1. We can do this by acceptance rejection. We generate a point uniformly on the hypercube
[−1, 1]d and accept it if it is inside the ball. The acceptance ratio depends on the dimension d
and goes to zero as d goes to infinity. So for large d we would like a better method. We would
also like to be able to generate points uniformly on the sphere, i.e., the boundary of the ball.
(By ball I mean {(x1, · · · , xd) :

∑

i x
2
i ≤ 1} and by sphere I mean {(x1, · · · , xd) :

∑

i x
2
i = 1}.

Note that generating a point uniformly inside the ball and generating a point uniformly on
the sphere are closely related. We can see the relation by thinking of hyper-spherical
coordinates. If ~X is uniformly distributed inside the ball, then ~X/|| ~X|| will be uniformly

distributed on the sphere. Conversely, if ~X is uniformly distributed on the sphere and R is an
independent, continuous RV with density rn−1/n on [0, 1], then R ~X will be uniformly
distributed inside the ball.

So we only need a method to generate the uniform distribution on the sphere. Let
Z1, Z2, · · · , Zd be independent, standard normal random variables. Then their joint density is
c exp(−1

2

∑d
i=1 z

2
i ). Note that it is rotationally invariant. So ~Z/||~Z|| will be uniformly

distributed on the sphere.



Chapter 5

Variance reduction

The error in a direct Monte Carlo simulation goes as σ/
√
n. So there are two ways we can

reduce the error. Run the simulation for a longer time, i.e., increase n or find a different
formulation of the Monte Carlo that has a smaller σ. Methods that do the latter are know as
variance reduction.

5.1 Antithetic variables

If X and Y are independent, then var(X + Y ) = var(X) + var(Y ). If they are not
independent the covariance enters. Letting µX , µY denote the means of X and Y , we have

var(X + Y ) = E[(X + Y )2]− (µX + µY )
2 (5.1)

= E[X2]− µ2
X + E[Y 2]− µ2

Y + 2(E[XY ]− µXµY ) (5.2)

= var(X) + var(Y ) + 2cov(X, Y ) (5.3)

The covariance is cov(X, Y ) = ρX,Y σXσY and ρ lies between −1 and 1. If ρ is negative the
variance of X + Y is smaller than the sum of their variances. Antithetic variables take
advantage of this fact.

Definition 1 Random variables X, Y on the same probability space are antithetic if they have
the same distribution and their covariance is negative.

Suppose we want to compute µ = E[X] and we can find another random variable Y such that
X, Y is an antithetic pair. So E[Y ] is also equal to µ. Our Monte Carlo algorithm is as

43



follows. We generate n indendent samples ω1, · · · , ωn from the probability space and let
Xi = X(ωi) and Yi = Y (ωi). Our estimator for µ is then

µ̂n =
1

2n

n
∑

i=1

(Xi + Yi) (5.4)

Obvious the mean of µ̂n is µ, so this is an unbiased estimator. Let ρ denote the correlation of
X and Y . Since they have the same distribution, they have the same variance. We denote it
by σ2. So the variance of our estimator is

var(µ̂n) =
1

(2n)2
n var(X1 + Y2) (5.5)

=
1

2n
σ2(1 + ρ) (5.6)

To compare this with direct Monte Carlo just using X we have to pay attention to the times
involved. Recall that the relevant quantity for the quality of our MC is σ2τ , where τ is the
time to generate a sample.

For direct MC with just X we have to generate an ω and then evaluate X on it. For our
antithetic MC we have to generate an ω and then evaluate both X and Y on it. Let τω be the
time required to generate an ω. We assume it takes the same time to evalute Y that it does
to evaluate Y . Call that time τe. (e for evaluation.) Then the original MC takes time τω + τe,
while the antithetic MC takes time τω + 2τe. So we need to compare σ2(τω + τe) for the
original MC with σ2 1

2
(1 + ρ)(τω + 2τe) So the antithetic is better if

1

2
(1 + ρ)(τω + 2τe) < τω + τe (5.7)

If τω is neglible compared to τe then this simplifies to ρ < 0. On the other hand, if τe is
neglible compared to τω then this simplifies to ρ < 1 which is always true unless Y = X. Note
that the advantage of the antithetic MC will be large only if ρ is close to −1.

If we want to find a confindence interval for our estimate, we need the variance of the
antithetic estimator. We could use the calculations above. But this requires estimating ρ. We
can avoid this by the following approach. Let Z = (X + Y )/2, and let Zi = (Xi + Yi)/2. We
can think of our antithetic Monte Carlo as just generating n samples of Z. Then we compute
the sample variance of the sample Z1, · · · , Zn and just do a straightforward confidence interval.

Of course this is only useful if we can find antithetic pairs. We start with a trivial example.
We want to compute

µ =
∫ 1

0
f(x)dx = E[f(U)] (5.8)



where U is a uniform random variable on [0, 1]. So we are computing the mean of X = f(U).
Suppose f is an increasing function. Then it might be helpful to balance a value of U in
[0, 1/2] with its “reflection” 1− U . So take Y = F (1− U). This has the same distribution
(and hence the same mean) as X since 1− U is uniform on [0, 1]. A fancy way to say this is
that the uniform probability measure on [0, 1] is invariant under the map 1 → 1− x on [0, 1].

So we consider the following general set-up. We assume there is a map R : Ω → Ω under
which the probability measure is invariant, i.e., P = P◦R. We define Y (ω) = X(Rω). Then Y
has the same distribution as X and hence the same mean. We need to study the correlation
of X and Y to see if this will be useful. Define

Xe(ω) =
1

2
[X(ω) +X(Rω)], (5.9)

Xo(ω) =
1

2
[X(ω)−X(Rω)] (5.10)

Then X = Xo +Xe, and we can think of this as a decomposition of X into its even and odd
parts with respect to R. (Note Xe(Rω) = Xe(ω), Xo(Rω) = −Xo(ω).) The invariance of P
under R implies that

E[Xe] = µ, E[Xo] = 0, E[XeXo] = 0 (5.11)

Thus Xe and Xo are uncorrelated. This is weaker than being independent, but it does imply
the variance of their sum is the sum of their variances. So if we let σ2

e and σ2
o be the variances

of Xe and Xo, then σ
2 = σ2

e + σ2
o , where σ is the variance of X. Note that the variance of Y is

also equal to σ2. A little calculation shows that ρ, the correlation between X and Y , is given
by

ρ =
σ2
e − σ2

o

σ2
e + σ2

o

(5.12)

Thus Y will be a good antithetic variable if σe is small compared to σo. This will happen if X
is close to being an odd function with respect to R.

Literature seems to say that if X = f(U) where U is a vector of i.i.d. uniform on [0, 1] and f
is increasing then Y = f(1− U) is a good antithetic RV where in 1− U , 1 means the vector
with 1’s in all the components.
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Figure 5.1: Network example. We seek the quickest path from A to B.

Network example from Kroese The times Ti are independent and uniformly distributed
but with different ranges:
T1 uniform on [0, 1]
T2 uniform on [0, 2]
T3 uniform on [0, 3]
T4 uniform on [0, 1]
T5 uniform on [0, 2]
The network is small enough that you can find the mean time of the quickest path
analytically. It is

µ =
1339

1440
≈ 0.92986 (5.13)

Let U1, U2, U3, U4, U5 be independent, uniform on [0, 1]. Then we can let T1 = U1, T2 = 2 ∗ U2,
etc. And the quickest time can be written as a function X = h(U1, U2, U3, U4, U5). We let
Y = h(1− U1, 1− U2, 1− U3, 1− U4, 1− U5), and then Z = (X + Y )/2. Our antithetic
estimator is

1

n

n
∑

i=1

Zi =
1

n

n
∑

i=1

1

2
(Xi + Yi) (5.14)

where Xi and Yi use the same U vector. Some simulation shows that without using the
antithetic pair, the variance of X is approximately 0.158. Another simulation using the
antithetic pair shows that the variance of Z is approximately 0.0183. The error is
proportional to the square root of the variance, so the error is reduced by a factor of
√

0.158/0.0183. But we must keep in mind that it takes twice as long to generate a sample of



Z as it does a sample of X. So for a fixed amount of CPU time we will have half as many
samples of Z which means a factor of

√
2 for the error. So the true reduction in the error is a

factor of
√

0.158/(2 ∗ 0.0183) which is just over 2. But keep in mind that to reduce the error
by a factor of 2 by increasing the number of samples would require generating 4 times as
many samples. So if we think in terms of how long it takes to reach a given error level, then
the antithetic method has reduced the computation time by a factor of 4.

5.2 Control variates

Consider the bridge example again. The times T1 and T4 are both uniformly distributed on
[0, 1] while the other three times are uniformly distributed on larger intervals. So we expect
that the quickest path will be the path through bonds 1 and 4 with fairly high probability. In
other words, if we let X be the minimum time for the full network and let Y = T1 + T4, then
Y will be equal to X with high probability. Note that we know the mean of Y . Can we take
advantage of this to improve our Monte Carlo method? Let ν be the known mean of Y . (Of
course, ν = 1/2 + 1/2 = 1.) Then µ = E[X − (Y − ν)]. So we can do a Monte Carlo
simulation of X − (Y − ν) rather than X. The hope is that X − (Y − ν) has a smaller
variance since it equals ν most of the time.

The general setup is as follows. We want to compute µ = E[X]. We have another random
variable Y on the same probability space and we know its mean. Call it ν = E[Y ]. (Note that
µ is unknown, ν is known.) We generate a random sample ω1, ω2, · · · , ωn and evaluate X and
Y on them. So let Xi = X(ωi) and Yi = Y (ωi). Now define

l̂n =
1

n

n
∑

i=1

[Xi − α(Yi − ν)] (5.15)

where α is a parameter. In our discussion of the brigde example we took α = 1, but now we
allow a more general choice of the new estimator. Note that E[l̂n] = µ, i.e., for any choice of α
this is an unbiased estimator of µ.

Let ρ denote the correlation of X and Y . Let σ2
X and σ2

Y be the variances of X and Y . The
variance of our estimator is

var(l̂n) =
1

n
var(X − αY ) (5.16)

We have

var(X − αY ) = σ2
X + α2σ2

Y − 2αρσXσY (5.17)



We can use any α we want, so we choose α to minimize this variance. The minimizing α is
given by

α0 =
ρσX
σY

=
cov(X, Y )

σ2
Y

(5.18)

in which case

var(X − α0Y ) = σ2
X(1− ρ2) (5.19)

So the variance of our estimator is σ2
X(1− ρ2)/n. So we have reduced the variance by a factor

of 1− ρ2. So the method works well if ρ is close to 1 or −1.

Note that to compute the optimal α we need to know σX , σY , and ρ. We might know σY , but
we almost certainly will not know σX or ρ. So we have to use our sample to estimate them.
We estimate σ2

X (and σ2
Y if needed) with the usual sample variance. And we estimate ρ with

ρ̂n =
1

n

n
∑

i=1

[XiYi −Xnν] (5.20)

where Xn is the samples mean of X.

In the above we have assumed that the mean of Y is known exactly. Even if we do not know
it exactly, but just have a good approximation we can still use the above. If it is much faster
to compute the control RV Y than the original RV X, then we could use a preliminary Monte
Carlo to compute a good approximation to the mean of Y and then do the above Monte
Carlo to get the mean of X.

We look at the last paragraph in more detail and think of what we are doing as following. We
want to compute E[X]. We have another random variable Y such that we think the varince of
X − Y is small. We write X as (X − Y ) + Y and try to compute the mean of X by
computing the means of X − Y and Y separately. Let σ2

x, σ
2
Y be the variances of X and Y .

Let σX−Y be the variance of X − Y , which hopefully is small. Let τX and τY be the time it
take to generate samples of X and Y . We assume we have a fixed amount T of CPU time. If
we do ordinary MC to compute E[X], then we can compute T/τX samples and the square of
the error will be σ2

XτX/T .

Now suppose we do two independent Monte Carlo simulations to compute the means of
X − Y and Y . For the X − Y simulation we generate n1 samples and for the Y simulation we
generate n2 samples. These numbers are constrained by n1(τX + τY ) + n2τY = T . We assume
that τY is much smaller than τX and replace this constraint by n1τX + n2τY = T . Since our
two Monte Carlos are independent, the square of the error is the sum of the squares of the
errors of the two Monte Carlos, i.e.,

σ2
X−Y

n1

+
σ2
Y

n2

(5.21)



Now we minimize this as a function of n1 and n2 subject to the constraint. (Use Lagrange
multiplier or just use the constraint to solve for n2 in terms of n1 and turn it into a one
variable minimization problem.) You find that the optimal choice of n1, n2 is

n1 =
TσX−Y√

τX(σX−Y
√
τX + σY

√
τY )

, (5.22)

n2 =
TσY√

τY (σX−Y
√
τX + σY

√
τY )

(5.23)

which gives a squared error of

1

T
(σX−Y

√
τX + σY

√
τY )

2 (5.24)

If σX−Y is small compared to σX and σY and τY is small compared to τX , then we see this is a
big improvement over ordinary MC.

Network example We return to our network example. For the control variable we use
Y = T1 + T4. So we do a Monte Carlo simulation of Z = X + (Y − ν) where ν = E[Y ] = 1.
We find that the variance of Z is approximately 0.0413. As noted earlier the variance of X is
approximately 0.158. So the control variate approach reduced the variance by a factor of
approximately 3.8. This corresponds to a reduction in the error by a factor of

√
3.8. If we

want a fixed error level then the use of a control variate reduces the computation time by a
factor of 3.8.

Note that you do not have to know what α you want to use before you do the MC run. You
can compute the sample means and sample variances for X and Y separately as well as an
estimator for ρ. Then at the end of the run you can use the sample variances and estimator
for ρ to compute an estimator for the best α. Note, however, that if you do this your α now
depends on all the samples and so the samples Xi − αYi are not independent. So the usual
method of deriving a confidence interval is not legit. If you really want to worry about this
see section 4.2 of Fishman’s Monte Carlo: Concepts, Algorithms, and Applications. I would
be surprised if it matters unless n is small.

It is possible to use more than one control variable. Let ~Y = (Y 1, · · · , Y d) be vector of
random variables. We assume we know their means νi = E[Y i]. Then our estimator is

l̂n =
1

n

n
∑

i=1

[Xi − (~α, ~Yi − ~ν)] (5.25)

where ~α is a vector of parameters and (~α, ~Y − ~ν) denotes the inner product of that vector and
~Y − ~ν. To find the optimal α we need to minimize the variance of X − (~α, Y ).

var(X − (~α, Y )) = cov(X − (~α, Y ), X − (~α, Y )) (5.26)

= var(X,X)− 2
2
∑

i=1

αicov(X, Yi) +
2
∑

i,j=1

αiαjcov(Yi, Yj) (5.27)



Let Σ be the matrix with entries cov(Yi, Yj), i.e., the covariance matrix of the control variates.

Let ~C be the vector of covariances of X and the Yi. Then the above is

var(X,X)− 2
2
∑

i=1

αiCi +
2
∑

i,j=1

αiαjΣi,j = var(X,X)− 2(~α, ~C) + (~α,Σ~α) (5.28)

Optimal α is

~α0 = Σ−1 ~C (5.29)

5.3 Stratified sampling

To motivate stratified sampling consider the following simple example. We want to compute

I =
∫ 1

0
f(x) dx (5.30)

On the interval [0, 1/2] the function f(x) is nearly constant, but on the interval [1/2, 1] the
function varies significantly. Suppose we wanted to use Monte Carlo to compute the two
integrals

∫ 1/2

0
f(x) dx,

∫ 1

1/2
f(x) dx (5.31)

The Monte Carlo for the first integral will have a much smaller variance than the Monte Carlo
for the second integral. So it would make more sense to spend more time on the second
integral, i.e., generate more samples for the second integral. However, under the usual Monte
Carlo we would randomly sample from [0, 1] and so would get approximately the same
number of Xi in [0, 1/2] and in [1/2, 1]. The idea of stratified sampling is to divide the
probability space into several regions and do a Monte Carlo for each region.

We now turn to the general setting. As always we let Ω be the probability space, the set of
possible outcomes. We partition it into a finite number of subsets Ωj , j = 1, 2, · · · , J . So

Ω = ∪J
j=1Ωj, Ωj ∩ Ωk = ∅ if j 6= k (5.32)

We let pj = P (Ωj) and let Pj be P (·|Ωj), the probability measure P conditioned on Ωj. We
assume that the probabilities pj are known and that we can generate samples from the
conditional probability measures P (·|Ωj). The sets Ωj are called the strata. Note that the
partition theorem says that

P (·) =
J
∑

j=1

pjP (· · · |Ωj), (5.33)

E[X] =
J
∑

j=1

pjE[X|Ωj ] (5.34)



We are trying to compute µ = E[X]. We will generate samples in each strata, and the
number of samples from each strata need not be the same. So let nj, j = 1, 2, · · · , J be the
number of samples from strata j. Let Xj

i , i = 1, 2, · · · , nj be the samples from the jth strata.
Then our estimator for µ is

µ̂ =
J
∑

j=1

pj
nj

nj
∑

i=1

Xj
i (5.35)

Note that the expected value of Xj
i is E[X|Ωj ]. So the mean of µ̂ is

E[µ̂] =
J
∑

j=1

pjE[X|Ωj ] = E[X] (5.36)

where the last equality follows from the partition theorem.

Let

µj = E[X|Ωj ], σ2
j = E[X2|Ωj]− µ2

j (5.37)

The quantity σ2
j is often denoted var(X|Ωj). It is the variance of X if we use P (·|Ωj) as the

probability measure instead of P (·).

We write out our estimator as

µ̂ =
J
∑

j=1

pjµ̂j, µ̂j =
1

nj

nj
∑

i=1

Xj
i (5.38)

We assume that we generate sample from different strata in an independent fashion. So the
random variables µ̂1, µ̂2, · · · , µ̂J are independent. The variance of µ̂j is σ

2
j . So we have

var(µ̂) =
J
∑

j=1

p2j
σ2
j

nj

(5.39)
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How do we choose the nj? One possible choice is proportional allocation. Letting N denote
the total number of samples we will generate, we take nj = pjN . (Of course, we have to round
this to the nearest integer.) This gives

var(µ̂) =
1

N

J
∑

j=1

pjσ
2
j (5.40)



To compare this with the variance of ordinary MC, we do a little computation.

J
∑

j=1

pjσ
2
j =

J
∑

j=1

pjE[(X − µj)
2|Ωj] (5.41)

=
J
∑

j=1

pjE[((X − µ) + (µ− µj))
2|Ωj] (5.42)

=
J
∑

j=1

pj
[

E[((X − µ)2|Ωj] + (µ− µj))
2 + 2(µ− µj)E[X − µ|Ωj

]

(5.43)

Note that σ2 =
∑

j pjE[(X − µ)2|Ωj], and E[X − µ|Ωj] = µj − µ. So the above reduces to

J
∑

j=1

pjσ
2
j = σ2 −

J
∑

j=1

pj(µ− µj)
2 (5.44)

So using proportional allocation the variance of the Monte Carlo using strata is smaller than
the variance of plain Monte Carlo unless the µj are all equal to µ We also see that we should
try to choose the strata so that the means within the strata are far from the overall mean.

But is proportional allocation optimal? Recall our motivating example. We probably should
sample more in the Ωj with higher variance. We can find the optimal choice of nj . We want
to minimize var(µ̂) subject to the constraint that the total number of samples is fixed, i.e.,

J
∑

j=1

nj = N (5.45)

This is a straightforward Lagrange multiplier problem. Let

f(n1, n2, · · · , nJ) =
J
∑

j=1

p2j
σ2
j

nj

, (5.46)

g(n1, n2, · · · , nJ) =
J
∑

j=1

nj (5.47)

We want to minimize f subject to g = N . The minimizer will satify

∇f(n1, n2, · · · , nJ) = −λ∇g(n1, n2, · · · , nJ) (5.48)

for some λ. So for j = 1, 2, · · · , J

−p2j
σ2
j

n2
j

= −λ (5.49)



Solving for nj,

nj =
1√
λ
pjσj (5.50)

Thus

nj = cpjσj (5.51)

where the constant c is chosen to make the sum of the nj sum to N . So c = N/
∑

j pjσj . This
choice of nj makes the variance of the estimate

var(µ̂) =
1

N
[
J
∑

j=1

pjσj]
2 (5.52)

Note that the Cauchy Schwarz inequality implies this is less than or equal to the variance we
get using proportional allocation and it is equal only if the σj are all the same. Of course, to
implement this optimal choice we need to know all the σj whereas the proportional allocation
does not depend on the σj.

Suppose the time to generate a sample depends on the strata. Let τj be the time to generate
a sample in the jth strata. Then if we fixed the amount of computation time to be T , we have
∑

j njτj = T . Then using a Lagrange multiplier to find the optimal nj we find that nj should
be proportional to pjσj/

√
τj.

Example: rainfall example from Owen.

Example: Network example. Partition each uniform time into 4 intervals, so we get 45

strata.

5.4 Conditioning

To motivate this method we first review a bit of probability. Let X be a random variable, ~Z a
random vector. We assume X has finite variance. We let E[X|~Z] denote the conditional

expectation of X where the conditioning is on the σ-field generated by ~Z. Note that E[X|~Z]
is a random variable. We assume denote its variance by var(E[X|~Z]).

We define the conditional variance of X to be

var[X|~Z] = E[X2|~Z]− (E[X|~Z])2 (5.53)



Note that var[X|~Z] is a random variable. There is a conditional Cauchy Schwarz inequality
which says that this random variable is always non-negative. A simple calculation gives

var(X) = E[var[X|~Z]] + var(E[X|~Z]) (5.54)

In particular this shows that E[X|~Z] has smaller variance than X.

