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Preface
There is a wealth of textbooks covering the subject of mathematical statistics. Most of them are encyclopedic

efforts that could be used to teach three or more semester long courses covering many topics ranging from

theory, to computation to application. Due to their encyclopedic nature, these books, while being excellent

reference sources, can be quite daunting and intimidating for the student first approaching the subject of

mathematical statistics. The present set of notes were prepared for their use in the class MATH 466 - Theory
of Statistics at the University of Arizona during the Fall 2022 semester. They are meant to be a short, self

contained introduction to the subject that satisfies two conditions:

1. they contain enough material to build a basic-but-solid theoretical foundation, and

2. they should remain manageable in size and contents so that any student can be reasonably expected to

“read them from cover to cover” and work through every problem during the span of one semester.

Due to these constraints the notes are by necessity incomplete; cover a very short ground and leave out

many important subjects. However, the student who takes the time to go over the entirety of this selection,

working out carefully all the problems provided will have built a solid understanding that will allow them to

successfully undertake the study of the many more advanced (and complete) texts available.

True to their intent on being used in the classroom, the notes are divided into lectures, rather than into

sections or chapters. Each lecture corresponds to the contents of a fifty minute long class and is followed by

a short selection of problems that are essential for the full assimilation of the concepts in the lecture. It is

stressed that students are expected to solve every problem provided for a full grasp of the subject.

It is important to remark that MATH 466 - Theory of statistics, the class for which the notes were prepared,

is not a first course in statistics, but rather a first course in mathematical statistics. Students enrolled in

the class are expected to have completed introductory courses in both statistics and probability, as well as

courses on single and multi variable calculus and linear algebra at a level equivalent to those offered for

freshmen and sophomore students in U.S. colleges, and at least one class involving abstract mathematical

arguments and proofs. For instance introductory real analysis (at the level of [6, 7]), introduction to proofs,

introduction to abstract algebra, etc. Importantly, the student should be already familiar and comfortable

with the mechanics and mathematical manipulations involved in computing probabilities, finding confidence

intervals, performing hypothesis testing and linear regression, etc. Moreover, the students should have taken,

either previously or concurrently, an introductory course on the theory of probability. On the other hand,

they are not expected to have been exposed to the theory and justifications behind statistical methods or to

rigorous measure theory (which will be kept to the very minimum).

No claim of originality or novelty is made. The content of these lectures is based on the textbook Introduction
to statistical theory by Paul G. Hoel, Sidney C Port and Charles J. Stone [3] and has been complemented with

material from other references, most notably Introduction to probability theory [4] by the same authors for the

initial review on probability, Wasserman’s All of statistics [8], and Hodges’ and Lehmann’s Basic concepts in
probability and statistics [2]. Some other references that have been used while preparing these notes can be

found in the reference list at the end of the document.
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Lecture 1

Review of probability theory I

Contents
1.1 Probability spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Properties of the probability function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Probability spaces

Consider an experiment whose result is determined by chance. We will refer to any particular result of the

experiment as an outcome and will denote it as ω. An event A is a set constituted by one or more outcomes.

A probability model or probability space for this experiment consists of three essential pieces: a sample

space, a sigma algebra of events and a probability function. We define each of the in what follows

• The sample space, that will be denoted as Ω, is the set of all possible outcomes of the the experiment.

In mathematical notation, if ω denotes an outcome, A is an event and Ω is the probability space, then

A := {ω : ω satisfies a given condition},
Ω := {ω : ω is an outcome}.

• A σ−algebra ( sigma-algebra) of events. We will not get into the theoretical details of the following,

but in order to account for all possible outcomes and combinations of events, a probability model must

consider a broad collection of events, denoted as F , satisfying the following properties:

1. Ω ∈ F .

2. If the event A ∈ F then the event Ac ∈ F .

3. If every event from the countable family A1, A2, A3, . . . belongs to Ω. Then ∪∞
n=1An ∈ F .

4. If every event from the countable family A1, A2, A3, . . . belongs to Ω. Then ∩∞
n=1An ∈ F .

A set F satisfying all the properties above is known in mathematical analysis as a σ−algebra (read as

“sigma algebra” ).

