
Chapter 2

Basics of direct Monte Carlo

2.1 The probabilistic basis for direct MC

We start our study of Monte Carlo methods with what is usually called direct or simple
Monte Carlo. We will refer to it as direct Monte Carlo.

We assume that our original problem can be put in the following form. There is a probability
space (Ω, P ) and a random variable X on it. The quantity we want to compute is the the
mean of X which we denote by µ = E[X]. (The sample space Ω is the set of possible
outcomes. Subsets of Ω are called events, and the probability measure P a function that
assigns a number between 0 and 1 to each event. Usually the probability measure is only
defined on a σ-field F , which is a sub-collection of the subsets of Ω, but we will not worry
about this.) We emphasize that the original problem need not involve any randomness, even
if it does the probability space we use for the Monte Carlo may not have been part of the
original problem.

Let Xn be an independent, identically distributed (iid) sequence which has the same
distribution as X. Recall that saying Xn and X are indentically distributed means that for all
Borel sets B, P (Xn ∈ B) = P (X ∈ B). A standard result in probability says that if they are
equal for all B whic are intervals, then that is sufficient to insure they are equal for all Borel
sets. The key theorem that underlies direct Monte Carlo is the Strong Law of Large Numbers.

Theorem 1 Let Xn be an iid sequence such that E[|Xn|] < ∞. Let µ = E[Xn]. Then

P ( lim
n→∞

1

n

n
∑

k=1

Xk = µ) = 1 (2.1)
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The conclusion of the theorem is often written as limn→∞
1

n

∑n
k=1

Xk = µ a.s. Here a.s. stands
for almost surely.

Suppose we want to compute the probability of an event rather than the mean of a random
variable. If E is the event, we can think of its probability P (E) as the expected value of the
indicator function of E, i.e., P (E) = E[1E]. In this case the sample is bunch of 0’s and 1′s
indicating whether or not the outcome was in E. The sample mean is the fraction of
outcomes that were in E is usually denoted p̂n. In this situation the strong law says that p̂n
converges to P (E) almost surely.

We have seen several examples of direct Monte Carlo in the introduction. The integration
examples and the network examples with independent edges were all examples of direct
Monte Carlo. Note that in the network example where we were concerned with connectivity,
we were computing a probability. The network example in which the edges are not
independent and the self-avoiding walk example cannot be studied with direct Monte Carlo.
Unless the network or walk is really small, there is no practical way to generate samples from
the probability distribution .

2.2 Error estimation

The strong law says that we can approximate µ by generating a sample X1, X2, · · · , Xn and
then computing the sample mean

µ̂n =
1

n

n
∑

k=1

Xk (2.2)

Note that µ is a constant while µ̂n is a random variable. In the language of statistics, µ is a
parameter and µ̂n is a statistic that estimates µ. We follow the notational convention of using
a hat to denote the statistic that estimates the corresponding parameter.

The strong law tells us that µ̂n converges to µ but it does not tell us anything about how
close µ̂n is to µ for a given value of µ. In any Monte Carlo simulation we do not actually let n
go to infinity, we only use a (hopefully) large value of n. So it is crucial to address this
question of how close our approximation is. µ̂n is a random variable. Since all the random
variables Xi in our sample have mean µ, the mean of the sample mean is

Eµ̂n = µ (2.3)

In the language of statistics, µn is said to be an unbiased estimator of µ. We assume that the
Xi have finite variance. Since they are identically distributed, they have the same variance



and we denote this common variance by σ. Since the Xi are independent, we have

var(
n
∑

i=1

Xi) = nσ2 (2.4)

and so the variance of the sample mean is

var(µ̂n) =
1

n2
var(

n
∑

i=1

Xi) =
σ2

n
(2.5)

Thus the difference of µn from µ should be of order σ/
√
n.