The conditional expectation E[X|~Z] is a function of ~Z. There is a Borel-measurable function

h : Rd → R such that X = h(~Z). Now suppose that it is possible to explicitly compute

E[X|~Z], i.e., we can explicitly find the function h. Suppose also that we can generate samples

of ~Z. One of the properties of conditional expectation is that the expected value of the
conditional expectation is just the expected value of X. So we have

µ = E[X] = E[E[X|~Z]] = E[h(~Z)] (5.55)

So we have the following Monte Carlo algorithm. Generate samples ~Z1, · · · , ~Zn of ~Z. Compute
h( ~Z1), · · · , h( ~Zn). Then the estimator is

µ̂n =
1

n

n
∑

i=1

h(~Zi) (5.56)

Of course the non-trivial thing is to find a random vector ~Z for which we can explicitly
compute E[X|~Z].

Example: Let X1, · · · , Xd be independent random variables with exponential distributions
and E[Xi] = 1/λi. We want to compute the probability that the largest of the d random
variables is X1, i.e., we want to compute

µ = P (Xi < X1, i = 2, · · · , d) (5.57)

We are particularily interested in the case that λ1 is large compared to the other λi. In this
case X1 is usually small compared to the other Xi, so so the the probability µ will be tiny and
very hard to compute accurately with an ordinary MC.

Suppose we condition on X1. Then keeping in mind that the Xi are independent, we have

P (Xi < X1, i = 2, · · · , d|X1 = x1) = P (Xi < x1, i = 2, · · · , d|X1 = x1) (5.58)

= P (Xi < x1, i = 2, · · · , d) (5.59)

=
d
∏

i=2

P (Xi < x1) (5.60)



Note that if X has an exponential distribution with mean λ, then P (X < x) = 1− e−λx.
Define F (x) = 1− e−x. So P (X < x) = F (λx). Then the above becomes

P (Xi < X1, i = 2, · · · , d|X1 = x1) =
d
∏

i=2

F (λix1) (5.61)

Now the probability we want is

µ = P (Xi < X1, i = 2, · · · , d) = E[P (Xi < X1, i = 2, · · · , d|X1)] = E[
d
∏

i=2

F (λiX1)] (5.62)

If λ1 is large compared to the other λi, then λiX1 will typically be small and so the random
variable in the expectation is very small. But that is ok. It is much better that trying to do
MC on an indicator function that is 0 with very high probability.

Example In the network example, take ~Z = (T1, T2, T3). It is possible, but not trivial, to
compute E[X|T1, T2, T3] where X is the minimum time to get from A to B.
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Chapter 6

Importance sampling

6.1 The basics

To movtivate our discussion consider the following situation. We want to use Monte Carlo to
compute µ = E[X]. There is an event E such that P (E) is small but X is small outside of E.
When we run the usual Monte Carlo algorithm the vast majority of our samples of X will be
outside E. But outside of E, X is close to zero. Only rarely will we get a sample in E where
X is not small.

Most of the time we think of our problem as trying to compute the mean of some random
variable X. For importance sampling we need a little more structure. We assume that the
random variable we want to compute the mean of is of the form f( ~X) where ~X is a random

vector. We will assume that the joint distribution of ~X is absolutely continous and let p(~x) be

the density. (Everything we will do also works for the case where the random vector ~X is
discrete.) So we focus on computing

Ef( ~X) =
∫

f(~x)p(~x)dx (6.1)

Sometimes people restrict the region of integration to some subset D of Rd. (Owen does this.)
We can (and will) instead just take p(x) = 0 outside of D and take the region of integration
to be Rd.

The idea of importance sampling is to rewrite the mean as follows. Let q(x) be another
probability density on Rd such that q(x) = 0 implies f(x)p(x) = 0. Then

µ =
∫

f(x)p(x)dx =
∫ f(x)p(x)

q(x)
q(x) dx (6.2)
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We can write the last expression as

Eq





f( ~X)p( ~X)

q( ~X)



 (6.3)

where Eq is the expectation for a probability measure for which the distribution of ~X is q(x)
rather than p(x). The density p(x) is called the nominal or target distribution , q(x) the
importance or proposal distribution and p(x)/q(x) the likelihood ratio. Note that we assumed
that f(x)p(x) = 0 whenever q(x) = 0. Note that we do not have to have p(x) = 0 for all x
where q(x) = 0.

The importance sampling algorithm is then as follows. Generate samples ~X1, · · · , ~Xn

according to the distribution q(x). Then the estimator for µ is

µ̂q =
1

n

n
∑

i=1

f( ~Xi)p( ~Xi)

q( ~Xi)
(6.4)

Of course this is doable only if f(x)p(x)/q(x) is computable.

Theorem 10 µ̂q is an unbaised estimator of µ, i.e., Eqµ̂q = µ. Its variance is σ2
q/n where

σ2
q =

∫ f(x)2p(x)2

q(x)
dx− µ2 =

∫ (f(x)p(x)− µq(x))2

q(x)
dx (6.5)

Proof: Straightforward. QED

We can think of this importance sampling Monte Carlo algorithm as just ordinary Monte
Carlo applied to Eq[f( ~X)p( ~X)/q( ~X)]. So a natural estimator for the variance is

σ̂2
q =

1

n

n
∑

i=1





f( ~Xi)p( ~Xi)

q( ~Xi)
− µ̂q





2

(6.6)

What is the optimal choice of the importance distribution q(x)? Looking at the theorem we
see that if we let q(x) = f(x)p(x)/µ, then the variance will be zero. This is a legitimate
probability density if f(x) ≥ 0. Of course we cannot really do this since it would require
knowing µ. But this gives us a strategy. We would like to find a density q(x) which is close to
being proportional to f(x)p(x).

What if f(x) is not positive? Then we will show that the variance is minimized by taking q(x)
to be proportional to |f(x)|p(x).



Theorem 11 Let q(x) = |f(x)|p(x)/c where c is the constant that makes this a probability
density. Then for any probability density q(x) we have σq ≤ σq

Proof: Note that c =
∫ |f(x)|q(x)dx.

σq − µ2 =
∫ f(x)2p(x)2

q(x)
dx (6.7)

= c
∫

|f(x)|p(x)dx (6.8)

=
(
∫

|f(x)|p(x)dx
)2

(6.9)

=

(

∫ |f(x)|p(x)
q(x)

q(x)dx

)2

(6.10)

≤
∫ f(x)2p(x)2

q(x)2
q(x)dx (6.11)

=
∫ f(x)2p(x)2

q(x)
dx (6.12)

= σq − µ2 (6.13)

where we have used the Cauchy Schwarz inequality with respect to the probaility measure
q(x)dx. (One factor is the function 1.) QED.

Since we do not know
∫

f(x)p(x)dx, we probably do not know
∫ |f(x)|p(x)dx either. So the

optimal sampling density given in the theorem is not realizable. But again, it gives us a
strategy. We want a sampling density which is approximately proportional to |f(x)|p(x).

Big warning: Even if the original f( ~X) has finite variance, there is no guarantee that σq will
be finite. Discuss heavy tails and light tails.

How the sampling distribution should be chosen depends very much on the particular
problem. Nonetheless there are some general ideas which we illustrate with some trivial
examples.

If the function f(x) is unbounded then ordinary Monte Carlo may have a large variance,
possibly even infinite. We may be able to use importance sampling to turn a problem with an
unbounded random variable into a problem with a bounded random variable.

Example We want to compute the integral

I =
∫ 1

0
x−αe−x dx (6.14)



where 0 < α < 1. So the integral is finite, but the integrand is unbounded. We take
f(x) = x−αe−x and the nominal distribution is the uniform distribution on [0, 1]. Note that f
will have infinite variance if α ≤ −1/2.

We take the sampling distribution to be

q(x) =
1

1− α
x−α (6.15)

on [0, 1]. This can be sampled using inversion. We have

f(x)
p(x)

q(x)
= e−x(1− α) (6.16)

So we do a Monte Carlo simulation of Eq[e
−X(1− α)] where X has distribution q. Note that

e−X(1− α) is a bounded random variable.

The second general idea we illustrate involves rare-event simulation. This refers to the
situation where you want to compute the probabily of an event when that probability is very
small.

Example: Let Z have a standard normal distribution. We want to compute P (Z ≥ 4). We
could do this by a Monte Carlo simulation. We generate a bunch of samples of Z and count
how many satisfy Z ≥ 4. The problem is that there won’t be very many (probably zero). If
p = P (Z ≥ 4), then the variance of 1Z≥4 is p(1− p) ≈ p. So the error with n samples is of

order
√

p/n. So this is small, but it will be small compared to p only if n is huge.

Our nominal distribution is

p(x) =
1√
2π

exp(−1

2
x2) (6.17)

We take the sampling distribution to be

q(x) =

{

e−(x−4), if x ≥ 4,
0, if x < 4,

(6.18)

The sampling distribution is an exponential shifted to the right by 4. In other words, if Y has
an exponential distribution with mean 1, then Y + 4 has the distribution q. The probability
we want to compute is

p =
∫

1x≥4p(x) dx (6.19)

=
∫

1x≥4
p(x)

q(x)
q(x) dx (6.20)



The likehood ratio is

w(x) =
p(x)

q(x)
=

1√
2π

exp(−1

2
x2 + x− 4) (6.21)

On [4,∞) this function is decreasing. So its maximum is at 4 where its value is exp(−8)/
√
2π

which is really small. The variance is no bigger than the second moment which is bounded by
this number squared. This is exp(−16)/2π. Compare this with the variance of ordinary MC
which saw was of the order of p which is on the order of exp(−8). So the decrease in the
variance is huge.

Example We return to the network example, following Kroese’s review article. Let
U1, U2, · · · , U5 be independent and uniform on [0, 1]. Let Ti be Ui multiplied by the approriate
constant to give the desired distribution for the times Ti. We want to estimate the mean of
f(U1, · · · , U5) where f is the minimum time. The nominal density is p(u) = 1 on [0, 1]5. For
our sampling density we take

g(u) =
5
∏

i=1

νiu
νi−1
i (6.22)

where the νi are parameters. (This is a special case of the beta distribution.) Note that νi = 1
gives the nominal distribution p. There is no obvious choice for the νi. Kroese finds that with
ν = (1.3, 1.1, 1.1, 1.3, 1.1) the variance is reduced by roughly a factor of 2.

We have discussed importance sampling in the setting where we want to estimate E[f( ~X)]

and ~X is jointly absolutely continuous. Everything we have done works if ~X is a discrete RV.
For this discussion I will drop the vector notation. So suppose we want to compute
µ = E[f(X)] where X is discrete with probability mass function p(x), i.e., p(x) = P (X = x).
If q(x) is another discrete distribution such that q(x) = 0 implies f(x)p(x) = 0, then we have

µ = E[f(X)] =
∑

x

f(x)p(x) =
∑

x

f(x)p(x)

q(x)
q(x) = Eq[

f(x)p(x)

q(x)
] (6.23)

where Eq means expectation with repect to q(x).

Example - union counting problem (from Fishman)
We have a finite set which we will take to just be {1, 2, · · · , r} and will call Ω. We also have a
collection Sj, j = 1, · · · ,m of subsets of Ω. We know r, the cardinality of Ω and the
cardinalities |Sj| of all the given subsets. Througout this example we use | | to denote the
cardinality of a set. We want to compute l = |U | where

U = ∪m
j=1Sj (6.24)

We assume that r and l are huge so that we cannot do this explicitly by finding all the
elements in the union. We can do this by a straightforward Monte Carlo if two conditions are



met. First, we can sample from the uniform distribution on Ω. Second, given an ω ∈ Ω we can
determine if ω ∈ Sj in a reasonable amount of time. The MC algorithm is then to generate a
large number, n, of samples ωi from the uniform distribution on Ω and let X be the number
that are in the union U . Our estimator is then rX/n. We are computing Ep[f(ω)], where

f(ω) = r1ω∈U (6.25)

We are assuming r and n are both large, but suppose r/n is small. Then this will be an
inefficient MC method.

For our importance sampling algorithm, define s(ω) to be the number of subsets Sj that
contain ω, i.e.,

s(ω) = |{j : ω ∈ Sj}| (6.26)

and let s =
∑

ω s(ω). Note that s =
∑

j |Sj|. The importance distribution is taken to be

q(ω) =
s(ω)

s
(6.27)

The likelihood ratio is just

p(ω)

q(ω)
=

s

rs(ω)
(6.28)

Note that q(ω) is zero when f(ω) is zero. So f(ω)q(ω)/p(ω) is just s
s(ω)

. We then do a Monte
Carlo to estimate

Eq[
s

s(ω)
] (6.29)

However, is it really feasible to sample from the q distribution? Since l is huge a direct
attempt to sample from it may be impossible. We make two assumptions. We assume we
know |Sj| for all the subsets, and we assume that for each j, we can sample from the uniform
distribution on Sj. Then we can sample from q as follows. First generate a random
J ∈ {1, 2, · · · ,m} with

P (J = j) =
|Sj|

∑m
i=1 |Si|

(6.30)

Then sample ω from the uniform distribution on SJ . To see that this gives the desired density
q(), first note that if ω is not in ∪iSi, then there is no chance of picking ω. If ω is in the
union, then

P (ω) =
m
∑

j=1

P (ω|J = j)P (J = j) =
∑

j:ω∈Sj

1

|Sj|
|Sj|

∑m
i=1 |Si|

=
s(ω)

s
(6.31)



Fishman does a pretty complete study of the variance for this importance sampling algorithm.
Here we will just note the following. The variance will not depend on n. So if n, r are huge
but r/n is small then the importance sampling algorithm will certainly do better than the
simple Monte Carlo of just sampling uniformly from Ω.

Stop - Mon, 2/15

6.2 Self-normalized importance sampling

In many problems the density we want to sample from is only known up to an unknown
constant, i.e., p(x) = cpp0(x) where p0(x) is known, but cp is not. Of course cp is determined
by the requirement that the integral of p(x) be 1, but we may not be able to compute the
integral. Suppose we are in this situation and we have another density q(x) that we can
sample from. It is also possible that q(x) is only known up to a constant, i.e., q(x) = cqq0(x)
were q0(x) is known but cq is not known.

The idea of self-normalizing is based on

∫

f(x)p(x)dx =
∫ f(x)p(x)

q(x)
q(x)dx (6.32)

=

∫ f(x)p(x)
q(x)

q(x)dx
∫ p(x)

q(x)
q(x)dx

(6.33)

=

∫ f(x)p0(x)
q0(x)

q(x)dx
∫ p0(x)

q0(x)
q(x)dx

(6.34)

=

∫

f(x)w(x)q(x)dx
∫

w(x)q(x)dx
(6.35)

=
Eq[f(x)w(x)]

Eq[w(x)]
(6.36)

where w(x) = p0(x)/q0(x) is a known function.

The self-normalized importance sampling algorithm is as follows. We generate samples



~X1, · · · , ~Xn according to the distribution q(x). Our estimator for µ =
∫

f(x)p(x)dx is

µ̂ =

∑n
i=1 f( ~Xi)w( ~Xi)
∑n

i=1w(
~Xi)

(6.37)

Theorem 12 hypotheses The estimator µ̂ converges to µ with probability 1.

Proof: Note that

µ̂ =
1
n

∑n
i=1 f( ~Xi)w( ~Xi)
1
n

∑n
i=1w( ~Xi)

=

1
n

∑n
i=1 f( ~Xi)

cq
cp

p( ~Xi)

q( ~Xi)

1
n

∑n
i=1

cq
cp

p( ~Xi)

q( ~Xi)

=

1
n

∑n
i=1 f( ~Xi)

p( ~Xi)

q( ~Xi)

1
n

∑n
i=1

p( ~Xi)

q( ~Xi)

(6.38)

Now apply the strong law of large number to the numerator and denominator separately.
Remember that ~X is sampled from q(x), so the numerator converges to

∫

f(x)p(x)dx = µ.
The denominator converges to

∫

p(x)dx = 1. QED

It should be noted that the expected value of µ̂ is not exactly µ. The estimator is slightly
biased.

To find a confidence interval for self normalized importance sampling we need to compute the
variance of µ̂. We already did this using the delta method. In µ̂ the numerator is the sample
mean for fw and the denominator is the sample mean for w. Plugging this into our result
from the delta method we find that an estimator for the variance of µ̂ is

∑n
i=1w( ~Xi)

2(f( ~Xi)− µ̂)2

(
∑n

i=1w( ~Xi))2
(6.39)

If we let wi = w( ~Xi)/
∑n

j=1w( ~Xj), then this is just

n
∑

i=1

w2
i (f(

~Xi)− µ̂)2 (6.40)

In ordinary Monte Carlo all of our samples contribute with equal weight. In importance
sampling we give them different weights. The total weight of the weights is

∑n
i=1wi. It is

possible that most of this weight is concentrated in a just a few weights. If this happens we
expect the important sampling Monte Carlo will have large error. We might hope that when
this happens our estimate of the variance will be large and so this will alert us to the
problem. However, our estimate of the variance σq uses the same set of weights, so it may not
be accruate when this happens.

Another way to check if we are getting grossly imbalanced weights is to compute an effective
sample size. Consider the following toy problem. Let w1, · · · , wn be constants (not random).



Let Z1, · · · , Zn be i.i.d. random variables with common variance σ2. An estimator for the
mean of the Zi is

µ̂ =

∑n
i=1wiZi
∑n

i=1wi

(6.41)

The variance of µ̂ is

var(µ̂) = σ2

∑n
i=1w

2
i

(
∑n

i=1wi)2
(6.42)

Now define the number of effective samples ne to be the number of independent samples we
would need to get the same variance if we did not use the weights. In this case the variance is
σ2/ne. So

ne =
(
∑n

i=1wi)
2

∑n
i=1w

2
i

(6.43)

As an example, suppose that k of the wi equal 1 and the rest are zero. The a trivial
calculation shows ne = k.

Note that this definition of the effective sample size only involves the weights. It does not take
f into account. One can also define an effective sample size that depends on f . See Owen.

6.3 Variance minimization and exponential tilting

Rather than consider all possbile choices for the sampling distribution q(x), one strategy is to
restrict the set of q(x) we consider to some family of distributions and minimize the variance
σq over this family. So we assume we have a family of distributions p(x, θ) where θ
parameterizes the family. Here x is multidimensional and so is θ, but the dimensions need not
be the same. We let θ0 be the parameter value that corresponds to our nominal distribution.
So p(x) = p(x, θ0). The weighting function is

w(x, θ) =
p(x, θ0)

p(x, θ)
(6.44)

The importance sampling algorithm is based on

µ = Eθ0 [f( ~X)] =
∫

f(x)p(x, θ0)dx =
∫

f(x)w(x, θ)p(x, θ)dx = Eθ[f( ~X)w( ~X, θ)] (6.45)

The variance for this is

σ2(θ) =
∫

f(x)2w(x, θ)2p(x, θ)dx− µ2 (6.46)



We want to minimize this as a function of θ. One approach would be for each different value
of θ we run a MC simulation where we sample from p(x, θ) and use these samples to estimate
σ2(θ). This is quite expensive since it involves a simulation for every value of θ we need to
consider.

A faster approach to search for the best θ is the following. Rewrite the variance as

σ2(θ) =
∫

f(x)2w(x, θ)p(x, θ0)dx− µ2 = Eθ0 [f( ~X)2w( ~X, θ)]− µ2 (6.47)

Now we run a single MC simulation where we sample from p(x, θ0). Let ~X1, ~X2, · · · , ~Xm be
the samples. We then use the following to estimate σθ:

ˆσ0(θ)
2
=

1

m

m
∑

i=1

f( ~Xi)
2w( ~Xi, θ)− µ2 (6.48)

The subscript 0 on the estimator is to remind us that we used a sample from p(x, θ0) rather
than p(x, θ) in the estimation. We then use our favorite numerical optimization method for
minimizing a function of several variables to find the minimum of this as a function of θ. Let
θ∗ be the optimal value.

Now we return to the original problem of estimating µ. We generate samples of ~X according
to the distribution p(x, θ∗). We then let

µ̂ =
1

n

n
∑

i=1

f( ~Xi)w( ~Xi, θ
∗) (6.49)

The variance of this estimator is σ2
θ∗/n. Our estimator for the variance σ2

θ∗ is

ˆσ2(θ∗) =
1

m

m
∑

i=1

f( ~Xi)
2w( ~Xi, θ)

2 (6.50)

The above algorithm can fail completely if the distribution p(x, θ0) is too far from a good
sampling distribution. We illustrate this with an example.

Example: We return to an earlier example. Z is a standard normal RV and we want to
compute P (Z > 4). We take for our family the normal distributions with variance 1 and
mean θ. So

p(x, θ) =
1√
2π

exp(−1

2
(x− θ)2) (6.51)

and the nominal density p(x) is p(x, 0).

MORE MORE MORE MORE



We can fix the problem above as follows. Instead of doing our single MC run by sampling
from p(x, θ0), we sample from p(x, θr) that θr, our “reference” θ, is our best guess for a good
choice of θ. Rewrite the variance as

σ2(θ) =
∫

f(x)2w(x, θ)2p(x, θ)dx− µ2 (6.52)

=
∫

f(x)2
p(x, θ0)

2

p(x, θ)p(x, θr)
p(x, θr)dx− µ2 (6.53)

We then generate samples ~X1, · · · , ~Xn from p(x, θr). Our estimator for the variance σ(θ)2 is
then

ˆσ2
r(θ) =

1

n

n
∑

i=1

f( ~Xi)
2p( ~Xi, θ0)

2

p( ~Xi, θ)p( ~Xi, θr)
− µ̂2 (6.54)

For several well-known classes of distributions the ratio p(x)/q(x) takes a simple form. An
exponential family is a family such that

p(x; θ) = exp((η(θ), T (x))− A(x)− C(θ)) (6.55)

for functions η(θ), T (X), A(x), C(θ). The following are examples. A multivariate normal with
a fixed covariance matrix is an exponential distribution where the means are the parameters.
The possion distribution is an exponential family where the parameter is the usual
(one-dimensional) λ. If we fixed the number of trials, then the binominal distribution is an
exponential family with parameter p. The gamma distribution is also an exponential family.
In many cases the weight function just reduces to exp((θ, x)). Even if p(x) does not come
from an exponential family we can still look for a proposal density of the form

q(x) =
1

Z(θ)
exp((θ, x))p(x) (6.56)

where Z(θ) is just the normalizing constant. Importance sampling in this case is often called
exponential tilting.