• The probability, that will be denoted as P (·), is a measurable function that assigns a real number to

every event A. This kind of function is sometimes called a set function because it can take as argument

either a single outcome ω, or a set of them, i.e. and event, which is a subset of the sample space. If we

2



Lecture 1: Review of probability theory I 1.2 Properties of the probability function

denote respectively by |Ω| and |A| the size1
of the sample space and of the event A, we can then write

all this rigorously as

P : Ω −→ R

A 7−→ |A|
|Ω|

.

1.2 Properties of the probability function

From this definition, where we have implicitly assumed that |Ω| < ∞, we can see that the probability satisfies

the following properties

1. 0 ≤ P (A) ≤ 1.

We will use the measure-theoretic facts that A ⊆ B implies that |A| ≤ |B| (this property is called

monotonicity) and that |∅| = 0. Hence, since

∅ ⊆ A ⊆ Ω,

we have that

0 = |∅|/|Ω| ≤ |A|/|Ω| ≤ |Ω|/|Ω| = 1,

and applying the definition of probability it follows that 0 ≤ P (A) ≤ 1 as desired.

2. If the events A and B are such that A ∩B = ∅ (i.e. they are disjoint) then

P (A ∪B) = P (A) + P (B).

We will use again a result from measure theory that states that if two sets are disjoint, then the measure

of their union is the sum of their individual measures (this follows from a property of measures known

as subadditivity ). Using this property, the result follows from the fact that we can decompose A ∪ B
into

A ∪B = (A ∩Bc) ∪ (B ∩Ac) ∪ (A ∩B)

Since all of the sets on the right are disjoint it then follows that the size of the left hand side is the sum

of each of the sizes on the right. Therefore, if A ∩B = ∅ it follows that

P (A ∪B) =
|A ∪B|
|Ω|

=
|A ∩Bc|+ |B ∩Ac|+ |A ∩B|

|Ω|
=

|A|+ |B|+ 0

|Ω|
= P (A) + P (B).

3. P (Ω) = 1.

Using the three properties above, it is then possible to prove (this will be your first exercise) the following

further properties

4. If all the events A1, A2, . . . , An−1, An are mutually disjoint or mutually exclusive (i.e. Ai∩Aj = ∅
for every i ̸= j), then

P (A1 ∪A2 ∪ . . . An−1 ∪An) = P (A1) + P (A2) + . . . P (An−1) + P (An).

1

The precise meaning of “size” is the subject of a course on measure theory, however for the purpose of this course we can use

an intuitive meaning. If the sample space is discrete and finite, then |A| is simply the cardinality of the set A, i.e. the number of

outcomes that belong to the event A. If the sample space is continuous then |A| is the measure of the set A. You can think of the

measure of A as its length in one dimension, its surface in two dimensions, its volume in three, etc.

3



Lecture 1: Review of probability theory I 1.3 Exercises

5. If A ⊆ B then P (A) ≤ P (B).

6. Inclusion-exclusion. For any two events A and B

P (A ∪B) = P (A) + P (B)− P (A ∩B).

7. P (Ac) = 1− P (A).

8. If B ⊆ A, then P (A ∩Bc) = P (A)− P (B).

We will require that property 4 holds for an infinite but countable union of pairwise disjoints sets (this will

enable us to use ideas from calculus).

9. If Ai ∩Aj = ∅ for every i ̸= j, then

P (∪∞
i=1Ai) =

∞∑
j=1

P (Ai).

Any function that takes events and arguments and satisfies properties 1,2 and 9 will be called a probability.

Definition 1.1. Consider a countable family of nested sets A1 ⊆ A2 ⊆ A3 ⊆ . . . We will say that the family

increases to some set A if it holds that limn→∞ ∪n
i=1Ai = A.

