Bibliography
[Bli66]
G. Blind,
Ebene Lagerungen von Kreisen, deren Radien nicht sehr verschieden sind,
Ph.D. Thesis, Technische Hochschule, Stuttgart, (1966).
[Bli69]
G. Blind,
Unterdeckungen der Ebene durch Kreise, J. Reine Angew.
236, 145-173 (1969).
[BB02]
G. Blind and R. Blind,
Packings of Unequal Circles in a Convex Set,
Discrete Comput. Geom. ,28, 115-119 (2002).
[Toth53]
L. Fejes Toth,
Lagerungen in der Ebene auf der Kugel und im Raum, Springer-Verlag,
Berlin, 1953, 2nd edn 1972.
[Toth64]
L. Fejes Toth,
Regular Figures , Pergamon Press, Oxford, 1964.
[Toth72]
L. Fejes Toth,
Covering the plane with convex discs,
Acta Math. Acad. Sci Hungar. 23, 263-270 (1972).
[Toth84]
L. Fejes Toth,
Compact Packing of Circles,
Studia Sci. Math. Hungar. 19, 103-107 (1984).
The first paper to define compact. He proves that compact packings have
density at least as large as that of the single species packing.
[Flo60]
A. Florian,
Ausfullung der Ebene durch Kreise,
Rend. Circ. Mat. Palermo 9, 1-13 (1960).
[Flo63]
A. Florian,
Dichteste Packung inkongruenter Kreise
Monatsh. Math. 67, 229-242 (1963).
[Flo67]
A. Florian,
Geometry of Circular Layering,
Acta Mathematica Academiae Scientiarum Hungaricae 18, 341-358 (1967).
In german. Some bounds on packing densities.
[Hep00]
A. Heppes,
On the densest packing of discs of radius 1 and root 2-1
Studia Sci. Math. Hungar. 36, 433-454 (2000).
Proof that for r=0.414..., the densest packing is a compact packing.
[Hep03]
A. Heppes,
Some Densest Two-Size Disc Packings in the Plane,
Discrete Comput. Geom. 30, 241-262 (2003).
Proof that for r=0.637, 0.533, 0.349, 0.280 ,0.154,
the densest packing is a compact packing.
[HM60]
A. Heppes and J. Molnar,
Ujabb eredmenyek a diszkret geometriaban,
Matematikai Lapok 11, 330-355 (1960).
In Hungarian. Contains pictures of compact packings for
r=0.637, 0.533, 0.414, 0.349, 0.280, 0.154
[Ken04]
T. Kennedy,
Compact packings of the plane with two sizes of discs,
Preprint (from arXiv.org).
(2004).
Proves that there are only nine values of r<1 such that compact packings
are possible using discs of radii 1 and r.
[LH93]
C. N. Likos and C. L. Henley,
Complex alloy phases for binary hard-disc mixtures
Philos. Mag. B 68, 85-113 (1993).
A non-rigorous study of the optimal packing problem with the additional
constraint that the relative number of small and large discs is fixed.
[Mol59]
J. Molnar,
Unterdeckung und Uberdeckung der Ebene durch Kreise
Ann. Univ. Sci. Budapest , 2, 33-40 (1959).
Pictures of compact packings
for r=0.637, 0.533, 0.414, 0.349, 0.280, 0.154
[Thu1892]
A. Thue,
Om Nogle Geometrisk Taltheoretiske Theoremer,
Forhdl. Skand. Naturforsk. 14, 352-353 (1892).
[Thu10]
A. Thue,
Uber die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene
Christiania Vid. Selsk. Skr. 1, 3-9 (1910).