Example Comment on network example.
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6.4 Processes

Now suppose that instead of a random vector we have a stochastic process X1, X2, X3, · · ·. We
will let X stand for X1, X2, X3, · · ·. We want to estimate the mean of a function of the process
µ = f(X). It doesn’t make sense to try to give a probability density for the full infinite
process. Instead we specify it through conditional densities:
p1(x1), p2(x2|x1), p3(x3|x1, x2), · · · , pn(xn|x1, x2, · · · , xn−1), · · ·. Note that it is immediate from
the definition of conditional density that

p(x1, x2, · · · , xn) = pn(xn|x1, x2, · · · , xn−1)pn−1(xn−1|x1, x2, · · · , xn−2) (6.57)

· · · p3(x3|x1, x2)p2(x2|x1)p1(x1) (6.58)

We specify the proposal density in the same way:

q(x1, x2, · · · , xn) = qn(xn|x1, x2, · · · , xn−1)qn−1(xn−1|x1, x2, · · · , xn−2) (6.59)

· · · q3(x3|x1, x2)q2(x2|x1)q1(x1) (6.60)

So the likehood function is

w(x) =
∏

n≥1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(6.61)

An infinite product raises convergence questions. But in applications f typically either
depends on a fixed, finite number of the Xi or f depends on a finite but random number of
the Xi. So suppose that f only depends on X1, · · · , XM where M may be random. To be
more precise we assume that there is a random variable M taking values in the non-negative
integers such that if we are given that M = m, then f(X1, X2, · · ·) only depends on
X1, · · · , Xm. So we can write

f(X1, X2, · · ·) =
∞
∑

m=1

1M=m fm(X1, · · · , Xm) (6.62)

We also assume that M is a stopping time. This means that the event M = m only depends
on X1, · · · , Xm. Now we define

w(x) =
∞
∑

m=1

1M=m(x1, · · · , xm)
m
∏

n=1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(6.63)

Example - random walk exit: This follows an example in Owens. Let ξi be an i.i.d.
sequence of random variables. Let X0 = 0 and

Xn =
n
∑

i=1

ξi (6.64)



In probability this is called a random walk. It starts at 0. Now fix an interval (a, b) with
0 ∈ (a, b). We run the run until it exits this interval and then ask whether it exited to the
right or the left. So we let

M = inf{n : Xn ≥ b or Xn < a} (6.65)

So the stopping condition is XM ≥ b or XM ≤ a. Then we want to compute µ = P (XM ≥ b).
We are particularily interested in the case where Eξi < 0. So the walk drifts to the left on
average and the probability µ will be small if b is relatively large.

We take the walk to have steps with a normal distribution with variance 1 and mean −1. So
the walk drifts to the left. We take (a, b) = (−5, 10). We run the walk until is exits this
interval and want to compute the probability it exits to the right. This is a very small
probability. So the ξi are independent normal random variables with variance 1 and mean −1.

The conditional densities that determine the nominal distribution are given by

p(xn|x1, · · · , xn−1) = p(xn|xn−1) = fξn(xn − xn−1) =
1√
2π

exp(−1

2
(xn − xn−1 − θ0)

2) (6.66)

In our example we take θ0 = −1. MORE Explain how we sample this A Monte Carlo
simulation with no importance sampling with 106 samples produced no samples that exited to
the right. So it gives the useless estimate p̂ = 0.

For the sampling distribution we take a random walk whose step distribution is normal with
variance 1 and mean θ. So

q(xn|x1, · · · , xn−1) = q(xn|xn−1) =
1√
2π

exp(−1

2
(xn − xn−1 − θ)2) (6.67)

The weight factors are then

wn(x1, · · · , xn) = exp((θ0 − θ)(xn − xn−1)−
1

2
θ20 +

1

2
θ2) (6.68)

With no idea of how to choose θ, we try θ = 0 and find with 106 samples

p = 6.74× 10−10 ± 0.33× 10−10 (6.69)

The confidence intervals is rather large, so we do a longer run with 107 samples and find

p = 6.53× 10−10 ± 0.098× 10−10 (6.70)

The choice of θ = 0 is far from optimal. More on this in a homework problem.





Part II

Markov Chain Monte Carlo
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Chapter 7

Markov chain background

A stochastic process is a family of random variables {Xt} indexed by a varaible t which we
will think of as time. Time can be discrete or continuous. We will only consider the case of
discrete time since that is what is relevant for MCMC. So we consider a sequence of random
variables Xn indexed by a non-negative integer. The set of possible values of the random
variables Xn is called the state space. It could be finite, countable or an uncountable set like
R or Rd. The intuitive definition of a Markov process is that if you know Xn = x, then the
probability distrbution of where you go next, i.e., of Xn+1 only depends on x, not on how the
process got to x. Loosely speaking, this says that the future (time n+ 1) depends on the past
(times 1, 2, · · · , n) only through the present (time n).

We start with Markov chains with finite and then countable state spaces. For these sections I
am extracting material from Durrett’s Essentials of Stochastic Processes. Then for the section
on uncountable state spaces I follow chapter 6 in the Robert and Casella book. We note that
our study of Markov processes will be somewhat unbalanced since we are focusing on just the
things we need for MCMC.

7.1 Finite state space

The state space is the set of possible values of the random variables Xn. In this section we
study the case of finite S. A Markov chain is specified by giving a collection of transition
probabilities p(x, y) where x, y ∈ S. p(x, y) is the probability of jumping to state y given that
we are presently in state x. So if we keep x fixed and sum over y we must get 1.
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Definition 2 A transition function p(x, y) is a non-negative function on S × S such that
∑

y∈S
p(x, y) = 1 (7.1)

To completely specify the Markov chain we also need to give the initial distribution of the
chain, i.e., the distribution of X0.

Definition 3 Let S be a finite set and p(x, y) a transition function for S. Let π0(x) be a
probability distribuion on S. Then the Markov chain corresponding to initial distribution π0
and transition probabilities p(x, y) is the stochastic process Xn such that

P (X0 = x) = π0(x), (7.2)

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, · · · , X2 = x2, X1 = x1) = p(xn, xn+1) (7.3)

Note that the last equation implies that

P (Xn+1 = xn+1|Xn = xn) = p(xn, xn+1) (7.4)

A hard core mathematician would feel compelled to prove at this point that such a process
exists. This is not that easy (it requires an extension theorem), and we will not do it. We do
note that if we want to sample the process, i.e., generate a sample path for Xn, this is
straightforward. Sample X0 according to the distribution π0. Then sample X1 according to
the distribution p(X0, ·). Continue, sample Xn according to the distribution p(Xn−1, ·).

The following is an easy consequence of the equations above

Proposition 3 For any states x0, x1, · · · , xn,

P (X0 = x0, X1 = x1, · · · , Xn = xn) = p(x0, x1)p(x1, x2) · · · p(xn−1, xn) (7.5)

The transition matrix gives the transition probabilities for one time step. We consider the
transition probabilities for longer times. Let pm(x, y) = P (Xn+m = y|Xn = x).

Proposition 4 (Chapman-Kolmogorov equation)

pm+k(x, y) =
∑

z

pm(x, z)pk(z, y) (7.6)

If we think of pn(x, y) as the elements of a matrix, then this matrix is just p raised to the n
where p is the matrix with matrix elements p(x, y). If πn(x) = P (Xn = x) and we think of πn
as a row vector, then πn = π0p

n.



We are primarily interested in the long time behavior of our chain. We impose some
conditions on the chain for this study to rule out chains that we do not care about for
MCMC. It is possible that the state space decomposes into several subsets with no transitions
between the subsets. Or there could be subsets which have transitions out of the subset but
not into it. Give some examples of these To eliminate these sorts of chains we make the
following definition. The definition says that a chain is irreducible if it is possible to transition
from any state to any other state in some finite number of steps.

Definition 4 A Markov chain is irreducible if for every x, y ∈ S there is an integer n and
states x0, x1, · · · xn such that x = x0 and y = xn and p(xi−1, xi) > 0 for i = 1, · · · , n. In other
words, there is an integer n such that pn(x, y) > 0

Define Tx = min{n ≥ 1 : Xn = y}. This is the time of the first return (after time 0) to state x.
Let Px denote the probability measure when X0 = x. A state is recurrent if Px(Tx <∞) = 1.
So if we start in x we will eventually return to x. If this probability is less than 1 we say the
state is transient. It can be shown that if a finite state Markov chain is irreducible, then every
state x is recurrent. Finite state Markov chains can have transient states, but only if they are
not irreducible.

We need to rule out one more type of chain. Give example of periodic chain.

Definition 5 Let x ∈ S. The period of x is the greatest common division of the set of
integers n such that pn(x, y) > 0.

Theorem 13 In an irreducible chain all the states have the same period.

Definition 6 An irreducible chain is aperiodic if the common period of the states is 1.

Note that if there is a state x such that p(x, x) > 0, then the period of x is 1. So if we have an
irreducible chain with a state x such that p(x, x) > 0 then the chain is aperiodic. The
condition p(x, x) > 0 says that if you are in state x there there is nonzero probabiity that you
stay in state x for the next time step. In many applications of Markov Chains to Monte Carlo
there are states with this property, and so they are aperiodic.

An irreducible, aperiodic Markov chain has nice long time behavior. It is determined by the
stationary distribution.

Definition 7 A distribution π(x) on S is stationary if πP = π, i.e.,
∑

y∈S
π(y)p(y, x) = π(x) (7.7)



In words, a distribution is stationary if it is invariant under the time evolution. If we take the
initial distribution to be the stationary distribution, than for all n the distribution of Xn is
the stationary distribution. Note that the definition says that π is a left eigenvector of the
transition matrix with eigenvalue 1. It may seem a little strange to be working with left
eigenvectors rather than the usual right eigenvectors, but this is just a consequence of the
convention that P (Xn+1 = y|Xn = x) is p(x, y) rather than p(y, x).

Theorem 14 An irreducible Markov chain has a unique stationary distribution π.
Furthermore, for all states x, π(x) > 0.

Idea of proof: Eq. (7.1) implies that the constant vector is a right eigenvector of the
transition matrix with eigenvalue 1. So there must exist a left eigenvector with eigenvalue 1.
To see that it can be chosen to have all positive entries and is unique one can use the
Perron-Frobenius theorem. Durrett has a nice proof.
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In many problems there is a short-cut for finding the stationary distribution.

Definition 8 A state π is said to satisfy detailed balance if for all states x, y

π(x)p(x, y) = π(y)p(y, x) (7.8)

Note there are no sums in this equation.

Proposition 5 If a distribution π satisfies detailed balance, then π is a stationary
distribution.

Proof: Sum the above equation on y. QED

The converse is very false. Example

There are two types of convergence theorems. In the first type we start the chain in some
initial distribution and ask what happens to the distribution of Xn as n→ ∞.



Theorem 15 Let p(x, y) be the transition matrix of an irreducible, aperiodic finite state
Markov chain. Then for all states x, y,

lim
n→∞

pn(x, y) = π(y) (7.9)

For any initial distribution πo, the distribution πn of Xn converges to the stationary
distribution π.

The second type of convergence theorem is not a statement about distributions. It is a
statement that involves a single sample path of the process.

Theorem 16 Consider an irreducible, finite state Markov chain. Let f(x) be a function on
the state space, and let π be the stationary distribution. Then for any initial distribution,

P ( lim
n→∞

1

n

n
∑

k=1

f(Xk) =
∑

x

f(x)π(x)) = 1 (7.10)

The second convergence theorem is the one that is relevant to MCMC. It says that if we want
to compute the expected value of f in the probability measure π and π is the stationary
distribution of some Markov chain, then we can run the chain for a long time and compute
the long time average of f(Xk) to get an approximation to the expected value of f .

7.2 Countable state space

Much of the finite state stuff carries over immediately. In particular the Chapman-Komogorov
eq. and the fact that the n step transition matrix is the n power of the transition matrix.
(Note that we now have infinite matrices.) The definition of irreducible and the period of a
state is the same. And in an irreducible Markov chain, all states have the same period.

Recall that Tx = min{n ≥ 1 : Xn = x}, the time of the first return to state x. And a state is
recurrent if Px(Tx <∞) = 1. There are two big changes when we go to infinite but countable
state spaces. First, there can be transient states even if the chain is irreducible. Second,
irreducible chains need not have stationary distibutions when they are recurrent. The
definition of recurrence needs to be refined.

In a finite state Markov chain the expected value Ex[Tx] is always finite for a recurrent state.
But in an infinite chain, it can be infinite. If Ex[Tx] <∞ we say the state is positive
recurrent. If Ex[Tx] = ∞ but Px(Tx <∞) = 1, we say the state is null recurrent. States
that are neither null or positive recurrent are said to be transient.



Theorem 17 In an irreducible chain either
(i) All states are transient
(ii) All states are null recurrent
(iii) All states are positive recurrent

MORE Example We consider a random walk on the non-negative integers. Let
0 < p < 1. The walk jumps right with probability p, left with probability 1− p. If it is at the
origin it jumps right with probability 1. Chain is positive recurrent if p < 1/2, null recurrent
if p = 1/2 and transient if p > 1/2.

Theorem 18 For an irreducible Markov chain with countable state space the following are
equivalent.

(i) All states are positive recurrent.

(ii) There is a stationary distribution π. (It is a distribution, so in particular
∑

x π(x) <∞.)

The two big convergence theorems of the previous section hold if we add the hypothesis that
there is a stationary distribution.

Theorem 19 Let p(x, y) be the transition matrix of an irreducible, aperiodic countable state
Markov chain which has a stationary distribution. Then for all states x, y,

lim
n→∞ p

n(x, y) = π(y) (7.11)

For any initial distribution π0, the distribution πn of Xn converges to the stationary
distribution π in the total variation norm.

In the setting of a discrete (finite or countable) state space, the total variation norm is just an
l1 norm:

||pn(x, ·) = π(·)||TV =
∑

y

|pn(x, y) = π(y)| (7.12)

Theorem 20 Consider an irreducible, countable state Markov chain which has a stationary
distribution π. Let f(x) be a function on the state space such that

∑

x |f(x)|π(x) <∞. Then
for any initial distribution,

P ( lim
n→∞

1

n

n
∑

k=1

f(Xk) =
∑

x

f(x)π(x)) = 1 (7.13)



The definition of detailed balance is just the same as in the finite state space case. And we
have

Proposition 6 If a distribution π satisfies detailed balance, then π is a stationary
distribution.

7.3 General state space

For finite or countable state spaces the transition kernel is a function on S × S. Since
∑

y p(x, y) = 1, if we fix x we can think of p(x, ·) as a probability measure. For A ⊂ S, define

K(x,A) =
∑

y∈A
p(x, y) (7.14)

So K(x,A) is the probability we jump to some state in the set A given that we are currently
in state x.

Definition 9 Let S be a set and S a σ-field on S. The set S is called the state space. A
transition kernel K is a function from S × S into [0, 1] such that

(i) For all x ∈ S, K(x, ·) is a probability measure on (S,S).

(ii) For all A ∈ S, K(·, A) is a measurable function on S.

If S is finite or countable, then the transition function we considered in the previous section is
just given by p(x, y) = K(x, {y})

Suppose the state space is a subset of Rd and for all x, the measure K(x, ·) is absolutely
continuous with respect to Lebesgue measure. So there is a non-negative function k(x, y) such
that

K(x,A) =
∫

A
k(x, y) dy (7.15)

for A ∈ S. In this case we will refer to k(x, y) as the transition function. Note that it must
satisfy

∫

S
k(x, y)dy = 1, ∀x (7.16)

Note: Robert and Casella write the density for the transition kernel as K(x, y) rather then
k(x, y).



There are other situations in which there is a density of sorts. Something like the following
will come up when we look at Gibbs samplers. To keep the notation simpler we consider two
dimensions. Suppose the state space is R2 or a subset of it. We denote out states by (x, y)
and denote the Markov process by (Xn, Yn). We consider transition kernels that describe the
following. We flip a fair coin to decide whether we change the first component or the second
component. If we are changing the first component then the new state (Xn+1, Yn+1) is
(Xn, Yn+1) where the distribution of Yn+1 is absolutely continuous with respect to 1d
Lebesgue measure with a density that depends on (Xn, Yn). And if we are changing the
second component, ... So we have two functions k1(x, y; z) and k2(x, y; z) such that

K((x0, y0), ·) =
1

2
[δx,x0

× k2(x0, y0; y)dy + k2(x0, y0; x)dx× δy,y0 ] (7.17)

where we let (x, y) be the variables for the measure in K((x0, y0), ·).

Definition 10 Let K be a transition matrix on the state space (S,S). Let µ be a probability
measure on (S,S). A sequence of random variables X0, X1, X2, · · · is a Markov process with
transition kernel K and initial distribution µ if for all k = 0, 1, 2, · · ·,

P (Xk+1 ∈ A|X0, X1, · · · , Xk) =
∫

A
K(Xk, dx) (7.18)

and the distribution of X0 is µ.

It follows immediately from the definition that

P (Xk+1 ∈ A|Xk) =
∫

A
K(Xk, dx) (7.19)

Notation: The above equation is sometimes written as (Robert and Casella do this)

P (Xk+1 ∈ A|x0, x1, · · · , xk) = P (Xk+1 ∈ A|xk) =
∫

A
K(xk, dx) (7.20)

This should be taken to mean

P (Xk+1 ∈ A|X0 = x0, X1 = x1, · · · , Xk = xk) = P (Xk+1 ∈ A|Xk = xk) =
∫

A
K(xk, dx) (7.21)

The probability measure for the process depends on the transition kernel and the initial
distribution. Typically the kernel is kept fixed, but we may consider varying the initial
distribution. So we let Pµ denote the probability measure for initial distribution µ. We denote



the corresponding expectation by Eµ. The fact that such a Markov process exists is quite
non-trivial.

Example (Random walk) Let ξn be an iid sequence of RV’s, and let

Xn =
n
∑

i=1

ξi (7.22)

Since Xn+1 = Xn + ξn+1, K(x, ·) = µξn+1+x where µξn+1+x denotes the distribution measure of
the RV ξn+1 + x.

Example (AR(1)) Let ǫn be an iid sequence. For example they could be standard normal
RV’s. Let θ be a real constant. Then define

Xn = θXn−1 + ǫn (7.23)

We take X0 = 0. The transition kernel is K(x, ·) = µǫn+1+θx.
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Let Kn(·, ·) be the function on S × S given by

Kn(x,A) = P (Xn ∈ A|X0 = x) (7.24)

These are the n step transition kernels. We now consider the Chapman Komogorov equations.

Notation remark: Let f(x) be a function on X and µ a measure on X. The integral of f
with respect to µ is denoted in several ways:

∫

X
fdµ =

∫

X
f(x)dµ =

∫

X
f(x)dµ(x) =

∫

X
f(x)µ(dx) (7.25)

The last one is most commonly seen in probability rather than analysis.

Proposition 7 Let m,n be positive integers and A ∈ S. Then

Kn+m(x,A) =
∫

S
Kn(y, A)Km(x, dy) (7.26)

for x ∈ S and A ∈ S.



The finite dimensional distributions are completely determined by µ and K. Let
A0, A1, · · · , An ∈ S.

P (X0 ∈ A0) =
∫

A0

K(X0, A1)µ(dx0) (7.27)

P (X0 ∈ A0, X1 ∈ A1, · · · , Xn ∈ An) =
∫

A0

dµ(x0)
∫

A1

K(x0, dx1) (7.28)

· · ·
∫

An

K(xn−1, dxn) (7.29)

Theorem 21 (weak Markov property) Let h(x1, x2, · · ·) be a reasonable function. Then for
any initial distribution and any positive integer k,

Eµ[h(Xk+1, Xx+2, · · ·)|X0, X1, · · · , Xk] = EXk
[h(X1, X2, · · ·)] (7.30)

Note that if we take h(x1, · · ·) = 1x1∈A then the above equation becomes the definition of a
Markov process.

The definition of irreducible for discrete state space does not work for general state space.

Definition 11 Let φ be a non-zero measure on the state space. A Markov chain is
φ-irreducible if for every A ∈ S with φ(A) > 0 and every x ∈ S there is a positive integer n
such that Kn(x,A) > 0.

Some caution with the meaning of this def. Consider a finite chain on {1, · · · , n} which is
irreducible. Now add one more state n+ 1 but the only new transitions are from n+ 1 to
{1, 2, · · · , n}. So there are no transitions from the original n states to state n+ 1. This is not
an irreducbile chain. n+ 1 is a transient state. But if φ(n+ 1) = 0, this new chain is
φ-irreducible.

Example: We return to the AR(1) example. Take the ǫn to be standard normal. Then we
can take φ to be Lebesgue measure on the real line. Argue the example is φ irreducible. Now
suppose ǫn is uniform on [−1, 1] and θ > 1. Argue the chain is not φ irreducible.

Now suppose θ > 1 and ǫn is uniformly distributed on [−1, 1]. Start the chain at X0 = 0.
Argue it is not φ irreducible where φ is Lebesgue measure.

Now suppose ǫn is absolutely continuous with respect to Lebesgue measure and the density is
positive everywhere. Then it is easy to see the chain is φ irreducible when φ is Lebesgue
measure.



Given a set A ∈ S we let τA be the time the chain first enters A, i.e.,

τA = inf{n ≥ 1 : Xn ∈ A} (7.31)

And we let ηA be the number of times the chain visits A, i.e.,

ηA =
∞
∑

n=1

1A(Xn) (7.32)

Note that ηA can be infinite.