Definition 1.2. Consider a countable family of nested sets A1 ⊇ A2 ⊇ A3 ⊇ . . . We will say that the family

decreases to some set A if it holds that limn→∞ ∩n
i=1Ai = A.

Theorem 1.1. Continuity of probability. If a nested family of events {An} increases or decreases to some
event A, then

P (A) = lim
n→∞

P (An).

Proof. Consider that the sequence {An} increases to A. We define Bn := An ∩ (An−1)
c

and note that (1) Bn

and Bm are disjoint for every n and m, that (2) An = ∪n
i=1Bi, and that (3) ∪∞

n=1Bn = ∪∞
n=1An = A. Then,

since the family {Bn} is disjoint, we obtain

P (A) = P (∪∞
i=1Ai) = P (∪∞

i=1Bi) =
∞∑
i=1

P (Bi) = lim
n→∞

n∑
i=1

P (Bi) = lim
n→∞

P (∪n
i=1Bi) = lim

n→∞
P (An).

We now consider the case where the sequence {An} decreases to A. The key is to observe that if {An}
decreases to A then {(An)

c} increases to Ac
; thus

P (A) = 1− P (Ac) = 1− lim
n→∞

P ((An)
c) = lim

n→∞
(1− P ((An)

c)) = lim
n→∞

P (An).

1.3 Exercises

1. Prove that a probability function satisfies properties 4, 5, 6, 7, and 8 from section 1.2.
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Lecture 2

Review of probability theory II

Contents
2.1 Independence and conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Random variables and distribution functions . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Independence and conditional probability

Definition 2.1. The conditional probability of B given A is defined as

P (B|A) :=
P (A ∩B)

P (A)
.

Note that in general P (B|A) ̸= P (A|B). The definition above is often used in the form

P (A ∩B) = P (A) · P (B|A),

which is commonly referred to as the product rule.

The probability of an event B is roughly speaking the fraction of the sample space that is occupied by B.

When we consider the conditional probability of B given A we are no longer considering the entire sample

space and instead we restrict ourselves to the smaller subset A. Hence, the conditional probability of B given

A refers to the fraction of the event A that is occupied by the outcomes also contained in the event B.

Definition 2.2. The events A and B will be called independent events if

P (A ∩B) = P (A) · P (B).

It follows then that if A and B are independent

P (B|A) = P (B).

From the definition of conditional probability it is possible to derive Baye’s formula

P (B|A) = P (A|B)
P (B)

P (A)
. (2.1)

5



Lecture 2: Review of probability theory II 2.2 Random variables and distribution functions

2.2 Random variables and distribution functions

Definition 2.3. Consider a probability space Ω. A random variable X is a measurable function1
whose

domain is the the probability space. The range of X is known as the state space. In other words, a random

variable is a function that takes elements of Ω as arguments and such that the pre-image of any measurable

subset of the state space is itself measurable.

Definition 2.4. Consider a random variable X : Ω → R taking values over the real numbers. Then, the

function FX(x) associating a real number x to the probability that the value of the random variable X is

equal to or less than x

FX(x) := P (X ≤ x)

is known as the cumulative distribution function. It is common to use the acronym CDF as shorthand

for “cumulative distribution function”. The cumulative distribution function FX captures and encodes the

behavior of the random variable X . In a sense, the CDF of X contains all the information that you need in

order to do mathematics involving X .

Remark 2.1. In probability and statistics, it is customary to use capital letters X , Y , Z to denote random

variables while lower case letters x, y, and z are reserved for real numbers. Hence, it is common to find

expressions like X ≤ x (the value of the random variable X is less than or equal to the real number x)

which can be confusing at the beginning—specially on the blackboard. Eventually you will get used to the

notation and immediately realize from the capitalization when a text is talking about a random variable or

about a real number. In a similar fashion, capital letters like FX , GX , and HX are used to denote cumulative

distributions, while the lower case letters fX , gX , and hX are typically reserved to the associated probability

density functions (we will discuss this concept a little later). In this context, the subscript “X” is meant to

stress the fact that these are no ordinary functions, but are associated to a random variable instead (note the

capitalization of the subscript).