The 1/
√
n rate of convergence is rather slow. If you compute a one dimensional integral with

Simpon’s rule the rate of convergence is 1/n4. However, this rate of convergence requires some
smoothness assumptions on the integrand. By contrast, we get the 1/

√
n rate of convergence

in Monte Carlo without any assumptions other than a finite variance. While Simpson’s rule is
fourth order in one dimension, as one goes to higher dimensional integrals the rate of
convergence gets worse as the dimension increases. In low dimensions with a smooth
integrand, Monte Carlo is probably not the best method to use, but to compute high
dimensional integrals or integrals with non-smooth integrands, Monte Carlo with it slow
1/
√
n convergence may be the best you can do.

The central limit theorem gives a more precise statemnt of how close µ̂n is to µ. Note that
since µ̂n is random, even if n is very large, there is always some probability that µ̂n is not
close to µ. The central limit theorem says

Theorem 2 Let Xn be an iid sequence such that E[|Xn|2] < ∞. Let µ = E[Xn] and let σ2 be

the variance of Xn, i.e., σ
2 = E[X2

n]− E[Xn]
2. Then

1

σ
√
n

n
∑

k=1

(Xk − µ) (2.6)

converges in distribution to a standard normal random variable. This means that

lim
n→∞

P (a ≤ 1

σ
√
n

n
∑

k=1

(Xk − µ) ≤ b) =
∫ b

a

1√
2π

e−x2/2 dx (2.7)

In terms of the sample mean, the central limit theorem says that (µ̂n − µ)
√
n/σ converges in

distrbution to a standard normal distribution.

The statement of the central limit theorem involves σ2. It is unlikely that we know σ2 if we
don’t even know µ. So we must also use our sample to estimate σ2. The usual estimator of



the variance σ2 is the sample variance. It is typically denoted by s2, but we will denote it by
s2n to emphasize that it depends on the sample size. It is defined to be

s2n =
1

n− 1

n
∑

i=1

(Xi − µ̂n)
2 (2.8)

(sn is defined to be
√

s2n.) A straightforward calculation show that Es2n = σ2, so sn is an

unbiased estimator of σ2. This is the reason for the choice of 1/(n− 1) as the normalization.
It makes the estimator unbiased. An application of the strong law of large numbers shows
that s2n → σ2 a.s. Since (µ̂n − µ)

√
n/σ converges in distribution to a standard normal

distribution and that s2n → σ2 converges almost surely to σ2, a standard theorem in
probability implies that (µ̂n − µ)

√
n/sn converges in distribution to a standard normal. (In

statistics the theorem being used here is usually called Slutsky’s theorem.) So we have the
following variation on the central limit theorem.

Theorem 3 Let Xn be an iid sequence such that E[|Xn|2] < ∞. Let µ = E[Xn] and let σ2 be

the variance of Xn, i.e., σ
2 = E[X2

n]− E[Xn]
2. Then

(µn − µ)
√
n

sn
(2.9)

converges in distribution to a standard normal random variable. This means that

lim
n→∞

P (a ≤ (µn − µ)
√
n

sn
≤ b) =

∫ b

a

1√
2π

e−x2/2 dx (2.10)

The central limit theorem can be used to construct confidence intervals for our estimate µ̂n for
µ. We want to construct an interval of the form [µ̂n − ǫ, µ̂n + ǫ] such that the probability µ is
in this interval is 1− α where the confidence level 1− α is some number close to 1, e.g., 95%.
Let Z be a random variable with the standard normal distribution. Note that µ belongs to
[µ̂n − ǫ, µ̂n + ǫ] if and only if µ̂n belongs to [µ− ǫ, µ+ ǫ]. The central limit theorem says that

P (µ− ǫ ≤ µ̂n ≤ µ+ ǫ) = P (−ǫ ≤ µ̂n − µ ≤ ǫ)

= P (−ǫ
√
n

sn
≤ (µ̂n − µ)