Definition 12 Let Xn be a ψ irreducible Markov chain. The chain is recurrent if for all
A ∈ S with ψ(A) > 0 we have Ex[ηA] = ∞ for all x ∈ A.

In the discrete case if a state is recurrent, then the probability we return to the state is 1.
Once we have returned the probability we will return again is still 1, and so on. So with
probability one we will return infinitely many times. So ηA = 1 with probability one. The
above definition is weaker than this. In particular we will have Ex[ηA] = ∞ if Px(ηA = ∞) is
non-zero but less than 1. To rule out some pathologies we will need a stronger notion of
recurrent for our convergence theorems.

Definition 13 The chain is Harris recurrent if there is a measure ψ such that for A ∈ S with
ψ(A) > 0 and all x ∈ A we have Px[τA <∞] = 1 for all x ∈ A.

Definition 14 A σ-finite measure π is invariant for a Markov chain with transition kernel K
such that

π(B) =
∫

S
K(x,B)π(dx), ∀B ∈ S (7.33)

(Note that we do not require that it be a probability measure or even that it is a finite
measure). If there is an invariant measure which is a probability measure then we say the
chain is positive recurrent.

Note: Robert and Casella say just “positive” instead of “positive recurrent.”

Theorem 22 Every recurrent chain has an invariant σ-finite measure. It is unique up to a
multiplicative constant.



Example: For random walk Lebesgue measure is an invariant measure.

Example: Consider the AR(1) example when the ǫn have a standard normal distribution.
We look for a stationary distribution with a normal distribution with mean µ and variance σ2.
If Xn is N(µ, σ2) then Xn+1 = θXn + ǫn is N(θµ, θ2σ2 + 1). So it will be stationary only if
µ = θµ and σ2 = θ2σ2 + 1. This is possible only if |θ| < 1, in which case µ = 0 and
σ2 = 1/(1− θ2).

Proposition 8 If the chain is positive recurrent then it is recurrent.

A recurrent chain that is not positive recurrent is called null recurrent.

There is an analog of detailed balance if the transition kernel is given by a density, i.e., the
state space is a subset of Rd and for all x

K(x,A) =
∫

A
k(x, y) dy (7.34)

for A ∈ S.

Definition 15 A chain for which the transition kernel is given by a density satisfies detailed
balance if there is a non-negative function π(x) on S such that

π(y)k(y, x) = π(x)k(x, y), ∀x, y ∈ S (7.35)

Proposition 9 If the chain satisfies detailed balance then π is a stationary measure.

Proof: Integrate the detailed balance equation over y with respect to Lebesgue measure.
QED

As we already note there will be MCMC algorithms in which the transition kernel is not given
by a density but is given by a lower dimensional density. There is an analog of detailed
balance in this case.

Markov chains with continuous state space can still be periodic. We give a trivial example.

Example: Let S = [0, 1] ∪ [2, 3]. Define K(x, ·) to be the uniform measure on [2, 3] if
x ∈ [0, 1] and the uniform measure on [0, 1] if x ∈ [2, 3]. Clearly if we start the chain in [0, 1],
then after n steps it will be somewhere in [0, 1] if n is even and somewhere in [2, 3] if n is odd.

The definition of period for a general state space is a bit technical and we will skip it.

As in the previous section there are two types of convergence theorems.



Theorem 23 If the chain is Haris positive and aperiodic then for every initial distbution µ,

lim
n→∞ ||Kn(x, ·)− π||TV = 0 (7.36)

where || ||TV is the total variation norm.

Explain the total variation norm

Theorem 24 (Ergodic theorem) Suppose that the Markov chain has an invariant measure π.
Then the following two statements are equivalent.
(i) The chain is Harris recurrent.
(ii) For all f, g ∈ L1(π) with

∫

S g(x)dπ(x) 6= 0 we have

lim
n→∞

1
n

∑n
k=1 f(Xk)

1
n

∑n
k=1 g(Xk)

=

∫

S f(x)dπ(x)
∫

S g(x)dπ(x)
(7.37)

Corollary If the Markov chain is Harris recurrent and has an invariant probability measure
π, then for all f ∈ L1(π) we have

lim
n→∞

1

n

n
∑

k=1

f(Xk) =
∫

S
f(x)dπ(x) (7.38)





Chapter 8

Markov chain Monte Carlo

8.1 The key idea of MCMC

We start with a state space S and a probability density π(x) on it. Our goal is to come up
with a Markov chain on this state space that has π(x) as its invariant distribution. If the
chain is recurrent, then the ergodic theorem says that we can compute (approximately) the
expected value of a function F (x) on the state space by running the chain for along time and
taking the long time average of F (x) along the sequence of states that we generate. We start
with two very simple examples to illustrate the idea of MCMC. One is discrete, one
continuous.

Example: Fix an integer k and let S be the set of permutations with on {1, 2, · · · , k}. Let π
be the uniform measure on S. We want to construct a Markov chain on S with π as the
stationary measure. (There are many ways to do this.) Our algorithm is as follows. We pick
two integers i, j ∈ {1, 2, · · · , k}. The choice is random with the uniform distribution on the set
of k2 possibilities. Let σij be the permutation that interchanges i and j and leaves the other
elements fixed. Then if σ is the state at time n, the state at time n+ 1 is σij◦σ.

Show that it satisfies detailed balance.

Show it is irreducible.

Remark: This example illustrates the following observation. If p(x, y) is symmetric, i.e.,
p(x, y) = p(y, x), then the stationary distribution is the uniform distribution.

Example: The state space is the real line. Let π(x) be the density of the standard normal.
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We want to cook up a Markov chain with this as the stationary distribution. We take

k(x, y) = c(σ) exp(−1

2
(y − 1

2
x)2/σ2) (8.1)

Show that π(x) is the stationary distribution if σ2 = 3/4.

8.2 The Metropolis-Hasting algorithm

We want to generate samples from a distribution

π(x) =
1

Z
p(x) (8.2)

where x ∈ X. The set X could be a subset of Rd in which case π(x) is a density and the
measure we want to sample from is π(x) times Lebesgue measure on Rd. Or X could be finite
or countable in which case the distribution is discrete and the measure we want to sample
from assigns probability π(x) to x. The function p(x) is known and Z is a constant which
normalizes it to make it a probability distribution. Z may be unknown.

Let q(x, y) be some transition function for a Markov chain with state space S. If S is discrete
then q(x, y) is a transition probability, while if S is continuous it is a transition probability
density. We will refer to q as the proposal density or distribution. q(x, y) is often written as
q(y|x). We assume that q(x, y) = 0 if and only if q(y, x) = 0 We define a function called the
acceptance probability by

α(x, y) = min{π(y)q(y, x)
π(x)q(x, y)

, 1} (8.3)

Since π(y)/π(x) = p(y)/p(x), the possibly unknown constant Z is not needed to compute the
acceptance probability. Note that α(x, y) is always in [0, 1]. If one of the terms in the
denominator above is zero, we define α(x, y) to be zero. It really doesn’t matter how we
define α(x, y) in this case. Explain.

Then we define a Monte Carlo chain as follows.

Metropolis-Hasting algorithm Suppose the chain is in state Xn at time n. We generate Y
from the distribution q(y|Xn). Next generate U from the uniform distribution on [0, 1]. If
U ≤ α(Xn, Y ) then we set Xn+1 = Y . Otherwise we set Xn+1 = Xn.

If the proposal distribution is symmetric, meaning that q(y, x) = q(x, y), then the acceptance
probability function simplifies to

α(x, y) = min{π(y)
π(x)

, 1} (8.4)



This is sometimes called just the Metropolis algorithm. This case was studied by Metropolis.
Hasting generalized to non-symmetric q.

The above description of the algorithm implicitly defines the transition kernel for the Markov
chain. We make it more explicit. In the discrete case for x 6= y the transition probability is

p(x, y) = q(x, y)α(x, y) (8.5)

and

p(x, x) = q(x, x)α(x, x) +
∑

y

[1− α(x, y)]q(x, y) (8.6)

The first term comes from accepting the proposed state x and the second term (with the sum
on y) comes from proposing y and rejecting it.

In the continuous case the transition kernel K(x, ·) is a mixture of a continuous measure and
a point mass.

K(x,A) =
∫

A
α(x, y)q(x, y) dy + 1x∈A

∫

S
[1− α(x, y)]q(x, y) dy (8.7)

Remark: This sort of looks like acceptance-rejection. We generate a proposed state Y and
accept it with probability α(Xn, Y ), reject it otherwise. But it is not the same as the
acceptance-rejection algorithm. One crucial difference is that in the acceptance-rejection
algorithm when we reject a proposed value the number of samples does not increase. In
Metropolis-Hasting when we reject Y the chain still takes a time step. When this happens
there are two consecutive states in X0, X1, X2, · · · that are the same. So in the time average

1

n

n
∑

k=1

f(Xk) (8.8)

there can be terms that are the same.

Theorem 25 π(x) is the stationary distribution of the Markov chain of the
Metropolis-Hasting algorithm.

Proof: We will eventually consider the discrete and continuous cases separately, but first we
prove the following crucial identity which holds in both cases.

π(x)α(x, y)q(x, y) = π(y)α(y, x)q(y, x), ∀x, y ∈ S (8.9)



To prove it we consider two cases: α(x, y) = 1 and α(y, x) = 1. (It is possible these cases
overlap, but that does not affect the proof.) The cases are identical. So we assume
α(x, y) = 1. Then

α(y, x) =
π(x)q(x, y)

π(y)q(y, x)
(8.10)

The above identity follows.

Now consider the discrete case, i.e., the state space is finite or countable. In this case π(x) is
a probability mass function. The transition function is

p(x, y) = α(x, y)q(x, y) (8.11)

We prove that π(x) is the stationary distribution by showing it satisfies detailed balance. Let
x and y be distinct states. (If x = y it is trivial to verify the detailed balance equation.) So
we must show π(x)p(x, y) = π(y)p(y, x). This is immediate from (8.9).

Now consider the continuous case. So the state space is a subspace of Rd and π(x) is a density
with respect to Lebesgue measure on Rd. Note that the transition kernel is now a mix of a
continuous and discrete measure. So trying to use detailed balance is problematic. We just
verify the stationary equation. So let A ⊂ Rd. We must show

∫

A
π(x)dx =

∫

K(x,A)π(x)dx (8.12)

The right side is the sum of two terms - one is from when we accept the proposed new state
and one from when we reject it. The acceptance term is

∫
[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx (8.13)

Given that we are in state x and that the proposed state is y, the probability of rejecting the
proposed state is 1− α(x, y). So the probability we stay in x given that we are in x is

∫

[1− α(x, y)]q(x, y)dy (8.14)

So the rejection term is
∫

A
π(x)

[
∫

[1− α(x, y)]q(x, y)dy
]

dx (8.15)

Note that the integral over x is only over A since when we reject we stay in the same state. So
the only way to end up in A is to have started in A. Since

∫

q(x, y)dy = 1, the above equals

∫

A
π(x)dx−

∫

A
π(x)

[
∫

α(x, y)]q(x, y)dy
]

dx (8.16)



So we need to show
∫
[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx =
∫

A
π(x)

[
∫

α(x, y)]q(x, y)dy
]

dx (8.17)

In the right side we do a change of variables to interchange x and y. So we need to show

∫
[
∫

A
α(x, y)q(x, y)dy

]

π(x)dx =
∫

A
π(y)

[
∫

α(y, x)]q(y, x)dx
]

dy (8.18)

If we integrate (8.9) over x ∈ X and y ∈ A we get the above. QED
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To apply our convergence theorem for Markov chains we need to know that the chain is
irreducible and if the state space is continuous that it is Harris recurrent.

Consider the discrete case. We can assume that π(x) > 0 for all x. (Any states with π(x) = 0
can be deleted from the state space.) Given states x and y we need to show there are states
x = x0, x1, · · · , xn−1, xn = y such that α(xi, xi+1)q(xi, xi+1) > 0. If q(xi, xi+1) > 0 then
α(xi, xi+1) > 0. So it is enough to find states so that q(xi, xi+1) > 0. In other words we need
to check that the transition function q(x, y) is irreducible.

Now consider the continuous case. We want to show that the chain is π-irreducible. We start
with a trivial observation. If q(x, y) > 0 for all x, y, then the chain is π-irreducible since for
any x and any set A with

∫

A π(x)dx > 0, the probability that if we start in x and reach A in
just one step will be non-zero. This condition is too restrictive for many cases. Here is a more
general sufficient condition.

Proposition 10 Suppose that the state space S is connected in the following sense. Given
δ > 0 and x, y ∈ S there exists states y0 = x, y1, · · · , yn−1, yn = y such that |yi − yi−1| < δ for
i = 1, 2, · · · , n and the sets Bδ(yi) ∩ S have non-zero Lebesgue measure for i = 0, 1, 2, · · · , n.
Assume there is an ǫ > 0 such that |x− y| < ǫ implies q(x, y) > 0. Then the
Metropolis-Hasting chain is irreducible with respect to Lebesgue measure on S.

Proof: Let x0 ∈ S and let A ⊂ S have non-zero Lebesgue measure. Pick yn ∈ A such that the
set Bδ(yn) ∩ A has non-zero Lebesgue measure. (This is possible since A has non-zero
Lebesgue measure.) Let y1, y2, · · · , yn−1 be states as in the above sense of connectedness with



δ = ǫ/3. We will show Kn(x0, A) > 0. We do this by only considering trajectories
x0, x1, x2, · · · , xn such that |xi − yi| < δ for i = 1, · · · , n. We further require xn ∈ A. And
finally we only consider trajectories for which all the proposed jumps were accepted. The
probability of this set of trajectories is given by the integral of

q(x0, x1)α(x0, x1)q(x1, x2)α(x1, x2) · · · q(xn−1, xn)α(xn−1, xn) (8.19)

where the region of integration is given by the constraints |xi − yi| < δ for i = 1, 2, · · · , n− 1
and xn ∈ Bδ(yn) ∩ A. Since |yi−1 − yi| < δ the triangle inequality implies |xi−1 − xi| < 3δ = ǫ.
So we have q(xi−1, xi) > 0. Note that q(xi−1, xi) > 0 implies α(xi−1, xi) > 0. So the integrand
is strictly positive in the integral. The integral is over a set of non-zero Legesgue measure, so
the integral is non-zero. QED

Finally we have

Proposition 11 If the Metropolis-Harris chain is π-irreducible then it is Harris recurrent.

A proof can be found in Robert and Casella. This is lemma 7.3 in their book in section 7.3.2.

We do not need to know the chain is aperiodic for our main use of it, but it is worth
considering. If U > α(Xn, Y ) then we stay in the same state. This happens with probability
1− α(Xn, Y ). So as long as α(x, y) < 1 on a set with non-zero probability (meaning what
???), the chain will be aperiodic. If α(x, y) = 1 for all x, y, then π(y)q(y, x) = π(x)q(x, y).
But this just says that π satisfies detailed balance for the transition function q. So we would
not be doing Metropolis-Hasting anyway. In this case we would need to study q to see if it
was aperiodic.

Example (normal distribution): Want to generate samples of standard normal. Given
Xn = x, the proposal distribution is the uniform distribution on [x− 1, x+ 1]. So

q(x, y) =

{

1
2

if |x− y| ≤ 1,
0, if |x− y| > 1,

(8.20)

We have

α(x, y) = min{π(y)
π(x)

, 1} =
1

2
min{exp(−1

2
y2 +

1

2
x2), 1} (8.21)

=
1

2

{

exp(−1
2
y2 + 1

2
x2) if |x| < |y|,

1 if |x| ≥ |y| (8.22)

Example (permutations): Consider permutations σ of {1, 2, · · · , k}. A permutation is a
bijective function on {1, 2, · · · , k}. Instead of considering the uniform distribution on the set



of permutations as we did in an earlier example we consider a general probability measure.
We write it in the form

π(σ) =
1

Z
exp(w(σ)) (8.23)

w(σ) can be any function on permutation and can take on positive and negative values. An
example of a possible w is the following. Let s(σ) be the number of elements that are fixed by
σ. Then let w(σ) = αs(σ). So depending on the sign of α we either favor or disfavor
permutations that fix a lot of elements. The proposal distribution is to choose two distinct i, j
uniformly and multiply the current permuation by the tranposition (i, j).

α(σ, σ′) = min{π(σ
′)

π(σ)
, 1} = min{exp(w(σ′)− w(σ)), 1} (8.24)

(8.25)

Note that we only need to compute the change in w(). For “local” w this is a relatively cheap
computation.

Example (Ising model): Fix a finite subset Λ of the lattice Zd. At each site i ∈ Λ there is
a “spin” σi which takes on the values ±1. The collection σ = {σi}i∈Λ is called a spin
configuration and is a state for our system. The state space is {−1, 1}Λ. The Hamiltonian
H(σ) is a function of configurations. The simplest H is the nearest neighbor H:

H(σ) =
∑

<ij>

σiσj (8.26)

We then define a probability measure on the spin configurations by

π(σ) =
1

Z
exp(−βH(σ)) (8.27)

The proposal distribution is defined as follows. We pick a site i uniformly from Λ. Then we
flip the spin at i, i.e., we replace σi by −σi. So we only propose transitions between
configurations that only only differ in one site. So q(σ, σ′) = 1/|Λ| when the spin
configurations differ at exactly on site and it is zero otherwise. For two such configurations σ
and σ′ the acceptance probability is

α(σ, σ′) = min{π(σ
′)

π(σ)
, 1} = min{exp(−β[H(σ′)−H(σ)], 1} (8.28)

Note that there is lots on cancellation in the differece of the two Hamiltonians. This
computation takes a time that does not depend on the size of Λ.

Example: QFT



8.3 The independence sampler

The independence sampler is a special case of the Metropolis-Hasting algorithm. In the
independence sampler the proposal distribution does not depend on x, i.e., q(x, y) = g(y). So
the acceptance probability becomes

α(x, y) = min{π(y)g(x)
π(x)g(y)

, 1} (8.29)

Suppose that there is a constant C such that π(x) ≤ Cg(x). In this setting we could do the
acceptance-rejection algorithm. It will generate independent samples of π(x) and the
acceptance rate will be 1/C. By contrast the independence sampler will generate dependent
samples of π(x).
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Proposition 12 Consider the independence sampler with proposal distribution g(x) and
stationary distribution π(x). Suppose there is a constant C such that π(x) ≤ Cg(x) for all
x ∈ S. Let π0(x) be any initial distibution and let πn(x) be the distribution at time n. Then

||πn − π||TV ≤ 2(1− 1

C
)n (8.30)

Proof: We will only consider the case that the initial distribution is absolutely continuous
with respect to Lebesgue measure. So the initial distribution is π(x)dx. Note that in this case
the subsequent distributions πn will be absolutely continuous with respect to Lebesgue
measure. Explain this.

For convenience let ǫ = 1
C
. So our bound can be rewritten as g(x) ≥ ǫπ(x). Since

q(x, y) = g(y), we have

α(x, y)q(x, y) = min{π(y)g(x)
π(x)g(y)

, 1}g(y) = min{π(y)g(x)
π(x)

, g(y)} (8.31)

≥ min{π(y)ǫπ(x)
π(x)

, ǫπ(y)} = ǫπ(y) (8.32)

Let ρ(x) be a probability density. The transition kernel takes it to another density, and we
will denote this new density by Kρ. So K is a linear operator on integrable functions on Rd.



Let P be the linear operator which maps a probability density ρ(x) to the probability density
π(x). So P is a projection. For a general integrable function

(Pρ)(x) = π(x)
∫

X
ρ(y)dy (8.33)

Our previous bound shows that for any probability density ρ, Kρ− ǫPρ is a non-negative
function. Its integral is 1− ǫ. So if we define another linear operator by

R =
1

1− ǫ
[K − ǫP ] (8.34)

then R will map a probability density into another probability density. Note that
K = ǫP + (1− ǫ)R. A straightforward induction argument shows that

Kn =
n
∑

k=1

Kn−kP (1− ǫ)k−1Rk−1 + (1− ǫ)nRn (8.35)

Note that Pρ = π for any probability distribution ρ, and Kπ = π. So KjPρ = π for any j. So
for any initial distribution π0,

πn = Knπ0 = π
n
∑

k=1

(1− ǫ)k−1 + (1− ǫ)nRnπ0 = [1− (1− ǫ)n]π + (1− ǫ)nRnπ0 (8.36)

So

πn − π = −(1− ǫ)nπ + (1− ǫ)nRnπ0 (8.37)

Since Rnπ0 is a probability density, the L1 norm of the above is bounded by 2(1− ǫ)n. QED

8.4 The Gibbs sampler

In this section change notation and let f(x) denote the distribution we want to sample from,
in place of our previous notation π(x).

We first consider the two-stage Gibbs sampler. We assume that the elements of the state
space are of the form (x, y). The probability distribution we want to sample from is f(x, y).
Recall that the marginal distributions of X and Y are given by

fX(x) =
∫

f(x, y) dy, fY (y) =
∫

f(x, y) dx (8.38)

and the conditional distributions of X given Y and Y given X are

fY |X(y|x) =
f(x, y)

fX(x)
, fX|Y (x|y) =

f(x, y)

fY (y)
(8.39)



Note that if we only know f(x, y) up to an overall constant, we can still compute fY |X(y|x)
and fX|Y (x|y).

The two-stage Gibbs sampler Given that we are in state (Xn, Yn), we first generate Yn+1

from the distribution fY |X(·|Xn). Then we generate Xn+1 from the distribution fX|Y (·|Yn+1).
These two stages make up one time step for the Markov chain. So the transition kernel is

K(x, y; x′, y′) = fY |X(y
′|x)fX|Y (x

′|y′) (8.40)

Proposition 13 f(x, y) is the stationary distribution of the two-stage Gibbs sampler.

Proof: We just show that Kf = f .