Theorem 2.1. Any cumulative distribution function FX has the following properties

1. FX is a non-decreasing function, meaning that if x ≤ y then FX(x) ≤ FX(y).

2. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

3. FX is right continuous, by which we mean that

lim
x→x+

0

FX(x) = FX(x0)

4. If we define
FX(x−) := lim

p→x−
FX(p),

then
FX(x−) = P (X < x).

5. P (X = x) = FX(x)− FX(x−).

6. P (a ≤ X ≤ b) = FX(b)− FX(a),

Proof. We will prove each of these properties

1

This concept again falls within the realm of measure and integration theory and we shall not delve too much on it here. Without

entering into technical details, a measurable function is a function such that its pre-image of a measurable set is itself measurable.

6



Lecture 2: Review of probability theory II 2.2 Random variables and distribution functions

1. Let x ≤ y, then it follows that the sets {ω ∈ Ω : X(ω) ≤ x} ⊆ {ω ∈ Ω : X(ω) ≤ y} and thus, using

property 5 from the previous lecture it follows that

FX(x) = P (X ≤ x) ≤ P (X ≤ y) = FX(y).

2. We define now the family of sets An ⊆ Ω as

An := {ω ∈ Ω : X(ω) ≤ n}.

We see that with this definition the following facts hold

(a) . . . ⊂ A−2 ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ A2 ⊂ . . .

(b) ∩∞
n=0A−n = ∅ (The family {A−n} decreases to ∅).

(c) ∪∞
n=0An = Ω (The family {An} increases to Ω).

Hence, using the continuity of probability we have

lim
x→−∞

FX(x) = lim
x→−∞

P (X ≤ x) = lim
n→∞

P (A−n) = P (∅) = 0.

Analogously

lim
x→∞

FX(x) = lim
x→−∞

P (X ≤ x) = lim
n→∞

P (An) = P (Ω) = 1.

3. Let x0 ∈ R and define that the sets

An := {ω ∈ Ω : X(ω) ≤ x0 +
1
n}.

Clearly A1 ⊇ A2 ⊇ A2 ⊇ . . . and also ∩∞
n=1An = {ω ∈ Ω : X(ω) ≤ x0}. Hence

lim
x→x+

0

FX(x) = lim
x→x+

0

P (X ≤ x) = lim
n→∞

P (An) = P (X ≤ x0) = FX(x0).

4. We will prove the statement using analogous arguments to those used in the two previous points. Define

An := {ω ∈ Ω : X(ω) ≤ x− 1
n},

and note that ∪∞
n=1An = {ω ∈ Ω : X(ω) < x} as well as A1 ⊂ A2 ⊂ A3 ⊂ . . . hence

FX(x−) := lim
p→x−

FX(p) = lim
n→∞

FX(x− 1
n) = lim

n→∞
P (An) = P (X < x).

5. To prove this we note that

{ω ∈ Ω : X(ω) ≤ x} = {ω ∈ Ω : X(ω) < x} ∪ {ω ∈ Ω : X(ω) = x},

where the sets on the right hands side are disjoint. Therefore, using property 2 of the previous lecture

we have that

FX(x) = P (X ≤ x) = P (X < x) + P (X = x) = FX(x−) + P (X = x),

where we have used point 4. Statement 5 follows readily.

6. We first note that

{ω ∈ Ω : a ≤ X(ω) ≤ b} = {ω ∈ Ω : X(ω) ≤ a}c ∩ {ω ∈ Ω : X(ω) ≤ b},

and that

{ω ∈ Ω : X(ω) ≤ a} ⊆ {ω ∈ Ω : X(ω) ≤ b}.
Therefore, we can use property 8 from Section 1.2 to conclude that

P ({ω ∈ Ω : a ≤ X(ω) ≤ b}) =P ({ω ∈ Ω : X(ω) ≤ b})− P ({ω ∈ Ω : X(ω) ≤ a})
=FX(b)− FX(a).