√
n

sn
≤ ǫ

√
n

sn
) ≈ P (−ǫ

√
n

sn
≤ Z ≤ ǫ

√
n

sn
) (2.11)

Let zc be the number such that P (−zc ≤ Z ≤ zc) = 1− α. Then we have ǫ
√
n

sn
= zc, i.e.,

ǫ = zcsn/
√
n. Thus our confidence interval for µ is

µ̂n ±
zcsn√
n

(2.12)
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Common choices for 1− α are 95% and 99%, for which zc ≈ 1.96 and zc ≈ 2.58, respectively.
The central limit theorem is only a limit statement about what happens as the sample size n
goes to infinity. How fast the distribution in question converges to a normal distribution
depends on the distribution of the original random variable X.

Suppose we are using direct Monte Carlo to compute the probability p = P (E) of some event
E. As discussed above we can think of this as computing the expected value of 1E. The
central limit theorem still applies, so we can construct confidence intervals for our estimate.
The variance of 1E is easily found to be p(1− p). So we can use our estimate p̂n of p to
estimate the variance by p̂n(1− p̂n) rather than sn. Thus the confidence interval is

p̂n ±
zc
√

p̂n(1− p̂n)√
n

(2.13)

This is one possible problem with the above. Suppose p is very small, so small that np is of
order one. There is some chance that none of the outcomes in our sample will lie in the event
E and so p̂n = 0. In this case the above confidence interval would be [0, 0]. This is clearly
nonsense. The problem with the above derivation of the confidence interval in this case is that
if np is not reasonable large, the central limit theorem is not a good approximation. When
p̂n = 0 a reasonable confidence interval can be obtained as follows. Obviously the confidence
interval should be of the form [0, p0]. Note that P (p̂n = 0) = (1− p)n. If p is not small enough
this is a small probability. But p̂n did in fact equal 0. So we will choose p0 so that
(1− p0)

n = α, where 1− α is the confidence level, e.g., 95%. This is the same as
n ln(1− p0) = ln(α). Since p0 is small, ln(1− p0) ≈ −p0. So we let

p0 =
− ln(α)

n
(2.14)

With α = 5%, − ln(α) is approximately 3, so the confidence interval is [0, 3/n].

Another approach to treating p̂n is the Agresti confidence interval. See Owen for a discussion.

2.3 Accuracy vs. computation time

We have seen that the error in a Monte Carlo computation is proportional to σ/
√
n.

Obviously we can reduce the error by increasing the number of samples. Note, however, that



to reduce the error by half we must increase the number of samples by a factor of four.
Another way to improve the accuracy is to reduce the variance σ2. We will study this topic in
detail in a later chapters.

It is important to keep in mind that from a practical point of view, what is important is not
how many samples are needed to achieve a given level of accuracy, but rather how much CPU
time is need to achieve that accuracy. Suppose we have two Monte Carlo methods that
compute the same thing. They have variances σ2

1
and σ2

2
. Let τ1 and τ2 be the CPU time

needed by the methods to produce a single sample. Then with a fixed amount T of CPU time
we can produce Ni = T/τi samples for the two methods. So the errors of our two methods
with be

σi√
Ni

=
σi
√
τi√
T

(2.15)

Thus the method with the smaller σ2

i τi is the better method.

It is also important to keep in mind that the time needed to compute a sample typically
consists of two parts. First we have to generate a sample ω from the probability space. Then
we have to evaluate the random variable X on ω. In many applications this second step can
be as time consuming (or more so) than the first step. As an illustration, consider the
network reliability example from the introduction. To generate a sample, all we have to do is
generate a uniformly distributed random number from [0, 1] for each edge and compare that
random number with pe to decide if the edge is included in the network or not. This take a
time proportional to the number of possible edges. Finding the shortest path in the resulting
network can take much longer.