(Kf)(x′, y′) =
∫ ∫

f(x, y)K(x, y; x′, y′)dxdy (8.41)

=
∫ ∫

f(x, y)fY |X(y
′|x)fX|Y (x

′|y′)dxdy (8.42)

=
∫ ∫

f(x, y)
f(x, y′)

fX(x)

f(x′, y′)

fY (y′)
dxdy (8.43)

=
∫

fX(x)
f(x, y′)

fX(x)

f(x′, y′)

fY (y′)
dx (8.44)

=
∫

f(x, y′)
f(x′, y′)

fY (y′)
dx (8.45)

= f(x′, y′) (8.46)

QED

Remark: The two-stage Gibbs sampler does not satisfy detailed balance in general.

Example: (Bivariate normal) We consider the bivariate normal (X, Y ) with joint density

f(x, y) = c exp(−1

2
x2 − 1

2
y2 − αxy) (8.47)

where α is a parameter related to the correlation of X and Y . Argue that

fY |X(y|x) = c(x) exp(−1

2
(y + αx)2) (8.48)

So for the first stage in the Gibbs sampler, we generate Yn+1 from a standard normal
distribution with mean −αXn. We have

fX|Y (x|y) = c(y) exp(−1

2
(x+ αy)2) (8.49)



So for the second stage, we generate Xn+1 from a standard normal distribution with mean
−αYn+1.

We now consider the multi-stage Gibbs sampler. Now suppose that the points in the state
space are of the form x = (x1, x2, · · · , xd). We need to consider the conditional distribuion of
Xi given all the other Xj. To keep the notation under control we will write

fXi|X1,···,Xi−1,Xi+1,···,Xd
(xi|x1, · · · , xi−1, xi+1, · · · , xd) = fi(xi|x1, · · · , xi−1, xi+1, · · · , xd) (8.50)

Again we emphasize that we can compute these conditional distributions even if we only know
f(x1, · · · , xd) up to an unknown constant.

Multi-stage Gibbs sampler: The algorithm has d stages and proceeds as follows.
(1) Given (Xn

1 , · · · , Xn
d ) we sample Xn+1

1 from f1(·|Xn
2 , · · · , Xn

d ).
(2) Then we sample Xn+1

2 from f2(·|Xn+1
1 , Xn

3 , · · · , Xn
d ).

(j) Continuing we sample Xn+1
j from fj(·|Xn+1

1 , ·, Xn+1
j−1 , X

n
j+1, · · · , Xn

d .

(p) In the last step we sample Xn+1
d from fd(·|Xn+1

1 , · · ·Xn+1
d−1 ).

Before we show that the stationary distribution of this algorithm is f , we consider some
variations of the algorithm. Let Kj be the transition kernel corresponding to the jth step of
the multi-stage Gibbs sampler. So

Kj(x1, x2, · · · , xp; x′1, x′2, · · · , x′d) = fj(x
′
j|x1, x2, · · · , xj−1, xj+1, · · · , xp)

p
∏

i=1:i 6=j

δ(xi − x′i) (8.51)

If we think of Kj as a linear operator, then the multi-stage Gibbs sampler is KdKd−1 · · ·K2K1.

Here is another Gibbs sampler which for lack of a standard name we will call the randomized
Gibbs sampler. Fix some probability distribution pi on {1, 2, · · · , d}. Given that we are in
state (Xn

1 , · · · , Xn
d ), we first pick i ∈ {1, 2, · · · , d} according to this distribution. Then we

sample Xn+1
i from fi(·|Xn

1 , ·, Xn
i−1, X

n
i+1, · · · , Xn

d ). For l 6= i, Xn+1
l = Xn

l . The transition
kernel for this algorithm is

K =
d
∑

i=1

piKi (8.52)

Proposition 14 f(x1, x2, · · · , xd) is the stationary distribution of the multi-stage Gibbs
sampler and of the randomized Gibbs sample for any choice of the distribution pi.
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Proof: We only need to show that for all j, Kjf = f . So we compute:

(Kjf)(x
′
1, x

′
2, · · · , x′d) (8.53)

=
∫

· · ·
∫

f(x1, x2, · · · , xd)Kj(x1, x2, · · · , xd; x′1, x′2, · · · , x′d)dx1dx2 · · · dxd (8.54)

=
∫

· · ·
∫

f(x1, x2, · · · , xd)fj(x′j|x1, x2, · · · , xj−1, xj+1, · · · , xd)
d
∏

i=1:i 6=j

δ(xi − x′i) (8.55)

= fj(x
′
j|x′1, x′2, · · · , x′j−1, x

′
j+1, · · · , x′d)

∫

f(x′1, x
′
2, · · · , x′j−1, xj, x

′
j+1, x

′
d)dxj (8.56)

= f(x′1, x
′
2, · · · , x′d) (8.57)

Note that the random stage Gibbs sampler has f as the stationary distrbution for any choice
of the pi. We need to take all pi > 0 to have any chance that the chain is irreducible. The
simplest choice for the pi is to use the uniform distribution on {1, 2, · · · , d}. Why would we do
anything else? In the following example we will see a case where we might want to use a
non-uniform distribution.

Caution: There are lots of variations on the Gibbs sampler, but one should be careful. Here
is one that does not work.

WRONG two-stage Gibbs sampler: Given that we are in state (Xn, Yn), we first
generate Yn+1 from the distribution fY |X(·|Xn). Then we generate Xn+1 from the distribution
fX|Y (·|Yn). These two stages make up one time step for the Markov chain. So the transition
kernel is

K(x, y; x′, y′) = fY |X(y
′|x)fX|Y (x

′|y) (8.58)

Note that the difference with the correct two-stage Gibbs sampler is that we we generate
Xn+1 from fX|Y (·|Yn) rather than fX|Y (·|Yn+1).

Here is an example to illustrate how the above algorithm is wrong. Take f(x, y) to be the
uniform distribution on the three points (0, 0), (0, 1), (1, 0). Explain this.

Remark: The d-stage Gibbs sampler requires that the states have the structure
(x1, x2, · · · , xd). However this does mean that the state space has to be a subset of Rd. Some
of the xi could be vectors or even something stranger.

Example: We consider the Ising model that we considered in a previous example. The
integer d is not the number of dimensions. It is the number of sites in Λ. For j ∈ Λ, fj is the



conditional distribution of σj given the values of all the other spins. We compute this in the
usual way (joint density over marginal) to get

fj(σj|σΛ\j) =
exp(−βH(σ))

∑

sj exp(−βH(σ̂))
(8.59)

where sj is summed over just −1, 1 and σ̂ equals σi for all sites i 6= j and equals sj at site j.
The algorithm applies to any H, but there are some nice cancellations if H is “local.” We
illustrate this by considering the nearest neighbor H. Any term in H that does not involve
site j cancels in the numerator and the denominator. The result is just

fj(σj|σΛ\j) =
exp(−βσj

∑

k:|k−j|=1 σk)

exp(−β∑k:|k−j|=1 σk) + exp(β
∑

k:|k−j|=1 σk)
(8.60)

So computing fj takes a time that is O(1), independent of the size of Λ. But just how fast the
algorithm mixes depends very much on the size of Λ and on β. For the multi-stage algorithm
each time steps take a time of order |Λ|. For the random-stage algorithm each time step only
takes a time O(1), but it will take O(|Λ|) times steps before we have changed a significant
fraction of the spins.

Now suppose we want to compute the expected value of F (σ) in the Ising model and F (σ)
only depends on a few spins near the center of Λ. Then we may want to choose the
distribution pi so that the sites near the center have higher probability than the sites that are
not near the center.

Remark: As the example above shows, d is not always the “dimension” of the model.

Example: (loosely based on example 6.6 in Rubenstein and Kroese, p. 177) For
i = 1, 2, · · · , d, let pi(xi) be a discrete probability function on the non-negative integers. If
X1, X2, · · · , Xd were independent with these distributions, then the joint distribution would
be just the product of the pi(xi). This is trivial to simulate. We are interested in something
else. Fix a positive integer m. We restrict the sample sample to the d-tuples of non-negative
integers x1, x2, · · · , xd such that

∑d
i=1 xi = m. We can think of this as the conditional

distribution of X1, · · · , Xd given that
∑

iXi = m. So we want to simulate the joint pdf given
by

f(x1, · · · , xd) =
1

Z

d
∏

i=1

pi(xi) (8.61)

when
∑

xi = m and f() = 0 otherwise. The constant Z is defined by ... Since
Xd = m−∑d−1

i=1 Xi, we can work with just X1, X2, · · · , Xd−1. Their joint distribution is

f(x1, · · · , xd−1) =
1

Z
pd(m−

d−1
∑

i=1

xi)
d−1
∏

i=1

pi(xi) (8.62)



for x1, · · · , xd−1 whose sum is less than or equal to m. Then their sum is greater than m,
f(x1, · · · , xd−1) = 0. All we need to run the Gibbs sampler are the conditional distributions of
Xj given the other Xi. They are given by

fj(xj|x1, · · · , xj−1, xj+1, · · · , xd−1) ∝ fj(xj)fd(m−
d−1
∑

i=1

xi) (8.63)

If we let m′ = m−∑d−1
i=1:i 6=j xi, then the right side is equal to fj(xj)fd(m

′ − xj). We need to
compute the constant to normalize this, but that takes only a single sum on xj. (And for
some fj, fd can be done explicitly.)

Irreducibility: brief discussion of irreducibility for the Gibbs sample. Gap in notes here.

8.5 Slice sampler

The slice sampler is in some sense a special case of the Gibbs sampler. Suppose we want to
sample from f(x) where x ranges over X. We consider a new distribution: the new state
space is a subspace of X ×R, namely,

S = {(x, u) : 0 ≤ u ≤ f(x)} (8.64)

This can be thought of as the area under the graph of f . The new distribution is the uniform
measure on S. The key observation is that with this distribution on (X,U), the marginal
distribution of X is f(x). So if we can construct a Markov chain (Xn, Un) with the uniform
measure on S as its stationary measure then we can just look at Xn and long time averages of
random variables on X will converge to their expectation with respect to f(x). We use the
two-stage Gibbs sampler. So we need the conditional distributions fU |X(u|x) and fX|U(x|u).
They are both uniform. More precisely, the distribution of U given X = x is uniform on
[0, f(x)], and the distribution of X given U = u is uniform on {x : u ≤ f(x)}.

Slice sampler (single slice) Given that we are in state (Xn, Un), we first generate Un+1

from the uniform distribution on [0, f(Xn)]. Then we generate Xn+1 from the uniform
distribution on {x : Un+1 ≤ f(x)}.

Remark: Suppose that the density we wish to simulate is given by cf(x) where c is an
unknown constant. We can still take

S = {(x, u) : 0 ≤ u ≤ f(x)} (8.65)

and put the uniform distribution on S. The density function is 1
c
1S. The constant c is

unknown, but that will not matter. The marginal density of X is still f(x).



Example: Let f(x) = ce−x2/2, the standard normal. Given (Xn, Un) it is trivial to sample
Un+1 uniformly from [0, f(Xn)]. Next we need to sample Xn+1 uniformly from
{x : Un+1 ≤ f(x)}. This set is just the interval [−a, a] where a is given by Un+1 = f(a). We
can trivially solve for a.

The first step of the slice sampler, generating Un+1, is always easy. The second step,
generating Xn+1, may not be feasible at all since the set {x : Un+1 ≤ f(x)} may be very
complicated. For example suppose we want to sample

f(x) = c
1

1 + x2
exp(−x2/2) (8.66)

The set will be an interval, but finding the endpoints requires solving an equation like
exp(−x2/2)/(1 + x2) = u. This could be done numerically, but the set could be even more
complicated. There is a generalization that may work even when this second step is not
feasible for the single slice sampler.

Assume that f(x) can be written in the form

f(x) =
d
∏

i=1

fi(x) (8.67)

where the fi(x) are non-negative but need not be probability densities. We then introduce a
new random variable (sometimes called auxillary variables) for each fi. So the new state
space is a subspace of X ×Rd and is given by

S = {(x, u1, u2, · · · , ud) : 0 ≤ ui ≤ fi(x), i = 1, 2, · · · , d} (8.68)

We use the uniform distribution on S. The key observation is that if we integrate out
u1, u2, · · · , ud, we just get f(x). So the marginal distribution of X will be f(x). For the
Markov chain we use the d+ 1 dimensional Gibbs sample.

Example: Let

f(x) = c
1

1 + x2
exp(−x2/2) (8.69)

Let

f1(x) =
1

1 + x2
, f2(x) = exp(−x2/2) (8.70)

Note that we are dropping the c. We sample Un+1
1 uniformly from [0, f1(X

n)]. Then we
sample Un+1

2 uniformly from [0, f2(X
n)]. Finally we need to sample Xn+1 uniformly from

{x : Un+1
1 ≤ f1(x), U

n+1
2 ≤ f2(x)} (8.71)



This set is just an interval with endpoints that are easily computed.

Stop - Wed, March 23

The slice sampler can be used when the initial distribution f(x) is discrete as the next
example shows.

Example: Consider the density f(x) = c exp(−αx2) where α > 0 and x = 0, 1, 2, · · ·. Note
that the constant c cannot be computed analytically. We would have to compute it
numerically. For the slice sampler we can just drop c. The first stage is to generate Un+1

uniformly from [0, f(Xn)]. Then we generate Xn+1 uniformly from the set of non-negative
integers k such that Un+1 ≤ f(k).

8.6 Bayesian statistics and MCMC

We start with a triviality which is often called Bayes rule. Given two random variables (which
can be random vectors), we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, fY |X(y|x) =

fX,Y (x, y)

fX(x)
(8.72)

So

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
(8.73)

This is often written as

fY |X(y|x) ∝ fX|Y (x|y)fY (y) (8.74)

with the understanding that the constant of proportionality depends on x. In Bayesian
statistics it is often written in the more abbreviated form

f(y|x) ∝ f(x|y)f(y) (8.75)

“This particular style of notation is typical in Bayesian analysis and can be of great
descriptive value, despite its apparent ambiguity” - Rubinstein and Kroese.



Now suppose we have a probability distribution for x, which is typically a vector, that
depends on some parameters θ = (θ1, · · · , θd). Often the vector x is a sample x1, x2, · · · , xn
that comes from performing some experiment n times. We don’t know θ. In statistics we
want to use the value of x that results from our experiment to estimate the unknown
parameters θ. The Bayesian statistician puts a probability distribution on θ, f(θ), that is
supposed to encode all the information we have about how likely we think different values of θ
are before we do the experiment. f(θ) is called the prior distribution. Now we do the
experiment, and so we have a particular value for x. We want to replace the prior distribution
on θ by a distribution that incorporates the knowledge of x. The natural distribution is
f(θ|x). This is called the posterior distribution of θ. By Bayes rule

f(θ|x) ∝ f(x|θ)f(θ) (8.76)

where the constant of proportionality depends on x. The conditional density f(x|θ) is called
the likelihood. We typically know this function quite explicitly. For example, if f(x|θ) comes
from independent repetitions of the same experiment, then

f(x|θ) = f(x1, x2, · · · , xn|θ) =
n
∏

i=1

fX(xi|θ) (8.77)

where fX(x|θ) is the distribution of X for one performance of the experiment. So Bayes rule
says

f(θ|x) ∝
[

n
∏

i=1

fX(xi|θ)
]

f(θ) (8.78)

Given the data x this gives the joint distribution of the parameters θ1, · · · , θd. To run a Gibbs
sampler we need the conditional distribution of each θi given the other θj, j 6= i. The constant
of proportionality in Bayes rule is often impossible to compute analytically, but this does not
matter for the Gibbs sampler.

Example : We have a coin with probability θ of getting heads. However, we do not know θ.
We flip it n times, let X1, X2, · · · , Xn be 1 for heads, 0 for tails. If we are given a value for θ,
then the distribution of X1, X2, · · · , Xn is just

f(x|θ) =
n
∏

i=1

θxi(1− θ)1−xi = θs(1− θ)n−s (8.79)

where x is short for x1, x2, · · · , xn and s is defined to be
∑n

i=1 xi. If we have no idea what θ is,
a reasonable choice for the prior distribution for θ is to make it uniform on [0, 1]. Now
suppose we flip the coin n times and use the resulting “data” x1, · · · , xn to find a better
distribution for θ that incorporates this new information, i.e., find the posterior distribution.
The posterior is given by

f(θ|x) ∝ f(x|θ)f(θ) = θs(1− θ)n−s1[0,1](θ) (8.80)



where s =
∑n

i=1Xi. If n is large then s will be large too and this density will be sharply
peaked around s/n.

In this example above the formula for the posterior is quite simple and in particular it is
trivial to compute the normalizing constant. In many actual applications this is not the case.
Often θ is multidimensional and so just computing the normalizing constant requires doing a
multidimensional integral which may not be tractable. We still want to be able to generate
samples from the posterior. For example we might want to compute the mean of θ from the
posterior and maybe find confidence interval for it. We can try to use MCMC, in particular
the Gibbs sampler, to do this.

Example: This is similar to the coin example above but with more parameters. We have a
die with probabilities θ1, θ2, · · · , θ6 of getting 1, 2, · · · , 6. So the sum of the θi must be 1. We
role the die n times and let x1, x2, · · · , xn be the numbers we get. So the xi take values in
{1, 2, 3, 4, 5, 6}. Putting a prior distribution on the θi is a little tricky since we have the
constraint that they must sum to 1. Here is one approach. We would like to assume the die is
close to being fair and we have no prior reason to think that a particular number is more
likely than any other number. Take φ1, · · · , φ6 to be independent and identically distributed
with distribution g(φ) where φ is peaked around 1/6. So the joint distribution of the φi is
∏

i g(φi). Then we just set θi = φi/
∑

j φj. We now think of the φi as the parameters.

We have

f(x|θ) =
n
∏

i=1

θxi
=

6
∏

j=1

θ
nj

j (8.81)

and so

f(x|φ) = [
6
∑

j=1

φj]
−n

6
∏

j=1

φ
nj

j (8.82)

where nj is the number of xi equal to j. We have used the fact that
∑6

j=1 nj = n. So Bayes
rule says

f(φ1, · · · , φ6|x) ∝ [
6
∑

j=1

φj]
−n

6
∏

j=1

[φ
nj

j g(φj)] (8.83)

We would like to compute things like the expected value of each θi. This would give us an
idea of how unfair the die is and just how it is “loaded”. We do this by generating samples of
(φ1, · · · , φ6). We can use the Gibbs sampler. We need the conditional distribution of each φi

given the other φ. Up to a normalization constant this is

[φi + Φ]−n φni

i g(φi) (8.84)



where Φ =
∑

j 6=i φj.

Example: Zero-inflated poisson process - handbook p. 235.

Review Poisson proccesses, Poisson RV’s, and gamma distribution

Gamma(w, λ) has pdf

f(x) =
λw

Γ(w)
xw−1e−λx (8.85)

Hierarchical models: Suppose we have a parameter λ which we take to be random. For
example it could have a Gamma(α, β) distribution. Now we go one step further and make β
random, say with a Gamma(γ, δ) distribution. So

f(λ|β) = Gamma(α, β), (8.86)

f(β) = Gamma(γ, δ) (8.87)

and so the prior is

f(λ, β) = f(λ|β)f(β) = · · · (8.88)

Example The following example appears in so many books and articles it is ridiculuous. But
it is still a nice example. A nuclear power plant has 10 pumps that can fail. The data consists
of an observation time ti and the number of failures xi for each pump that have occured by
time ti.

A natural model for the times at which a single pump fail is a Poisson process with parameter
λ. We only observe the process at a single time, and the number of failures that have occured
by that time is a Possion random variable with parameter λti. One model would be to assume
that all the pumps have the same failure rate, i.e., the same λ. This is an unrealistic
assumption. Instead we assume that each pump has its own failure rate λi. The λi are
assumed to be random and independent, but with a common distribution. We take this
common distribution to be Gamma(α, β) where α is a fixed value but β is random with
distribution Gamma(γ, δ). γ and δ are numbers. The parameters θ here are λ1, · · · , λ10, β.
From now on we write λ1, · · · , λ10 as λ. Note that

f(λ, β) = f(λ|β)f(β) (8.89)

and

f(x|λ, β) = f(x|λ) (8.90)



pump 1 2 3 4 5 6 7 8 9 10
Number failures 5 1 5 14 3 19 1 1 4 22
observation time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

Table 8.1:

and we have

f(x|λ) =
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

(8.91)

Bayes rule says

f(λ, β|x) ∝ f(x|λ, β)f(λ, β) (8.92)

= f(x|λ, β)f(λ|β)f(β) (8.93)

=
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

10
∏

i=1

Gamma(λi|α, β)Gamma(β|γ, δ) (8.94)

=
10
∏

i=1

[

(λiti)
xi

xi!
e−λiti

]

10
∏

i=1

[

βα

Γ(α)
λα−1
i e−λiβ

]

δγ

Γ(γ)
βγ−1e−δβ (8.95)

∝
10
∏

i=1

[

λxi+α−1
i e−λi(ti+β)

]

β10α+γ−1e−δβ (8.96)

where the constant of proportionality depends on the xi and ti and on the constants γ, δ.

We want to compute the posterior distribution of the parameters. We are particularly
interested in the mean of the distribution of the λi, i.e., the mean of Gamma(α, β). The mean
of this gamma distribution with fixed α, β is α/β. So we need to compute the mean of α/β
over the posterior distribution. We can write this as a ratio of high dimensional (ten or
eleven) integrals, but that is hard to compute. So we use the Gibbs sampler to sample λ, β
from the posterior. Note that this is an 11 dimensional sampler. So we need the conditional
distributions of each λi and of β.