7



Lecture 2: Review of probability theory II 2.3 Exercises

2.3 Exercises

1. Assume that the sample space Ω is divided into n mutually disjoint sets {Ei}ni=1 such that

Ω = ∪n
i=1Ei.

Such a family of sets is known as a partition of the sample space. Prove that for any arbitrary event

A ⊂ Ω we can write

A = ∪n
i=1(A ∩ Ei).

2. Consider a partition of the sample space {Ei}ni=1. Show that for an arbitrary event A ⊂ Ω it holds that

P (A) =
n∑

i=1

P (A|Ei)P (Ei).

This relation is known as the law of total probability.

3. Let E and F be mutually exclusive. Prove that

P (F |Ec) =
P (F )

1− P (E)
.

Is this fact also true if E and F are not exclusive? Prove or provide a counterexample.

4. If P (A) = .4, P (B) = .5, and P (A ∪B) = .7, are events A and B independent?

5. Use the product rule for conditional probability to derive Baye’s formula (2.1).

6. Show that, for any events E and F , it holds that

P (E|F ) + P (Ec|F ) = 1.

7. Show that if E and F are independent , then E and F c
are also independent. [Hint: use the fact that

P (E) = P (E ∩ F ) + P (E ∩ F c)]

8. Show that if E and F are independent, then Ec
and F c

are independent too. [Hint: use the previous

problem twice]

9. Show that if E and F are mutually exclusive, then they can not be independent unless either P (E) = 0
or P (F ) = 0.

8



Lecture 3

Review of probability theory III

Contents
3.1 Discrete and continuous random variables . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Transforming random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Discrete and continuous random variables

Definition 3.1. Consider a probability space Ω and a random variable X : Ω → R. We will say that X is a

• Discrete random variable if there exists countable set D such that P (X ∈ D) = 1. In other words,

X is a discrete random variable if it takes at most countably many values.

• Continuous random variable if its cumulative distribution function FX is continuous for every x.

Remark 3.1. There are other alternate definitions for a continuous random variable. A common alternative

is to say that X is a continuous random variable if P (X = x) = 0 for any ∞ < x < ∞. Intuitively you can

interpret this statement as the fact that if you were to randomly chose any real number between say, 0 and 1,

due to the fact that there are uncountable many choices, the probability of choosing any particular number

is in fact zero.

For discrete random variables we define the probability mass function as

pX(x) := P (X = x).

A probability mass function must be such that

pX(x) ≥ 0 for all x ∈ R (3.1)∑
s∈D

pX(s) = 1. (3.2)

It should be easy to see that, for a discrete random variable, the cumulative distribution function and the

probability mass function are related by

FX(x) = P (X = x) =
∑

D∋s≤x

pX(s) (3.3)

9



Lecture 3: Review of probability theory III 3.2 Transforming random variables

which is piecewise constant with jumps at every x ∈ D. Discrete random variables are completely determined

by specifying their mass function.

For simplicity of exposition we will make the additional assumption that the distribution FX of a continuous

random variable X has a derivative
1

that we will call the probability density function and will denote as

fX(x) := d
dxFX(x).

Whenever possible, we will use the same letter as the distribution, but in lower case. It is customary to use

the acronym PDF to refer to the probability density function and to use the notation

X ∼ fX

(that should be read “X is distributed as fX”) to say that the behavior of X is described by fX .

Note that the definition along with the fundamental theorem of calculus and property 2 from Theorem 2.1

imply that

FX(x) =

∫ x

−∞
fX(s)ds. (3.4)∫ ∞

−∞
fX(s)ds =1. (3.5)

In general, any non negative function f(x) ≥ 0 satisfying the property (3.5) defines a probability density

function with corresponding cumulative distribution given by (3.4). Equation (3.4), which is sometimes used

to define the cumulative distribution function, has the following consequence: for an event A ⊂ R and a

random variable X it holds that

P (X ∈ A) =

∫
A
fX(s)ds. (3.6)

This relation, which holds as well for multidimensional random variables, is commonly referred to the law
of the random variable X , or the distribution of X . We say that two random variables are equal in law or

equal in distribution and write

X
d
=Y

if FX(x) = FY (x) for every x. Note that this does not mean that X = Y but rather than all statements

involving the probabilities of X and Y are equivalent.