Many problems involve a size or scale. In the network examples there is the number of edges.
In the self-avoiding walk we have the number of steps. In integration problems there is the
dimension. One should pay attention to how the times required for different parts of the
Monte Carlo simulation depend on n. In particular one should keep in mind that while one
part of the computation may be the most time consuming for moderate values of n, for larger
values of n another part of the computation may start to dominate.

2.4 How good is the confidence interval

Our confidence interval was chosen so that the probability that the confidence interval
contains the mean µ is the given confidence level 1− α. In working this out we used the
central limit theorem which is only an approximation which gets better as n increases. If the
distribution of X is normal, then for any n the distribution of µn is a well-studied distribution
known as student’s t distribution. One can use this distribution (with n− 1 degrees of



freedom) in place of the standard normal. Of course this is only a reasonble thing to do if the
distribution of X is approximately normal. Unless n is pretty small, the effect of using
student’s t instead of normal is negligible. With a confidence level of 95%, the critical z from
the normal distribution is 1.960 while the critical t value for n = 100 is 1.984 and for n = 20 is
2.086. So unless you are in the very usual situation of doing a Monte Carlo with a very small
number of samples, there is no need to use students t.

Even if n is not small, one can still worry about how much error the central limit theorem
approximation introduces, i.e., how close is P (µ̂n − zcsn√

n
≤ µ ≤ µ̂n +

zcsn√
n
) to 1− α? Typically

it is off by something of order 1/n, so this is not really an issue for large values of n.

If we want to be really paranoid and we have an a priori upper bound on σ2, then we can use
Chebyshev’s inequality. It says that for any ǫ > 0,

P (|µ̂n − µ| ≥ ǫ) ≤ 1

ǫ2
E[(µ̂n − µ)2] =

1

ǫ2
var(µ̂n) =

1

nǫ2
σ2 (2.16)

Suppose we know that σ2 ≤ M . Then the above is bounded by M/(nǫ2). If we set this equal

to α, we get ǫ =
√

M
nα
. So if we take the confidence interval to be

µ̂n ±
√

M

nα
(2.17)

then Chebyshev insures that the probability µ is not in this confidence interval is at most α.
Comparing with our central limit theorem confidence interval we see that zcsn has been

replaced by
√

M/α. If M is close to σ2, then sn is close to
√
M and so the effect is to replace

zc by 1/
√
α. For α = 5% this amounts to replacing 1.96 by 4.47. So we can get a confidence

interval for which we are certain that the probability the interval does not capture µ is at
most 5%, but at the expense of a much wider confidence interval.

Finally, if one does not have a bound on σ2, but the random variable X is known to always be
in the interval [a, b], then one can use Hoeffding’s inequality in place of Chebyshev. See Owen
for more on this.

2.5 Estimating a function of several means

Sometimes the quantity we want to compute is the quotient of two means

θ =
E[X]

E[Y ]
(2.18)

Suppose we generate an independent samples ω1, · · · , ωn from our probability space,
distributed according to P . We then let Xi = X(ωi) and Yi = Y (ωi). We want to use the



sample (X1, Y1), · · · , (Xn, Yn) to estimate θ. Note that in this approach Xi and Yi are not
independent. The natural estimator for θ is

θ̂ =
Xn

Y n

(2.19)

Here we use the notation

Xn =
1

n

n
∑

i=1

Xi, Y n =
1

n

n
∑

i=1

Yi (2.20)

for the two sample means. The nontrivial thing here is to find a confidence interval for our
estimate. We do this using the Delta method.