λi|β, ti, xi ∼ Gamma(xi + α, ti + β), (8.97)

β|λ ∼ Gamma(γ + 10α, δ +
10
∑

i=1

λi) (8.98)



Chapter 9

Convergence and error estimation for
MCMC

References:

Robert, Casella - chapter 12

chapter 8 of “handbook” - primarily on statitical analysis

Fishman chap 6

9.1 Introduction - sources of errors

When we considered direct Monte Carlo simulations, the estimator for the mean we were
computing was a sum of independent random variables since the samples were independent.
So we could compute the variance of our estimator by using the fact that the variance of a
sum of independent random variables is the sum of their variances. In MCMC the samples
are not independent, and so things are not so simple. We need to figure out how to put error
bars on our estimate, i.e., estimate the variance of our estimator.

There is a completely different source of error in MCMC that has no analog in direct MC. If
we start the Markov chain in a state which is very atypical for the stationary distribution,
then we need to run the chain for some amount of time before it will move to the typical
states for the stationary distribution. This preliminary part of the simulation run goes under
a variety of names: burn-in, initialization, thermalization. We should not use the samples
generated during this burn-in period in our estimate of the mean we want to compute. The
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preceeding was quite vague. What is meant by a state being typical or atypical for the
stationary distribution?

There is another potential source of error. We should be sure that our Markov chain is
irreducible, but even if it is, it may take a very long time to explore some parts of the state
space. This problem is sometimes called “missing mass.”

We illustrate these sources of errors with some very simple examples. One way to visualize
the convergence of our MCMC is a plot of the evolution of the chain, i.e, Xn vs n.

Example: We return to an example we considered when we looked at Metropolis-Hasting.
We want to generate samples of a standard normal. Given Xn = x, the proposal distribution
is the uniform distribution on [x− ǫ, x+ ǫ], where ǫ is a parameter. So

q(x, y) =

{

1
2ǫ

if |x− y| ≤ ǫ,
0, if |x− y| > ǫ,

(9.1)

(When we looked at this example before, we just considered ǫ = 1.) We have

α(x, y) = min{π(y)
π(x)

, 1} = min{exp(−1

2
y2 +

1

2
x2), 1} (9.2)

=

{

exp(−1
2
y2 + 1

2
x2) if |x| < |y|,

1 if |x| ≥ |y| (9.3)

First consider what the evolution plot for direct MC would look like. So we just generate
sample of Xn from the normal distribution. The evolution plot is shown in figure 9.1. Note
that there is not really any evolution here. Xn+1 has nothing to do with Xn.

The next evolution plot (figure 9.2) is for the Metropolis-Hasting algorithm with X0 = 0. and
ǫ = 1.0. The algorithm works well with this initial condition and proposal distribution. The
samples are correlated, but the Markov chain mixes well.

The next evolution plot (figure 9.3) is for the Metropolis-Hasting algorithm with X0 = 0. and
ǫ = 0.1. The algorithm does not mix as well with this proposal distribution. The state moves
rather slowly through the state space and there is very strong correlation between the samples
over long times.

The next evolution plot (figure 9.4) is for the Metropolis-Hasting algorithm with X0 = 0. and
ǫ = 100.. This algorithm does very poorly. Almost all of the proposed jumps take the chain to
a state with very low probability and so are rejected. So the chain stays stuck in the state it
is in for many time steps. This is seen in the flat regions in the plot.

The next evolution plot (figure 9.5) is for the Metropolis-Hasting algorithm with X0 = 10.
and ǫ = 0.1. Note that this initial value is far outside the range of typical values of X. This
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Figure 9.1: Direct Monte Carlo for the normal distribution.

algorithm has a significant burn-in period. It takes a couple thousand time steps before the
chain is in a typical state. We need to discard the samples from this burn-in phase.

Now we change the distribution. We consider a mixture or two normal distributions. They
both have variance 1; one is centered at 3 and one at −3. So the density is given by

f(x) ∝ exp(−1

2
(x− 3)2) + exp(−1

2
(x+ 3)2) (9.4)

We use the same proposal distribution as before. The evolution plot for the
Metropolis-Hasting algorithm for this distribution with X0 = 0. and ǫ = 1.0 is shown in figure
9.6.
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Figure 9.2: Metropolis Hasting for the normal distribution with X0 = 0 and ǫ = 1.0.
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Figure 9.3: Metropolis Hasting for the normal distribution with X0 = 0 and ǫ = 0.1.
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Figure 9.4: Metropolis Hasting for the normal distribution with X0 = 0 and ǫ = 100..
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9.2 The variance for correlated samples

We recall a few probability facts. The covarance of random variable X and Y is

cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[(X − µX)(Y − µY )] (9.5)

This is a bi-linear form. Also note that cov(X,X) = var(X). Thus for any random variables
Y1, · · · , YN ,

var(
N
∑

i=1

Yi) =
1

N2

N
∑

i,j=1

cov(Xi, Xj) (9.6)

A stochastic process Xn is said to be stationary if for all positive integers m and t, the joint
distribution of (X1+t, X2+t, · · · , Xm+t) is independent of t. In particular, cov(Xi, Xj) will only
depends on |i− j|. It is not hard to show that if we start a Markov chain in the stationary
distribution, then we will get a stationary process. If the initial distribution is not the
stationary distribution, then the chain will not be a stationary process. However, if the chain
is irreducible, has a stationary distribution and is aperiodic, then the distribution of Xn will
converges to that of the stationary distribution. So if we only look at the chain at long times
it will be approximately a stationary process.

As before let

µ̂ =
1

N

N
∑

n=1

f(Xn) (9.7)

be our estimator for the mean of f(X). Its variance is

V ar(µ̂) =
1

N2

N
∑

k,n=1

cov(f(Xk), f(Xn)) (9.8)

In the following we do a bit of hand-waving and make some unjustifiable assumptions. If the
initial state X0 is chosen according to the stationary distribution (which is typically impossible
in practice) then these assumptions are justified. But there are certainly situations where
they are not. Let σ2(f) be the variance of f(X) in the stationary distribution. If N is large,
then for most terms in the sum k and n are large. So the distribution of Xk and Xn should be
close to the stationary distribution. So the variance of f(Xk) should be close to σ(f)2. So

cov(f(Xk), f(Xn)) = [var(f(Xk))var(f(Xn))]
1/2cor(f(Xk), f(Xn)) (9.9)

≈ σ2(f) cor(f(Xk), f(Xn)) (9.10)

where cor(Y, Z) is the correlation coefficient for Y and Z. Thus

V ar(µ̂) =
σ(f)2

N2

N
∑

k=1

N
∑

n=1

cor(f(Xk), f(Xn)) (9.11)



Fix a k and think of cor(f(Xk), f(Xn)) as a function of n. This function will usually decay as
n moves away from k. So for most values of k we can make the approximation

N
∑

n=1

cor(f(Xk), f(Xn)) ≈
∞
∑

n=−∞
cor(f(Xk), f(Xk+n)) = 1 + 2

∞
∑

n=1

cor(f(Xk), f(Xk+n)) (9.12)

Finally we assume that this quantity is is essentially independent of k. This quantity is called
the autocorrelation time of f(X). We denote it by τ(f). So

τ(f) = 1 + 2
∞
∑

n=1

cor(f(X0), f(Xn)) (9.13)

Explain why it is a “time” by looking at correlation that decays exponentially with a time
scale. We now have

V ar(µ̂) ≈ σ(f)2

N2

N
∑

k=1

τ(f) =
σ(f)2τ(f)

N
(9.14)

If the samples were independent the variance would be σ(f)2/N . So our result says that this
variance for independent samples is increased by a factor of τ(f). Another way to interpret
this result is that the “effective” number of samples is N/τ(f).

To use this result we need to compute τ(f). We can use the simulation run to do this. We
approximate the infinite sum in the expression for τ(f) by truncating it at M . So we need to
estimate

1 + 2
∞
∑

n=1

cor(f(Xk), f(Xk+n)) (9.15)

ˆτ(f) = 1 + 2
1

N −M

N−M
∑

k=1

M
∑

n=1

cor(f(Xk), f(Xk+n)) (9.16)

Of course we do not typically have any a priori idea of how big M should be. So we need to
first try to get an idea of how fast the correlation function decays.

MORE Help Help Help

Once we have an estimate for the variance of our estimator of E[f(X)], we can find a
confidence interval, i.e. error bars, in the usual way.

9.3 Variance via batched means

Esimating τ(f) can be tricky. In this section we give a quick and dirty method for putting
error bars on our estimator that does not require computing the correlation time τ(f). Let N



be the number of MC time steps that we have run the simulation for. We pick an integer l
and put the samples in batches of length l. Let b = N/l. So b is the number of batches. So
the first batch is X1, · · · , Xl, the second batch is Xl+1, · · · , X2l, and so on. If l is large
compared to the autocorrelation time of f(X), then if we pick Xi and Xj from two different
batches then for most choices of i and j, f(Xi) and f(Xj) will be almost independent. So if
we form estimators for the batches, j = 1, 2, · · · , b,

µ̂j =
1

l

b
∑

i=1

f(X(j−1)l+i) (9.17)

then the µ̂1, · · · , µ̂b will be almost independent. Note that

µ̂ =
1

b

b
∑

i=1

µ̂i (9.18)

So

var(µ̂) ≈ 1

b2

b
∑

i=1

var(µ̂i) (9.19)

The batches should have essentially the same distribution, so var(µ̂i) should be essentially
independent of i. We estimate this common variance using the sample variance of µ̂i,
i = 1, 2, · · · , b. Denote it by s2l . Note that this batch variance depends very much on the
choice of l. Then our estimator for the variance of µ̂ is

var(µ̂) ≈ s2l
b

(9.20)

How do we choose the batch size? The number of batches b is N/l. We need b to be reasonably
large (say 100, certainly at least 10) since we estimate the variance of the batches using a
sample of size b. So l should be at most 1/10 of N . We also need l to be large compared to
the autocorrelation time. If N is large enough, there will be a range of l where these two
criteria are both met. So for l in this range the estimates we get for the variance of µ̂ will be
essentially the same. So in practice we compute the above estimate of var(µ̂) for a range of l
and look for a range over which it is constant. If there is no such range, then we shouldn’t use
batched means. If this happens we should be suspicious of the MC simulation itself since this
indicates the number of MC time steps is not a large multiple of the autocorrelation time.
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We return to our hand-waving argument that the batch means should be almost independent
if the batch size is large compared to the autocorrelation time and make this argument more
quantitative.

The variance of µ̂ is given exactly by

var(µ̂) =
1

N2

N
∑

i,j=1

cov(f(Xi), f(Xj)) (9.21)

Using batched means we approximate this by

1

b2

b
∑

i=1

var(µ̂i) (9.22)

This is equal to

1

N2

∑

(i,j)∈S
cov(f(Xi), f(Xj)) (9.23)

where S is the set of pairs (i, j) such that i and j are in the same batch. So the difference
between the true variance of µ̂ and what we get using batched means is

1

N2

∑

(i,j)/∈S
cov(f(Xi), f(Xj)) (9.24)

Keep in mind that the variance of µ̂ is of order 1/N . So showing this error is small means
showing it is small compared to 1/N . We fix the number b of batches, let N = bl and let
l → ∞. We will show that in this limit the error times N goes to zero. So we consider

1

N

∑

(i,j)/∈S
cov(f(Xi), f(Xj)) (9.25)

Define C() by C(|i− j|) = cov(f(Xi), f(Xj)). Then the above can be bounded by

2b

N

l
∑

k=1

∞
∑

i=1

|C(i+ k)| (9.26)

Let

T (k) =
∞
∑

i=1

|C(i+ k)| =
∞
∑

i=k+1

|C(i)| (9.27)

We assume that C(i) is absolutely summable. So T (k) goes to zero as k → ∞. Using the fact
that l = N/b, we have that the above equals

2

l

l
∑

k=1

T (k) (9.28)

which goes to zero by the analysis fact that if limk→∞ ak = 0 then limn→∞
1
n

∑n
k=1 ak = 0.



9.4 Subsampling

Until now we have always estimated the mean of f(X) with the estimator

µ̂ =
1

N

N
∑

i=1

f(Xi) (9.29)

Subsampling (sometimes called lagging) means that we estimate the mean with

µ̂sub =
1

N/l

N/l
∑

i=1

f(Xil) (9.30)

where l is the subsampling time. In other words we only evaluate f every l time steps.

One reason to do this is that if l is relatively large compared to the autocorrelation time, then
the Xil will be essentially independent and we can estimate the variance of our estimator just
as we did for direct Monte Carlo where the samples where independent. So the variance of
the subsampling estimator will be approximately σ2/(N/l), where σ2 is the variance of f(X).

Intuitively one might expect if we compare two estimators, one with subsampling and one
without, for the same number of MC steps, then the estimator without subsampling will do
better. More precisely, we expect the variance of µ̂ to be smaller than the variance of µ̂sub if
we use the same N in both. The following proposition makes this rigorous.

Proposition 15 Define µ̂ as above and define

µ̂j =
1

N/l

N/l−1
∑

i=0

f(Xil+j) (9.31)

Letting σ(?) denote the standard deviation of ?, we have

σ(µ̂) ≤ 1

l

l
∑

j=1

σ(µ̂j) (9.32)

Typically the variances of the µ̂j will be essentially the same and so morally the proposition
says that the variance of µ̂ is no larger than the variance of µ̂sub.

Proof: The crucial fact used in the proof is that for any RV’s X, Y ,

|cov(X, Y )| ≤ [var(X) var(Y )]1/2 (9.33)



which follows from the Cauchy Schwarz inequality. Note that

µ̂ =
1

l

l
∑

j=1

µ̂j (9.34)

So

var(µ̂) =
1

l2

l
∑

i=1

l
∑

j=1

cov(µ̂i, µ̂j) (9.35)

≤ 1

l2

l
∑

i=1

l
∑

j=1

[var(µ̂i)var(µ̂j)]
1/2 (9.36)

=
1

l2

l
∑

i=1

l
∑

j=1

σ(µ̂i)σ(µ̂j) (9.37)

=

[

1

l

l
∑

i=1

σ(µ̂i)

]2

(9.38)

Taking square roots the result follows. QED.

The proposition does not imply that it is never beneficial to subsample. Computing f for
every time step in the Markov chain takes more CPU time than subsampling with the same
number of time steps. So there is a subtle trade-off between the increase in speed as we
subsample less frequently and the increase in the variance. Choosing l so large that it is much
larger than the autocorrelation time is not necessarily the optimal thing to do. Ideally we
would like to choose l to minimize the error we get with a fixed amount of CPU time. Finding
this optimal choice of l is not trivial.

Factor of two hueristic: Actually finding the optimal amount choice of l is non-trivial. We
give a crude method that at worst will require twice as much CPU time as the optimal choice
of l will. Let τf be time to compute f(Xi) and let τX be the time to perform one time step,
i.e., compute Xi+1 given Xi. We take l to be τf/τX (rounded to an integer). Note that this
will make the time spent on computing the Xi equal to the time spent evaluating f on the Xi.
Now we argue that this is worse than by the optimal choice by at most a factor of two in CPU
time.

Let lopt be the optimal choice of l. First consider the case that l < lopt, i.e., we are evaluating
f more often than in the optimal case. Now compare a simulation with N time steps with our
crude choice of l with a simulation with N time steps with the optimal choice lopt. They have
the same number of MC steps, but the simulation using l is sampled more often and so is at
least as accurate as the simulation using lopt. The simulation using l takes more CPU time,
but at most the extra time is the time spent evaluating f and this is half of the total CPU
time. So the simulation using l takes at most twice as long as the one using lopt.



Now consider the case that l > lopt. Now we compare two simulations that each evaluate f a
total of M times. Since the evaluations using l are more widely spaced in time, they will be
less correlated than those for the simulation using lopt. So the simulation using l will be at
least as accurate as the simulation using lopt. The two simulations evaluate f the same
number of times. The simulation using l requires more MC steps. But the total time it
spends computing the Xi is equal to the total time it spends evaluating f . So the total CPU
is twice the time spent evaluating f . But the time spent evaluating f is the same for the two
simulations, and so is less that the total time the simulation using l uses.

9.5 Burn-in or initialization

In this section we consider the error resulting from the fact that we start the chain in an
arbitrary state X0 which may be atypical is some sense. We need to run the chain for some
number T of time steps and discard those times steps, i.e., we estimate the mean using

1

N − T

N
∑

i=T+1

f(Xi) (9.39)

This goes under a variety of names: initilization, burn-in, convergence to stationarity,
stationarization, thermalization.

We start with a trivial, but sometimes very relevant comment. Suppose we have a direct MC
algorithm that can generate a sample from the distribution we are trying to simulate, but it is
really slow. As long as it is possible to generate one sample in a not unreasonable amount of
time, we can use this algorithm to generate the inital state X0. Even if the algorithm that
directly samples from π takes a thousand times as much time as one step for the MCMC
algorithm, it may still be useful as a way to initialize the MCMC algorithm. When we can do
this we eliminate the burn-in or initialization issue altogether.

In the example of burn-in at the start of this chapter, f(X) was just X. When we started the
chain in X0 = 10, this can be thought of as starting the chain in a state where the value of
f(X) is atypical. However, we should emphasize that starting in a state with a typical value
of f(X) does not mean we will not need a burn-in period. There can be atypical X for which
f(X) is typical as the following example shows.

Example: We want to simulate a nearest neighbor, symmetric random walk in one
dimension with n steps. This is easily done by direct Monte Carlo. Instead we consider the
following MCMC. This is a 1d version of the pivot algorithm. This 1d RW can be thought of
as a sequence of n steps which we will denote by +1 and −1. So a state (s1, s2, · · · , sn) is a
string of n +1’s and −1’s. Let f(s1, · · · , sn) =

∑n
i=1 si, i.e., the terminal point of the random



walk. The probability measure we want is the uniform measure - each state has probability
1/2n. The pivot algorithmn is as follows. Pick an integer j from 0, 1, 2, · · · , n− 1 with the
uniform distribution. Leave si unchanged for i ≤ j and replace si by −si for i > j. Show this
statisfies detailed balance.

In the following plots the number of steps in the walk is always L = 1, 000, 000. All
simulations are run for 10,000 time steps. The initial state and the RV we look at varies.
Note that all state have probability 2−n, so no state is atypical in the sense of having
unusually small probability.

In the first plot, figure 9.7, we start with the state that is n/2 +’s, followed by n/2 −’s. The
RV plotted is the distance of the endpoint to the origin. The signed distance to the endpoint
is approximately normal with mean zero and variance L. So the range of this RV is roughly
[0, 2

√
L]. In the initial state the RV is 0. This is a typical value for this RV. There is a

significant burn-in period.
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Figure 9.7: MCMC simulation of random walk with L = 1, 000, 000 steps. Random
variable plotted is distance from endpoint of walk to 0. Initial state is a walk that
goes right for 500, 000 steps, then left for 500, 000 steps. MC is run for 10,000 time
steps. There is a significant burn-in period.

In the second plot, figure 9.8, the initial state is a random walk generated by just running a
direct MC. The RV is still the distance from the endpoint to the origin. Note the difference in
vertical scale between this figure and the preceding figure. This MCMC seems to be working



well.
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Figure 9.8: MCMC simulation of random walk with L = 1, 000, 000 steps. Random
variable plotted is distance from endpoint of walk to 0. Initial state is a random walk
generated by direct sampling. MC is run for 10,000 time steps.

In the third plot, figure 9.9, the random variable is the distance the walk travels over the time
interval [L/2, L/2 + 10, 000]. The initial state is again a random walk generated by just
running a direct MC. For this RV the autocorrelation time is large.

There are two lessons to be learned from this example. One is the subtlety of initilization.
The other is that there can be very different time scales in our MCMC. The autocorrelation
time of the RV that is the distance to the origin of the endpoint appears to be not very large.
By contrast, the autocorrelation time for the other RV is rather large. We might expect that
the exponential decay time for cov(f(Xi), f(Xj)) for the first RV will be not too large while
this time for the second RV will be large. However, it is quitely like that for the first RV there
is some small coupling to this “slow mode.” So even for the first RV the true exponential
decay time for the covariance may actually be quite large. Note that there are even slower
modes in this system. For example, consider the RV that is just the distance travelled over
the time interal [L/2, L/2 + 2].

A lot of theoretical discussions of burn-in go as follows. Suppose we start the chain in some
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Figure 9.9: MCMC simulation of random walk with L = 1, 000, 000 steps. Random
variable plotted is distance walk travels over the time interval [L/2, L/2 + 10, 000].
Initial state is a random walk generated by direct sampling.

distribution π0 and let πn be the distribution of Xn. Suppose we have a bound of the form

||πn − π||TV ≤ C exp(−n/τ) (9.40)

Then we can choose the number of samples T to discard by solving for T in C exp(−T/τ) ≤ ǫ
where ǫ is some small number. The problem is than we rarely have a bound of the above
form, and in the rare cases when we do, the τ may be far from optimal. So we need a
practical test for convergence to stationarity.
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If the distribution of the initial state X0 is the stationary (so the chain is stationary), then
the two samples

f(X1), f(X2), · · · , f(XN), and f(XN+1), f(XN+2), · · · , f(X2N ) (9.41)



have the same distribution.

To use this observation to test for converges to stationarity, we let T be the number of
samples we will discard for burn-in purposes and compare the two samples

f(XT+1), f(XT+2), · · · , f(XT+N), and f(XT+N+1), f(XT+N+2), · · · , f(XT+2N) (9.42)

A crude graphical test is just to plot histograms of these two samples and see if they are
obviously different.

For a quantitative test we can use the Kolmogorov-Smirnov statistic. This is a slightly
different version of KS from the one we saw before when we tested if a sample came from a
specific distribution with a given CDF F . We first forget about the Markov chain and
consider a simpler situation. Let X1, X2, · · ·X2N be i.i.d. We think of this as two samples:
X1, X2, · · ·XN and XN+1, XN+2, · · ·X2N . We form their empirical CDF’s:

F1(x) =
1

N

N
∑

i=1

1Xi≤x, (9.43)

F2(x) =
1

N

2N
∑

i=N+1

1Xi≤x (9.44)

Then we let

K = sup
x

|F1(x)− F2(x)| (9.45)

Note that K is a random variable (a statistic). As N → ∞, the distribution of
√
NK

converges. The limiting distribution has CDF

R(x) = 1−
∞
∑

k=1

(−1)k−1 exp(−2k2x2) (9.46)

This sum converges quickly and so R(x) is easily computed numerically. It is useful to know
the 95% cutoff. We have R(1.36) = 0.95. So for large N , P (

√
NK ≤ 1.36) ≈ 0.95.