3.2 Transforming random variables

Often times new random variables arise from operating over existing random variables. The CDF and PDF

functions of the new variables arising from these manipulations are related to those from the original one. IfX
is the original random variable, fX is its associated PDF, and we define a new random variable as Y = r(X),
the new PDF fY can be determined in general as follows.

1. For each y, find the set Ay := {x : r(x) ≤ y}.

2. Find the CDF for the transformed variable

FY (y) = P (Y ≤ y) = P (r(X) ≤ y) = P (x ∈ Ay) =

∫
Ay

fX(x) dx.

1

In this context we shall understand the term “differentiable” in the sense that the derivative can be computed from the right and

from the left of any given point x, but that these two left and right derivatives might be different. We use this definition for conve-

nience, but strictly speaking we would have to generalize the concept of derivative for functions with corners and discontinuities,

which would bring us to the world of distributional derivatives.

10
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3. The PDF is then given by fY (y) = F ′
Y (y).

Example. Consider a random variable X with density function

fX(x) =

{
0 x ∈ (−∞, 0)

e−x x ∈ [0,∞)

and define Y := log(X). Hence, to find fY (y) we proceed as follows. We first identify the set

Ay := {r(X) ≤ y} = {logX ≤ y} = {X ≤ ey}.

Hence

FY (y) = P (X ≤ ey) = FX(ey).

We then find

FX(x) =

∫ x

−∞
fX(s)ds =

∫ x

0
e−sds = 1− e−x.

Therefore

FY (y) = FX(ey) = 1− e−ey .

Finally, we determine the PDF by differentiation

fY (y) =
d

dy
FY (y) =

d

dy

(
1− e−ey

)
= eye−ey .

Speaking loosely, the CDF of a random variable takes as input a real number and provides the probability

that the random variable takes on values smaller than the input. Thinking about statistical sampling, the CDF

takes certain value of a quantity of interest as input and gives back the proportion of the population that falls

below such value. However, sometimes we want to provide a target fraction of the population and determine

what value of the quantity of interest is such that the provided fraction of the population falls below this

point. In terms of probability, we would like to provide a certain value of the probability p, and be able to

determine the real number x such that the probability of P (X ≤ x) = FX(x) = p. In other words, we would

like to invert the distribution function. This is accomplished by the quartile function.

Definition 3.2. LetX be a continuous random variable with CDFFX . The inverse cumulative distribution
function or quantile function is defined by

F−1
X (q) := inf{x : FX(x) > q} for q ∈ [0, 1].

If FX is strictly increasing, then F−1
X (q) = x is the unique real number x for which F (x) = q.

We will refer to F−1
X (1/4) as the first quartile, F−1

X (1/2) as the median or second quartile, and F−1
X (3/4) as

the third quartile.

3.3 Exercises

1. Verify that, for all the discrete random variables in Section A.1, it holds that∑
x∈D

p(x) = 1.

2. Prove that the definition of a continuous random variable given in Definition 2.4 is equivalent to the

ones given in Remark 3.1. Namely, prove that for any function FX satisfying the properties in Theorem

2.1, the following statements are equivalent

11
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(a) FX(x) is continuous.

(b) P (X = x) = 0 for all x.

3. We say that X is a symmetric random variable if X and −X have the same distribution function.

Prove that a probability density function fX is symmetric (i.e. fX(x) = fX(−x)) if and only if X is

symmetric.

4. Let X be a continuous random variable with density function fX and let g : R → R be a strictly

monotonic differentiable function. Prove that the random variable defined by Y := g(X) has density

fY (y) = fX(g−1(y))
∣∣∣ ddyg−1(y)

∣∣∣ .
5. Use the fundamental theorem of calculus and property 2 from Theorem 2.1 to prove the equalities (3.4)

and (3.5).