There is nothing special about ratios. More generally we can consider a function of several
means. So we assume we have a random vector (X1, X2, · · · , Xd) and we want to estimate a
function of their means

θ = f(E[X1], · · · , E[Xd]) (2.21)

for some function f on Rd. Since we are using subscripts to indicate the components, we will
now use superscripts to label our samples. We suppose we have n i.i.d. samples of our
random vector. We denote them by (X i

1
, · · · , X i

d) where i = 1, 2, · · · , n. We let µ̂n
j be the

sample mean of the jth component

µ̂n
j =

1

n

n
∑

i=1

X i
j (2.22)

The natural estimator for θ is

θ̂ = f(µ̂1, · · · , µ̂d) (2.23)

To get a confidence interval we need a multivariate version of the central limit theorem. We
first recall a couple of definitions. The covariance of X and Y is
cov(X, Y ) = E[XY ]− E[X]E[Y ]. Letting µx = E[X] and µy = E[Y ], the covariance can also
be written as

cov(X, Y ) = E[(X − µx)(Y − µy)] (2.24)

The correlation of X and Y is

ρ =
cov(X, Y )

σxσy

(2.25)

where σ2

x, σ
2

y are the variance of X and Y . We let σ2

j be the variance of Xj, and let ρj,k be the
correlation of Xj and Xk. So the covariance of Xj and Xk is ρj,kσjσk. As j, k = 1, 2, · · · , d this
gives a d× d matrix which we denote by Σ. It is called the covariance matrix.



Theorem 4 Let (Xn
1
, · · · , Xn

d ) be an i.i.d. sequence of random vectors with finite variances.

Let µj = E[Xn
j ], let σ

2

j be the variance of Xn
j and ρj,k be their correlations. Then

1√
n

n
∑

k=1

(Xk
1
− µ1, · · · , Xk

d − µd) (2.26)

converges in distribution to a multivariate normal random variable with zero means and

covariance matrix Σ.

The crucial fact we will need about a multivariate normal distribution is the following. Let
(Z1, Z2, · · · , Zd) be a multivariate normal distribution with zero mean and covariance matrix
Σ. Then the linear combination

∑d
j=1

cjZj is a normal random variable with mean zero and
variance equal to

d
∑

j,k=1

cjckΣj,k (2.27)

Now we turn to the delta method. The idea is simple. We just use a first order Taylor
expansion of f about (µ1, · · · , µd) and use the central limit theorem.

θ̂ = f(µ̂1, · · · , µ̂d) ≈ f(µ1, · · · , µd) +
d

∑

j=1

fj(µ1, · · · , µd)(µ̂j − µj) (2.28)

where fj denotes the jth partial derivative of f . The mean of the right side is f(µ1, · · · , µd).

This says that to first order the estimator θ̂ is an unbiased estimator. It is not exactly
unbiased. By looking at the second order Taylor expansion one can see that the bias is of
order 1/n. The variance of θ̂ is

var(θ̂) =
d

∑

j,k=1

fj(µ1, · · · , µd)fk(µ1, · · · , µd)Σj,k (2.29)

This can be written more succintly as (∇f,Σ∇f)

Before our application of the central limit theorem involved σ which we do not know. So we
had to replace σ by sn. Here there are several things in the above that we do not know: µi

and Σ. We approximate fj(µ1, · · · , µd) by fj(µ̂1, · · · , µ̂d). We denote the resulting

approximation of ∇f by ∇̂f . We approximate Σ by Σ̂ where the entries are

Σ̂j,k =
1

n

n
∑

i=1

(X i
j − µ̂j)(X

i
k − µ̂k) (2.30)



So our estimate for the variance of θ̂ is (∇̂f, Σ̂∇̂f). Thus the confidence interval is

θ̂ ± zc√
n

√

(∇̂f, Σ̂∇̂f) (2.31)

We can now return to the problem of estimating the ratio θ = E[X]/E[Y ]. So n = 2 and
f(x, y) = x/y. Some computation leads to the follows. The variance of θ̂ is approximately

(∇̂f, Σ̂∇̂f) =
1

n

∑n
i=1

(Yi − θ̂Xi)
2

nX
2

(2.32)

where X and Y are the sample means for X and Y and θ̂ = X/Y .

2.6 References

Most books on Monte Carlo include the topics in this section. Our treatment follows Owen
closely. Fishman’s A first course in Monte Carlo has some nice examples, one of which we
have used (networks).