Now return to MCMC. We cannot directly use the above since the samples of our Markov
chain are correlated. So we must subsample. Let l be large compared to the autocorrelation
time for f , i.e., τ(f). Then we compare the two samples

f(XT+l), f(XT+2l), · · · , f(XT+Nl), and f(XT+Nl+l), f(XT+Nl+2l, · · · , f(XT+2Nl) (9.47)

Finally, we end this section by noting that it never hurts (much) to throw away the first 10%
of your simulation run.



9.6 Autocorrelation times and related times

This section is based in large part on the article “The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk” by Madras and Sokal, Journal of Statistical
Physics, 50, 109-186 (1988), sections 2.2.

We assume the Markov chain is discrete with a finite state space. Not all of the following
statement extend to the case of continuous state space or infinite discrete state space. We also
assume our chain is irrecducible and aperiodic.

In this section we study three different times that can be defined for an MCMC and how they
are related. We have already seen one autocorrelation time defined by (9.13). In this section
we will refer to this as an “integrated autocorrelation time” and write it as τint,f . We recall
the formula for it:

τint,f = 1 + 2
∞
∑

n=1

cor(f(X0), f(Xn)) (9.48)

This time is important since it enters our formula for the variance of our estimator µ̂. That
variance is given approximatly by σ(f)2τint,f/N . Since the variance for direct Monte Carlo is
σ(f)2/N , we can interpret this formula as saying that in an MCMC the number of effectively
independent samples is N/τ(f). (The definition of τint,f in Madras and Sokal differs by a
factor of 2.) In the definition of τint,f we assume that X0 is distributed according to the
stationary distribution. So the Markov chain is stationary. (We can imagine that we have run
the chain for a sufficiently long burn-in period to achieve this. In that case X0 is the state
after the burn-in period.)

The second time we will consider is closely related. We follow the terminology of Madras and
Sokal. For a function f on the state space we define the unnormalized autocorrelation
function of f to be

Cf (t) = E[f(Xs)f(Xs+t)]− µ2
f , where (9.49)

µf = E[f(Xs)] (9.50)

Note that Cf (0) is the variance of f(Xt). We define the normalized autocorrelation function
to be

ρf (t) =
Cf (t)

Cf (0)
(9.51)

With our assumptions on the Markov chain ρf (t) will decay exponentially with t. We define
the exponential autocorrelation time for f by

τexp,f = lim sup
t→∞

t

−log|ρf (t)|
(9.52)



We define an exponential autocorrelation time for the entire chain by

τexp = sup
f
τexp,f (9.53)

With our assumptions on the Markov chain, τf will be finite, but it can be infinite when the
state space is finite.

The two times we have considered so far are properties of the stationary Markov chain. The
third time characterizes how long it takes the Markov chain to converge to the stationary
distribution starting from an arbitrary initial condition. With our assumptions on the chain
this convergence will be exponentially fast. We define τconv to be the slowest convergence rate
we see when we consider all initial distributions. More precisely we define

τconv = sup
π0

lim sup
t→∞

t

− log(||πt − π||TV )
(9.54)

Here π0 is the distribution of X0, πt is the distribution of Xt and π is the stationary
distribution.

The following two propositions almost say that τexp = τconv.

Proposition 16 Suppose there are constants c and τ such that for all initial π0,

||πt − π||TV ≤ ce−t/τ (9.55)

Then τexp ≤ τ .

Remark: This almost says τexp ≤ τconv. It does not exactly say this since our definition of
τconv does not quite imply the bound (9.55) holds with τ = τconv.

Proof: If we apply the hypothesis to the initial condition where π0 is concentrated on the
single state x, we see that

||pt(x, ·)− π(·)||1 ≤ ce−t/τ (9.56)

Now let f be a function on the state space with zero mean in the stationary distribution.
Then using

∑

y f(y)π(y) = 0, we have

|E[f(X0)f(Xt)]| = |
∑

x,y

f(x)π(x)pt(x, y)f(y)| (9.57)

= |
∑

x,y

f(x)π(x)f(y)[pt(x, y)− π(y)]| (9.58)

≤
∑

x

|f(x)|π(x)||f ||∞||pt(x, ·)− π(·)||1 (9.59)

≤
∑

x

|f(x)|π(x)||f ||∞ce−t/τ (9.60)



The propostion follows. QED.

Proposition 17 Suppose there are constants c and τ such that

Cov(g(X0), f(Xt)) ≤ ce−t/τ ||f ||∞||g||∞ (9.61)

for all functions f and g on the state space. Then τconv ≤ τ .

Remark: This almost says τconv ≤ τexp. It does not exactly say this since our definition of
τexp does not quite imply the bound (9.61) holds with τ = τexp.

Proof: The total variation norm can be computed by

||πt − π||TV sup
f :||f ||∞≤1

∑

x

f(x)[πt(x)− π(x)] (9.62)

Let g(x) = π0(x)/π(x). (Note that π(x) > 0 for all x.) The expected value of g is the
stationary distribution is

Eg(Xt) =
∑

x

g(x)π(x) =
∑

x

π0(x) = 1 (9.63)

So

Cov(g(X0), f(Xt)) =
∑

x,y

g(x)f(y)π(x)pt(x, y)− E[g(X0)]E[f(Xt)] (9.64)

=
∑

x,y

π0(x)f(y)p
t(x, y)− E[f(Xt)] (9.65)

=
∑

y

πt(y)f(y)−
∑

x

π(x)f(x) (9.66)

Since this is bounded by ce−t/τ ||f ||∞||g||∞ = ce−t/τ ||g||∞, the proposition follows. QED.

Recall that the stationary distribution is a left eigenvector of the transition matrix p(x, y),
and the constant vector is a right eigenvector. (Both have eigenvalue 1.) In general p(x, y) is
not symmetric, so there need not be a complete set of left or right eigenvectors. However, if
the chain satisfies detailed balance then there is, as we now show. We rewrite the detailed
balance condition as

π(x)1/2p(x, y)π(y)−1/2 = π(y)1/2p(x, y)π(y)−1/2 (9.67)

So if we define

p̂(x, y) = π(x)1/2p(x, y)π(y)−1/2 (9.68)



then p̂ is symmetric. (p is self-adjoint on l2(π).) If we let S be the linear operator on
functions on the state space that is just multiplication by π1/2, then

p̂ = SpS−1 (9.69)

Let êk be a complete set of eigenvectors for it. So p̂êk = λkêk. Note that the êk are
orthonormal.

Now let f(x) be a function on the state space. It suffices to consider functions which have
zero mean in the stationary distribution. So the covariance is just E[f(X0)f(Xt)]. To
compute this expected value we need the joint distribution of X0, Xt. It is π(x0)p

t(x0, xt). So

E[f(X0)f(Xt)] =
∑

x0,xt

π(x0)p
t(x0, xt)f(x0)f(xt) =

∑

x0

f(x0)π(x0)
∑

xt

pt(x0, xt)f(xt) (9.70)

We can write this as

(fπ, ptf) = (fπ, (S−1p̂S)tf) = (fπ, S−1p̂tSf) = (S−1πf, p̂tSf) = (fπ1/2, p̂tπ1/2f) (9.71)

Using the spectral decompostion of p̂ this is
∑

k

(fπ1/2, êk)λ
t
k(êk, π

1/2f) =
∑

k

c2kλ
t
k (9.72)

with ck = (fπ1/2, êk).

The right eigenvector of p with eigenvalue 1 is just the constant vector. So π1/2 is the
eigenvector of p̂ with eigenvalue 1. So

c1 =
∑

x

π(x)1/2π(x)1/2f(x) = 0 (9.73)

since the mean of f in the stationary distribution is zero. Let λ be the maximum of the
absolute values of the eigenvalues not equal to 1. So for k ≥ 2, |λtk| ≤ λ. So

E[f(X0)f(Xt)] ≤ λt
∑

k≥2

c2k (9.74)

Note that var(f(X0)) =
∑

k c
2
k. So

τint,f = 1 + 2
∞
∑

t=1

cor(f(X0), f(Xt)) ≤ 1 + 2
∞
∑

t=1

λt = 1 + 2
λ

1− λ
=

1 + λ

1− λ
≤=

2

1− λ
(9.75)
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Proposition 18 Assume that p is diagonalizable. Let λ be the maximum of the absolute
values of the eigenvalues not equal to 1. Then τconv is given by λ = exp(−1/τconv).

Proof: Let S be an invertible matrix that diagonalizes p. So p = SDS−1 where D is diagonal
with entries λk. We order things so that the first eigenvalue is 1. We have πp = π. So
πSD = πS. So πS is an eigenvector of D with eigenvalue 1. So it must be (1, 0, · · · , 0). So
π = (1, 0, · · · , 0)S−1. This says that the first row of S−1 is π. If we let ~1 be the column vector
(1, 1, · · ·)T , then we know p~1 = ~1. So DS−1~1 = S−1~1. This says S−1~1 is the eigenvector of D
with eigenvalue 1, so it is (1, 0, · · · , 0)T . So ~1 = S(1, 0, · · · , 0)T . We now have

πt = π0p
t = π0(SDS

−1)t = π0SD
tS−1 = π0Sdiag(λ

t
1, · · · , λt)S−1 (9.76)

= π0Sdiag(1, 0, 0 · · · , 0)S−1 + π0Sdiag(0, λ
t
2, · · · , λt)S−1 (9.77)

Since ~1 = S(1, 0, · · · , 0)T , Sdiag(1, 0, · · ·) is the matrix with 1’s in the first column and 0’s
elsewhere. So π0Sdiag(1, 0, 0 · · · , 0) is just (1, 0, · · · , 0)T Thus π0Sdiag(1, 0, 0 · · · , 0)S−1 = π.
The second term in the above goes to zero like λt. QED

Now consider the bound τint,f ≤ 2
1−λ

which we derived when the chain satistifed detailed
balance. Using the previous proposition, this becomes

τint,f ≤ 2

1− exp(−1/τconv)
(9.78)

If τconv is large, then the right side is approximately 2τconv.

Madras and Sokal carry out a detailed analysis for the pivot algorithm for a random walk in
two dimensions. Then show that τexp is O(N). For “global” random variables such as the
distance from the origin to the end of the walk, τf,int is O(log(N)). But for very local
observables, such as the angle between adjacent steps on the walk, τf,int is O(N).

9.7 Missing mass or bottlenecks

The problem we briefly consider in this section is an MCMC in which the state space can be
partitioned into two (or more) subsets S = S1 ∪ S2 such that although the probabilities of
getting from S1 to S2 and from S2 to S1 are not zero, they are very small.

The worst scenario is that we start the chain in a state in one of the subsets, say S1, and it
never leaves that subset. Then our long time sample only samples S1. Without any apriori
knowledge of the distribution we want to simulate, there is really no way to know if we are



failing to sample a representative portion of the distribution. “You only know what you have
seen.”

The slightly less worse scenario is that the chain does occasionally make transitions between
S1 and S2. In this case there is no missing mass, but the autocorrelation time will be huge. In
particular it will be impossible to accurately estimate the probabilities of S1 and S2.

It is worth looking carefully at the argument that your MCMC is irreducible to see if you can
see some possible “bottlenecks”.

If a direct MC is possible, although slow, we can do a preliminary direct MC simulation to get
a rough idea of where the mass is.

Missing mass is not just the problem that you fail completely to visit parts of the state space,
there is also the problem that you do eventually visit all of the state space, but it takes a long
time to get from some modes to other modes. One way to test for this is to run multiple
MCMC simulations with different initial conditions.

In the worst scenario when the chain is stuck in one of the two subsets, it may appear that
there is a relatively short autocorrelation time and the burn-in time is reasonable. So our
estimate of the autocorrelation time or the burn-in time will not indicate any problem.
However, when the chain does occassionally make transitions between modes, we will see a
very long autocorrelation time and a very slow convergence to stationary. So our tests for
these sources of errors will hopefully alert us to the bottleneck.





Part III

Further topics
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Chapter 10

Optimization

In this chapter we consider a very different kind of problem. Until now our prototypical
problem is to compute the expected value of some random variable. We now consider
minimization problems. For example we might have a purely non-random problem: find the
mininum of some function H(x) where x ranges over X, and find the minimizer. Or we might
want to minimize some function which is the mean of some random variable.

10.1 Simulated annealing

We consider the problem of minimizing H(x), a non-random problem a priori. We will look at
simulated annealing which is especially useful in situations where H(x) has local minima
which cause many of the standard minimization methods like steepest descent to get “stuck.”
Explain the name.

The basic idea is to study the probability measure

1

Z
e−βH(x) (10.1)

on X and let β → ∞. In this limit this probability measure should be concentrated on the
minimizing x or x’s. If we just set β to a large value and pick an initial state at random, then
the algorithm can get stuck near a local minimum near this initial value. The key idea behind
simulated annealing is to start with a small value of β and then slowly increase β as we run
the MCMC algorithm. In physics, β is propotional to the inverse of the temperature. So
letting β go to infinity means the temperature goes to zero. So this is often called “cooling.”

One thing we need to specify for the algorithm is how fast we increase β. A standard choice is
to let β = ρn where n is the time in the MC simulation and ρ is a parameter that is just

133



slightly bigger than 1. There is no obvious way to choose ρ. One should try different values
and diferent choices of the initial condition. One can then compare the final state for all the
MCMC runs and take the one with the smallest H.

So the algorithm looks like this:

1. Pick an initial state X0, an inital β = β0, and a cooling rate ρ.

2. For i = 1, · · · , N , let βi = ρβi+1 and use some MCMC algorithm with βi to generate the
next state Xi.

3. The final state XN is our approximation to the minimizer.

We could also compute H(Xi) at each time step and keep track of which Xi is best so far. It
is possible that along the way we get a state Xi which is better than the final XN . If it is
expensive to compute H() this may not be worth doing.

Example: We start with a trivial example that illustrates how the method avoids getting
stuck in local minima.

H(x) = sin2(πx) + αx2 (10.2)

where α > 0 is a parameter. Obviously the minimum is at x = 0, and there are local minima
at the integers. If α is small some of these local minima are very close to the true minima. In
our simulations we take α = 0.1. With this value of α the local minima near 0 are pretty close
to the global minima.

We use Metropolis-Hastings with a proposal distribution that is just uniform on
[Xn − ǫ,Xn + ǫ]. We take ǫ = 0.2 and X0 = 10.. We start with β0 = 0.1 and raise β by the
rule βn = ρβn−1 where we will try several different ρ. We consider three different choices of ρ.
For each choice we run four simulations. The simulations are run until β reaches 100. Note
that this correpsonds to very different numbers of time steps. We use a logarithmic scale on
the horizontal axis in the plots. Since log(β) = n log(ρ) this is a linear scale for the number of
Monte Carlo steps.

In the first figure, figure 10.1, we use ρ = 1.005. The cooling is too rapid in these simulations
and so the chain gets stuck in local minima that are not the global minima.

In the second figure, figure 10.2, we run four simulations with ρ = 1.0001. This does better
than the previous simulation. One of the four simulations finds the global min while the other
three get stuck in an adjacent min.

In the third figure, figure 10.3, we take with ρ = 1.0000001. Three of the four runs find the
global min, but one still gets stuck in a local min.
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Example: Simulated annealing can be used for discrete problems as well. Here is a famous
example - the travelling salesperson problem. We have n cities labelled 1, 2, · · · , n. The “cost”
of travelling from i to j is c(i, j). We assume this is symmetric. The salesperson must start in
some city and make a circuit that visits every city exactly once, ending back in the starting
city. We call this a tour. So a tour is a permuation π of 1, 2, · · · , n. We start in π(1), go to
π(2), then to π(3), and so on to π(n) and finally back to π(1). The cost of the tour is

H(π) =
n−1
∑

i=1

c(π(i), π(i+ 1)) + c(π(n), π(1)) (10.3)

We want to find the tour that minimizes this cost.

We can use simulated annealing with the Metropolis Hastings algorithm. We need a proposal
distribution. Here is one. Let π be the current tour. We pick two distinct cities i, j uniformly
at random. We interchange these two cities and reverse the original tour between i and j. Do
example.

Example: We are designing integrated circuit chips. We have a very large number of
“circuits”. There are too many to get them all onto one chip. We have to use two chips.
Certain circuits need to be connected to other circuits. These connections are “expensive” is
the two circuits are on different chips. So we want to decide how to put the circuits on the
two chips to minimize the number of connections that must be made between the two chips.
Let m be the number of circuits. Let aij equal 1 if there has to be a connection between
circuits i and j, and equal 0 if no connection is needed. It is convenient to encode the board
that circuit i is on with a variable that takes on the values −1 and 1. Call the boards A and
B. We let xi = 1 if circuit i is on board A and xi = −1 if circuit i is on board B. Note that
|xi − xj| is 1 if the two circuits are on different boards and |xi − xj| is 0 if the two circuits are
on the same board. So the total number of connections needed between the two boards is

1

2

∑

i,j

ai,j|xi − xj| (10.4)

(We set aii = 0.) We want to choose xi to minimize this quantity. This problem has a trivail
solution - put all the circuits on the same board. We need to incorporate the constraint that
this is not allowed. Note that |∑i xi| gives the difference in the number of circuits on the two
boards. We don’t need this to be exactly zero, but it should not be two large. One model
would be to add a constraint that this quantity is at most ?? Another approach is to add a
penalty term to the function we want to minimize:

1

2

∑

i,j

ai,j|xi − xj|+ α[
m
∑

i=1

xi]
2 (10.5)

where α is a parameter. There is no obvious choice for α. Say something about how α should
be chosen.



There are two MCMC algorithms that can be easily implemented. We could use
Metropolis-Hastings. The proposal distribution is to pick a circuit i at random (uniformly).
Then we change xi to −xi. The other algorithm would be a Gibbs sampler. Note that the
“dimension” is the number of circuits. Explain how each step of the MCMC only involves
local computations.

10.2 Estimating derivative

We recall the network example from Kroese. The times Ti are independent and uniformly
distributed but with different ranges: Ti uniform on [0, θi]. Let U1, U2, U3, U4, U5 be
independent, uniform on [0, 1]. Then we can let Ti = θiUi. The random variable we want to
compute the mean of is the minimum over all paths from A to B of the total time to traverse
that path.
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Figure 10.4: Network example. We seek the quickest path from A to B.

In the first figure we take
θ2 = 2,
θ3 = 3,
θ4 = 1,
θ5 = 2
and plot the mininum as a function of θ1 using 106 samples. Two methods are used. For one
we use different random numbers to generate the 106 samples for every choice of θ1. For the
other we use the same random numbers for different θ1. The figure clearly shows that using
“common” random numbers produces a much smoother curve. We should emphasize that the
values of the min computed using the common random numbers are not any more accurate



than those computed using independent random numbers. It is just that the error go in the
same direction.
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In figure (10.6) we compute a central difference approximation at θ1 = 1. We plot the
approximation as a function of δ. The independent plots use independent samples of the
random numbers. Two plots are shown, one using 106 samples, one with 107 samples. The
other plot uses common random numbers. Clearly the common random number approach
works much better. Starting around δ = 0.1 the common random number curve starts to
bend upwards, reflecting the error coming from the use of the central difference
approximation. In these simulations we generate the random Ti by generating U1, · · · , U5

uniformly in [0, 1]. Then we set Ti = θiUi.
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In figure (10.7) we continue to compute a central difference approximation to the derivative.
The red and green plots are as in the previous figure. For the green plot we generate the Ti in
a different way. We generate Ti using acceptance-rejection as follows. For each i we generate a
random number in [0, 5] and accept it when it is in [0, θi]. We use common random numbers
in the sense that we reset the random number generator to the original seed ...

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.0001  0.001  0.01  0.1

Derivative wrt theta[1] (Central difference) - accept/reject

Common 10^6 samples
Independent 10^6 samples

Common numbers with accept/reject

Figure 10.7: Network example. Plot of central difference approximation of deriva-
tive of minimum with respect to theta[1] using independent random numbers, good
common random numbers and common numbers using accept/reject.



Finally in figure (10.8) we attempt to fix the accept-rejection approach. The idea is that
common random numbers do not work well here since the number of attempts needed to
accept can be different for θ1 − δ/2 and θ1 + δ/2. So we always generate 100 random numbers
for each acceptance-rejection. Hopefully this keeps the common random numbers in sync.
However, the result show in the figure is not really any better than the acceptance-rejection in
figure (10.7).
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10.3 Stochastic gradient descent



Chapter 11

Further topics

11.1 Computing the distribution - CDF’s

Until now we have focused on computing the mean µ = E[X] of the RV X. Often we want to
know the distribution of the RV. Both direct Monte Carlo and MCMC generates samples of
X, and so give us information on the distribution. Most of this section will consider the case
where X is a real-valued random variable, not a random vector. We briefly consider random
vectors at the end of this section.

In this section we are only concerned with a non-parametric estimation of the density f(x).
Another approach would be a parametric approach in which we assume that f(x) belongs to
some multi-parameter family of distributions (normal, gamma, ...) and then estimate the
parameters.

We can get a quick look at the density function f(x) by plotting a histogram of our sample of
X. We normalize the histogram so that the area of a rectangle is equal to the fraction of
samples that fall in that bin. So the total area in the histogram is 1. Then the histogram is
an approximation to f(x). The histogram is easy and great for some purposes. The obvious
drawbacks: it does not give a smooth function as the estimate of the density, it depends on
the bin width chosen and on where we start the first bin. The dependence on the bin width is
very similar to the dependence of kernel density estimation on the bandwidth which we will
look at in some detail later.