6. Let X ∼ Exp(θ). Find the CDF FX and the quantile function F−1
X (q).

7. Let X have CDF FX . Find the CDF of the random variables

(a) X+ = max{0, X} and (b) X− = min{0, X}.

[Hint: Both answers will be piecewise defined functions.]

8. Let X be a continuous random variable with density function fX . Let A be a subset of the real line and

the indicator function of A as

IA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Find the cumulative distribution function of the random variable Y := IA(X). [Hint: First realize that

Y is actually a discrete random variable and start by finding its probability mass function].

9. Consider a random variable X having a continuous, strictly increasing CDF, FX . Define Y = FX(x),
the PDF of Y is known as the probability transform.

(a) Find the PDF for Y .

(b) Consider a uniformly distributed variable U ∼ U(0, 1) and let X = F−1
X (U). Show that X ∼ F .

This process can be used to generate random samples with distribution FX using random samples

generated uniformly over the interval (0, 1).

10. Following the process described in the previous problem, find the probability transform and write an R

code that generates random variables distributed as the exponential distribution Exp(θ).

12
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4.1 Bivariate random variables and joint distributions

For simplicity, in what follows we will focus on functions depending on two random variables, but all the

results and concepts that will be discussed can be easily extended to functions depending on more than two.

A function f(x, y) : R2 → R is called a joint probability density function (PDF) for the continuous random

variables X and Y if

1. fX,Y (x, y) ≥ 0 for all (x, y).

2.

∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy = 1.

3. For any set A ⊂ R2
it holds that P ((X,Y ) ∈ A) =

∫ ∫
A fX,Y (x, y) dx dy.

The joint CDF function is related to the joint PDF by

FX,Y (x, y) := P (X ≤ x, Y ≤ y) =



∑
Dy∋n≤y

∑
Dx∋m≤x

pX,Y (m,n) (for discrete RVs)

∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv (for continuous RVs).

(4.1)

where the sets Dx and Dy denote the (domain) of the discrete RVs x and y respectively, and the notation

P (X ≤ x, Y ≤ y) is shorthand for P (X ≤ x and Y ≤ y).

13
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4.2 Marginal distributions and densities

The joint CDF FX,Y for two random variables X and Y encodes the simultaneous probabilistic behavior of the

random variables. The one dimensional probability of a single RV (insulated from the behavior of the other

one) gives rise to the marginal distribution function which, for continuous RVs, is given by

FX(x) :=P (X ≤ x) = lim
y→∞

FX,Y (x, y) =

∫ x

−∞

∫ ∞

−∞
fX,Y (x, y) dy dx,

FY (y) :=P (Y ≤ y) = lim
x→∞

FX,Y (x, y) =

∫ y

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy.

The corresponding marginal probability density function is given by

fX(x) :=

∫ ∞

−∞
fX,Y (x, y) dy,

fY (y) :=

∫ ∞

−∞
fX,Y (x, y) dx.

The corresponding marginal CDF for discrete RVs are given by

FX(x) :=P (X = x) =
∑

Dx∋m≤x

∑
n∈Dy

pX,Y (m,n)

FY (y) :=P (Y = y) =
∑

Dy∋n≤y

∑
m∈Dx

pX,Y (m,n),

while the PDFs are

fX(x) :=
∑
n∈Dy

pX,Y (m,n) and fY (y) :=
∑

m∈Dx

pX,Y (m,n).

4.3 Conditional densities

If X and Y are discrete, we can then compute the conditional distribution of X given that we have observed

certain value of Y = y. As we have seen before

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

This motivates the definition of the conditional probability mass function

pX|Y (x|y) :=
pX,Y (x, y)

pY (y)
(if pY (y) > 0). (4.2)

Note that if X and Y are continuous, then strictly speaking the meaning of the expression P (X ∈ A|Y = y)
has to be handled with care, since the event {Y = y} has probability 0. This wrinkle can however be sorted

out (we will not delve into the details) and the definition above can be generalized for continuous random

variables as follows:

For continuous random variables X and Y , the conditional probability density function is defined as

fX|Y (x|y) :=
fX,Y (x, y)

fY (y)
(if fY (y) > 0), (4.3)

14
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and

P (X ∈ A|Y = y) =

∫
A
fX|Y (x|y) dx.