Another approach is to compute the cumulative distribution function (CDF):

F (t) = P (X ≤ t) (11.1)

Given a sample X1, X2, · · · , XN , the natural estimator for the CDF is the empirical CDF

143



defined by

F̂N(t) =
1

N

N
∑

i=1

1Xi≤t (11.2)

Note that F (t) = E[1X≤t], so we can think of computing the CDF as computing the means of
the one parameter family of RV’s 1X≤t. The usual estimator for a mean is the sample mean.

For the RV 1X≤t, the sample is 1X1≤t, 1X2≤t, · · · , 1XN≤t, so this sample mean is just F̂N(t). In

particular we can estimate the variance of F̂N(t) and put error bars on it.

Note that for a fixed t, 1X≤t is a Bernoulli trial. It is 1 with probability F (t) and 0 with
probability 1− F (t). If we are doing direct Monte Carlo, then the samples are independent
and so the variance of F̂ (t) for N samples is

var(F̂N(t)) =
σ2

N
(11.3)

where σ2 is the variance of 1X≤t. We can estimate this variance by the sample variance of
1X1≤t, 1X2≤t, · · · , 1XN≤t. Note that since 1X≤t only takes on the values 0 and 1, a trivial
calculation shows the variance is F (t)[1− F (t)]. So we can also estimate the variance σ2 by
F̂N(t)[1− F̂N(t)]. A little calculation shows this is the same as using the sample variance up
to a factor of N/(N − 1).

Assume that F (t) is continuous and strictly increasing (on the range of X.) Recall that if we
let Ui = F (Xi), then the Ui are i.i.d. with uniform distribution on [0, 1]. Let

ĜN(u) =
1

N

N
∑

i=1

1Ui≤u (11.4)

This is empirical CDF for the Ui and is sometimes called the reduced empirical CDF for the
Xi. Note that it does not depend on F . Note that the CDF of a uniform random variable U
on [0, 1] is just G(u) = P (U ≤ u) = u. The Kolmogorov-Smirnov statistic is

DN = sup
t

|F̂N(t)− F (t)| = sup
u

|ĜN(u)− u| (11.5)

We collect some facts in the following propostion

Proposition 19 If the samples come from a direct Monte Carlo then

1. NF̂N(t) has a binomial distribution with p = F (t). The central limit theorem implies
that for a fixed t,

√
N(F̂N(t)− F (t)) converges in distribution to a normal distribution

with mean zero and variance F (t)(1− F (t)).



2. The law of large numbers immediately implies that for each t, the random variables
F̂N(t) converge almost surely to F (t). The Glivenko-Cantelli theorem gives a much
stronger result. It says that with probability one, the convergence is uniform in t.

3. For x > 0

lim
N→∞

P (
√
NDN ≤ x) =

∞
∑

k=−∞
(−1)ke−2(kx)2 (11.6)

If our samples come from an MCMC, then the samples are not independent. It is still true
that F̂N(t) is the sample mean of 1X≤t. So we can use the techniques for error bars for

MCMC (e.g., batched means) to put error bars on F̂N(t).

11.2 Computing the distribution - Kernel density

estimation

We follow chapter 8 of the Handbook.

Given a sample X1, X2, · · · , XN we want an estimator of the density f(x). The crude idea is
to put mass 1/N at each Xi and then smear it out a little to get a smooth function. More
precisely, we take a symmetric function K(x) which is non-negative and has integral 1. This
function is called the kernel density. It is helpful to think of the “spread” of this function
being of order 1. We also have a parameter h > 0, called the bandwidth. The function
1
h
K((x− c)/h) has integral 1, is centered at c and has width of order h. The kernel density

estimator is then

f̂(x, h) =
1

N

N
∑

i=1

1

h
K(

x−Xi

h
) (11.7)

We have to choose both the kernel density and the bandwidth. The choice of the kernel
density is not so crucial and a natural choice for the kernel density is the standard normal
density. With this choice

f̂(x, h) =
1

N

N
∑

i=1

φ(x,Xi, h) (11.8)

where

φ(x, µ, h) =
1

h
√
2π

exp(−(x− µ)2

2h2
) (11.9)



The choice of the bandwidth is the crucial choice.

We need a criterion for the optimal choice of the bandwidth. A widely studied choice is the
mean integrated square error (MISE):

MISE(h) = E
∫

[f̂(x, h)− f(x)]2 dx (11.10)

Another choice would be

E
∫

|f̂(x, h)− f(x)| dx (11.11)

The MISE has the advantage that we can compute things for it. A straightforward
computation shows

MISE(h) =
∫

[Ef̂(x, h)− f(x)]2 dx+
∫

V ar(f̂(x, h)) dx (11.12)

In the first term, Ef̂(x, h)− f(x) is the pointwise bias in the estimator. In the second term
the integrand is a pointwise variance of the estimator.

We expect that the optimal h should go to zero as N → ∞, and we also expect it goes to zero
more slowly than 1/N . One might expect that it goes like Np for some p between 0 and 1, but
it is not obvious what p should be. We will find an approximation to MISE(h) for small h.

For the first term in (11.12) we first use the fact that f̂(x, h) is a sum of identically
distributed terms. So

E[f̂(x, h)]− f(x) = E[φ(x,X, h)]− f(x) (11.13)

=
1

h
√
2π

∫

e−(x−u)2/2h2

f(u) du− f(x) (11.14)

=
1

h
√
2π

∫

e−(x−u)2/2h2

[f(u)− f(x)] du (11.15)

(11.16)

In the integral u is close to x so we do a Taylor expansion:

1

h
√
2π

∫

e−(x−u)2/2t[f(u)− f(x)] du (11.17)

≈ 1

h
√
2π

∫

e−(x−u)2/2h2

[f ′(x)(u− x) +
1

2
f ′′(x)(u− x)2] du (11.18)

=
1

2
f ′′(x)h2 (11.19)

Squaring this and integrating over x gives 1
4
h4||f ′′||22. where

||f ′′||22 =
∫

(f ′′(x))2 dx (11.20)



For the second term in (11.12) we use the fact that f̂(x, h) is a sum of i.i.d. terms. So

V ar(f̂(x, h)) =
1

N
V ar(φ(x,X, h)) (11.21)

To compute V ar(φ(x,X, h)) we first compute the second moment:

1

h22π

∫

exp(−(x− u)2

h2
) f(u) du (11.22)

We then need to integrate this over x. The result is 1
h2

√
π
. Next we compute the first moment:

1

h
√
2π

∫

exp(−(x− u)2

2h2
) f(u) du (11.23)

We must square this and then integrate the result over x:

1

h22π

∫

dx

[

∫

exp(−(x− u)2

2h2
)f(u)du

]2

(11.24)

Do the x integral first and we see that it will give approximately h1|u−v|≤ch. This leads to the
term being of order 1. Note that the second moment was proportional to 1/h which is large.
So the term from the first moment squared is neglible compared to the second moment term.
So the second term in (11.12) becomes 1

h2
√
π
.

Thus for small h we have

MISE(h) ≈ 1

4
h4||f ′′||22 +

1

2Nh
√
π

(11.25)

Minimizing this as a function of h we find the optimal choice of bandwidth is

h∗ =

(

1

2N
√
π||f ′′||22

)1/5

(11.26)

Of course the problem with the above is that we need ||f ′′||22 when f is precisely the function
we are trying to estimate. A crude approach is the Gaussian rule of thumb. We pretend like f
has a normal distribution with mean µ̂ and variance σ̂2. The computation of ||f ′′||22 for a
normal density is straightforward but a bit tedious. Obviously it does not depend on the
mean of the normal. We will argue that the dependence on the standard deviation σ must be
of the form cσ−5. Let fσ,µ(x) be the density of the normal with mean µ and variance σ2. Then

fσ,µ(x) =
1

σ
f1,0(

x− µ

σ
) (11.27)



So

f ′′
σ,µ(x) =

1

σ3
f ′′
1,0(

x− µ

σ
) (11.28)

So

||f ′′
µ,σ||22 =

1

σ6

∫

[f ′′
1,0(

x− µ

σ
)]2 dx (11.29)

=
1

σ5

∫

[f ′′
1,0(u)]

2 du (11.30)

With a bit of work (which we skip) one can compute the last integral. The result is that the
Gaussian rule of thumb gives the following choice of bandwidth:

hG =
(

4

3N

)1/5

σ̂ ≈ 1.06σ̂N−1/5 (11.31)

In the figures we show some results of kernel density estimation. The distribution is a mixture
of two normals. Each normal has variance 1. They are centered at ±c with c = 2 in the first
four figures and c = 10 in the last figure. The mixture is given by taking the normal at −c
with probabiliity 1/3 and the normal at +c with probability 2/3. In all the cases we used
10, 000 samples.

In each figure we estimate the variance of the distribution using the sample variance. We then
use the Gaussian rule of thumb to compute the hG. This is labelled “optimal” in the figures.
We also do kernel density estimation with
h = hG/16, hG/8, hG/4, hG/2, hG ∗ 2, hG ∗ 4, hG ∗ 8, hG ∗ 16.

Figure 11.1 uses values of hG/16 and hG/8. The estimated f̂ follows f pretty well but with
significant fluctuation.

Figure 11.2 uses values of hG/4 and hG/2. There values do well. In fact, hG/2 does better
than hG, shown in the next figure.

Figure 11.3 uses values of hG and 2hG. The value 2hG does rather poorly, and even the
optimal value of hG is significanty different from the true f .

Figure 11.4 uses values of 4hG and 8hG. These values are way too large. The estimated f
does not even resemble the true f .

In figure 11.5 the centers of the two normals are quite far apart, ±10. The figure shows the
kernel density estimation with the optimal choice of h from the Gaussian rule of thumb and
the estimator with h equal to the optimal value divided by 8. Clearly the latter does much
better. The Gaussian rule of thumb fails badly here. Note that as we move the centers of the
two Gaussians apart the variance grows, so the Gaussian rule of thumb for the optimal h
increases. But the optimal h should be independent of the separation of the two Gaussians.
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We now consider multivariate kernel density estimation, i.e., estimating the density function
for a random vector with dimension d. The obvious generalization of the estimator is

f̂(x, h) =
1

N

N
∑

i=1

1

hd
K(

x−Xi

h
) (11.32)

where K(x) is now a non-negative function on Rd with integral 1.

There are some new issues in the multi-variate case. The different components of X may have
vastly different scales. The kernel function needs to take this into account. This problem can
occur in a more subtle way. Consider a two dimensional distribution in which the support of
the density is a long narrow ellipsoid at an angle of 45 degrees with respect to the coordinates
axes.

The problem of the components living on different scales can be dealt with by “pre-scaling.”
We rescale each component of the data so that they are on roughly the same scale. Then we
do the kernel density estimation and then we rescale the resulting estimator.

The more subtle problem can be dealt with by “pre-whitening.” Note that the covariance
matrix of the data is far from the identity. We find a linear transformation of the data so that
the covariance matrix of the new data is approximately the identity.

One possible multivariate kernel is to use a product form.

K(x,X, h) =
d
∏

j=1

1

hj
k(
xj −Xj

hj
) (11.33)

where k(x) is a univariate kernel density. We can use a different hj for each direction to
account for different scale for the different directions. The hj can be found as in the 1-d case.

11.3 Sequential monte carlo

We follow section 14.1 of the Handbook. For rigorous proof see the article “Particle Filters -
A Theoretical Perspective” in Sequential Monte Carlo Methods in Practice, A. Doucet et al.
(eds.).

11.3.1 Review of weighted importance sampling

We first review some things.



We want to compute µ = E[f( ~X)]. Let p( ~X) be the density of ~X. We cannot sample from

p( ~X). But we can sample from q( ~X) which is close to p in some sense. The importance

sampling algorithm is as follows. Generate samples ~X1, · · · , ~Xn according to the distribution
q(x). Then the estimator for µ is

µ̂q =
1

n

n
∑

i=1

f( ~Xi)p( ~Xi)

q( ~Xi)
(11.34)

We can think of this importance sampling Monte Carlo algorithm as just ordinary Monte
Carlo applied to Eq[f( ~X)p( ~X)/q( ~X)]. µ̂q is an unbaised estimator of µ, i.e., Eqµ̂q = µ, and it
converges to µ with probability one.

Suppose p(x) = cpp0(x) where p0(x) is known, but cp is unknown. And suppose we can sample
from q(x), but q(x) = cqq0(x) where q0(x) is known and cq is unknown. Then we can still do
self-normalized or weighted importance sampling. The key observation is

∫

f(x)p(x)dx =
Eq[f(x)w(x)]

Eq[w(x)]
(11.35)

where w(x) = p0(x)/q0(x) is a known function.

The self-normalized importance sampling algorithm is as follows. We generate samples
~X1, · · · , ~Xn according to the distribution q(x). Our estimator for µ =

∫

f(x)p(x)dx is

µ̂WI =

∑n
i=1 f( ~Xi)w( ~Xi)
∑n

i=1w( ~Xi)
(11.36)

where the WI subscript indicates this is the estimator coming from weighted importance
sampling.

One way in which weighted importance sampling can do poorly is that the weighted are
unbalanced, i.e., most of them are very small and only a few contribute to the overall weight.
One measure of this is the effective sample size given by

(
∑

iwi)
2

∑

iw
2
i

(11.37)

where wi = w( ~Xi).

11.3.2 Resampling

Before we discuss sequential monte carlo, we first consider the “resampling” that is part of the
algorithm.



We want to compute µ = E[f( ~X)] using weighted importance sampling as above. We

generate N samples ~X1, · · · , ~XN according to the density q(x) and then approximate µ by

µ̂WI =
N
∑

i=1

pif( ~Xi) (11.38)

where pi are the normalized importance sampling weights:

pi =
wi

∑n
j=1wj

(11.39)

Note that we can think of this as the integral of f with respect to the measure

N
∑

i=1

piδXi
(x) (11.40)

Resampling means that we replace this measure by

1

N

N
∑

i=1

NiδXi
(x) (11.41)

where the Ni are non-negative integers whose sum is N . So the new estimator for µ is

µ̂R =
1

N

N
∑

i=1

Nif(Xi) (11.42)

There are different methods for choosing the Ni.

The simplest method is to draw N independent samples from the discrete density (11.40).
This means the joint distribution of N1, N2, · · · , NN is a multinomial distribution with N trials
and probabilities p1, p2, · · · , pN . Note that many of the Ni will be zero. We would like to know
that µ̂R converges to µ as N → ∞. This is subtle. Note that the Ni are not independent.

We first show it is an unbiased estimator.

E[µ̂R] =
1

N

N
∑

i=1

E[Nif(Xi)] (11.43)

We compute using the tower property:

E[Nif(Xi)] = E[E[Nif(Xi)|X1, · · · , XN ]] (11.44)

= E[f(Xi)E[Ni|X1, · · · , XN ]] = E[f(Xi)Npi] (11.45)

So

E[µ̂R] =
N
∑

i=1

E[f(Xi)pi] = µ (11.46)



Next we show that for bounded functions f , the estimator converges to µ in the L2 sense (and
hence in probability). It converges a.s., but we do not prove this. See the article by Cristan.
We already know that the estimator from weighted importance sampling converges to µ with
probability one, i.e., µ̂WI → µ with probability one. Since f is bounded the bounded
convergence theorem implies we also have convergence in L2. So it suffices to show µ̂R − µ̂WI

converges to 0 in L2, i.e., we need to show E[(µ̂R − µ̂WI)
2] → 0. Note that

µ̂R − µ̂WI =
1

N

N
∑

i=1

f(Xi)(Ni − piN) (11.47)

We use conditioning again:

E[(µ̂R − µ̂WI)
2] = E[E[(µ̂R − µ̂WI)

2|X1, · · · , XN ]] (11.48)

We have

E[(µ̂R − µ̂WI)
2|X1, · · · , XN ]] (11.49)

=
1

N2

N
∑

i,j=1

f(Xi)f(Xj)E[(Ni − piN)(Nj − pN)|X1, · · · , XN ] (11.50)

Conditioned on X1, X2, · · · , XN , the pi are constant and the Ni follow a multinomial
distribution. So we can compute

E[(Ni − piN)(Nj − pN)|X1, · · · , XN ] = −Npipj (11.51)

So

|E[(µ̂R − µ̂WI)
2|X1, · · · , XN ]]| ≤

1

N

N
∑

i,j=1

|f(Xi)f(Xj)|pipj ≤
||f ||2∞
N

(11.52)

Thus

E[(µ̂R − µ̂WI)
2] = E[E[(µ̂R − µ̂WI)

2|X1, · · · , XN ]] (11.53)

≤ E[|E[(µ̂R − µ̂WI)
2|X1, · · · , XN ]|] ≤

||f ||2∞
N

→ 0 (11.54)

There are other ways to define the Ni. The definition above is not ideal because it introduces
a fair amount of variance into the problem. Suppose we have a relatively small set of indices
for which piN is relatively large and the rest of the piN are close to zero. The above
procedure will replace the one copy for index i with Ni copies where the mean of Ni is piN
but the standard deviation is of order

√
Ni. It might be better to take the number of copies to

be piN rounded to the nearest integer. The following algorithm does something in this spirit.



Stratified resampling Let ni be the largest integer less than or equal to piN . Note that the
sum of the ni cannot exceed N . Create ci copies of Xi. We are still short Nr = N −∑

i ni

samples. Draw a sample of size Nr from {1, 2, · · · , N} uniformly and without replacement.
Add these Xi to the previous ones. Finally, if it makes you feel better you can do a random
permutation of our sample of size N . (What’s the point?)

11.3.3 sequential MC

Now suppose that instead of a random vector we have a stochastic process X1, X2, X3, · · ·. We
will let X stand for X1, X2, X3, · · ·. We want to estimate the mean of a function of the process
µ = f(X). It doesn’t make sense to try to give a probability density for the full infinite
process. Instead we specify it through conditional densities:
p1(x1), p2(x2|x1), p3(x3|x1, x2), · · · , pn(xn|x1, x2, · · · , xn−1), · · ·. Note that it is immediate from
the definition of conditional density that

p(x1, x2, · · · , xn) = pn(xn|x1, x2, · · · , xn−1)pn−1(xn−1|x1, x2, · · · , xn−2) (11.55)

· · · p3(x3|x1, x2)p2(x2|x1)p1(x1) (11.56)

We specify the proposal density in the same way:

q(x1, x2, · · · , xn) = qn(xn|x1, x2, · · · , xn−1)qn−1(xn−1|x1, x2, · · · , xn−2) (11.57)

· · · q3(x3|x1, x2)q2(x2|x1)q1(x1) (11.58)

So the likehood function is

w(x) =
∏

n≥1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(11.59)

An infinite product raises convergence questions. But in applications f typically either
depends on a fixed, finite number of the Xi or f depends on a finite but random number of
the Xi. So suppose that f only depends on X1, · · · , XM where M may be random. To be
more precise we assume that there is a random variable M taking values in the non-negative
integers such that if we are given that M = m, then f(X1, X2, · · ·) only depends on
X1, · · · , Xm. So we can write

f(X1, X2, · · ·) =
∞
∑

m=1

1M=m fm(X1, · · · , Xm) (11.60)

We also assume that M is a stopping time. This means that the event M = m only depends
on X1, · · · , Xm. Now we define

w(x) =
∞
∑

m=1

1M=m(x1, · · · , xm)
m
∏

n=1

pn(xn|x1, x2, · · · , xn−1)

qn(xn|x1, x2, · · · , xn−1)
(11.61)



MORE Explain the potential problem that the weights can degenerate to the point that
most are zero.

The final step is to modify the above by resampling at each time step. So the sequential
Monte Carlo algorithm is as follows. Throughout N will be the number of samples. They are
often called “particles.” (There are variants where the number of particles changes with time,
but we only consider an algorithm where the number stays constant.)

1. Initialize. Given N iid samples X1
1 , ·, XN

1 from q1(). The subscript 1 means t = 1.

2. Importance sampling. Given X1
1:t−1, · · · , XN

1:t−1, generate (independently) Y j
t from

qt(·|Xj
1:t−1). The Y

j
t are conditionally independent given X1

1:t−1, · · · , XN
1:t−1, but not

independent. Compute the weights

wt,j =
pt(Y

j
t |Xj

1:t−1)

qt(Y
j
t |Xj

1:t−1)
(11.62)

and then let pt,j be the normalized weights:

pt,j =
wt,j

∑N
i=1wt,j

(11.63)

3. Resample. Let Zj
1:t = (Xj

1:t−1, Y
j
t ). Generate Xj

1:t by independently sampling (N times)
from the discrete distribution which has the values Zj

1:t with probability pt,j. So we are
drawing N independent samples from the mixture

N
∑

j=1

pt,jδZj
1:t

(11.64)

We do steps 2 and 3 for t = 2, · · · , T where T could be a random stopping time.

Example - random walk: We look at a one-dimensional random walk which only takes
steps of ±1. The probability of going right is p. For a proposal distribution we use a
symmetric random walk which goes right or left with probability 1/2. We run the walk for
100 time steps. The random variable we study is the position of the walk at the end of the
100 steps. Note that we know µ exactly. It is 100(2p− 1). We do two simulations, each with
2, 000 samples. One simulation is weighted importance sampling. The other is sequential MC
using the multinomial resampling. Figure 11.6 shows the two estimators µ̂WI and µ̂R as a
function of p, along with the exact result.

To see if the breakdown for the weighted importance sampling simulation somes from the
weights becomes very unbalanced we plot the effective sample size as a function of time for
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several values of p in figure 11.7. The figure shows that for all values of p the effective sample
size usually decreases with time. The rate of decrease gets larger as p moves away from 1/2.

In figure 11.8 we plot the effective sample size at time 100 as a function of p. Note that the
value of p where the effective sample size becomes small corresponds with the value of p in
figure 11.6 where the estimator µ̂R deviates significatly from µ.
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