The definition of the conditional density and mass function lead to the following useful formula (familiar from

Baye’s formula (2.1) in Lecture 2)

fX|Y (x|y)fY (y) = fY |X(y|x)fX(x).

4.4 Independent random variables

We say that X and Y are independent random variables if for every pair of events A and B it holds that

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B),

otherwise we say that X and Y are dependent random variables.

The joint PDF for independent RVs can be expressed in terms of their marginal densities.

Theorem 4.1. IfX and Y have joint PDF given by fX,Y , then they are independent if and only if up to a set of
measure zero it holds that

fX,Y (x, y) = fX(x)fY (y).

Note that, as we shall soon see, since the PDF of a random variable is only ever used under integral sign, the

fact that the equality above fails to hold for a set of measure zero is not an issue.

A slightly different result that is often useful is the following.

Theorem 4.2. Consider thatX and Y are defined over a possibly infinite rectangle. If there exist two functions
g(x) and h(y) not necessarily one-dimensional PDFs themselves such that

fX,Y (x, y) = g(x)h(y)

then X and Y are independent.

Note that in the preceding theorem g and h need not be the marginal densities, nor should they integrate to

1 over the real line.

4.5 Sums, products and quotients of continuous random variables

It is also common and useful to combine more than one random variable to give rise to new ones. In these

cases, we would like to be able to obtain the CDF and PDF of the new variable from those of the original ones.

Consider that the random variables X and Y are known, and denote the new random variable Z := Z(X,Y ).
The general technique for finding FZ and fZ is as follows. We first find the set

AZ : {(x, y) : Z(X,Y ) ≤ z}.

Then, from the definition of FZ and Property 3 in 4.1, it follows that

FZ(z) = P (Z ∈ AZ) =

∫ ∫
AZ

fX,Y (x, y) dx dy.

If we can manipulate the integral above into an expression of the form

FZ(z) =

∫ z

−∞
h(s)ds,

15
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then, by the property (3.4) it will necessarily follow that fZ(z) = h(z).
The following theorem gives the PDF of three common and useful combinations of RVs, namely the sum,

product and quotient or two known random variables. We will illustrate the process described above by

deriving the formula for one of these combinations and will leave the remaining two as practice problems.

Theorem 4.3. Consider that the continuous random variablesX and Y are known and have joint PDF given by
fX,Y (x, y). Then

1. The PDF of the random variable Z := X + Y is given by

fZ(z) =

∫ ∞

−∞
fX,Y (x, z − x)dx.

2. The PDF of the random variable Z := XY is given by

fZ(z) :=

∫ ∞

−∞

1

|x|
fX,Y (x, z/x)dx.

3. The PDF of the random variable Z := Y/X is given by

fZ(z) :=

∫ ∞

−∞
|x|fX,Y (x, zx)dx.

Proof. We will prove point 2 and will leave the other two as practice problems. We start by identifying the

set

AZ := {(x, y) : Z(X,Y ) ≤ z} = {(x, y) : xy ≤ z}.

We notice that if x < 0 then xy < z ⇔ y > z/x, while if x ≥ 0 then xy ≤ z ⇔ y ≤ z/x 1
. Therefore

AZ = {(x, y) : x < 0 ∩ y > z/x} ∪ {(x, y) : x ≥ 0 ∩ y ≤ z/x} ,

hence we have that

FZ(z) :=

∫ ∫
AZ

fX,Y (x, y) dx dy

=

∫ 0

−∞

∫ ∞

z/x
fX,Y (x, y) dy dx+

∫ ∞

0

∫ z/x

−∞
fX,Y (x, y) dy dx

Recalling that we would like to have “z only” in the integration limits, we perform the change of variables

s = xy in both inner integrals. With this change of variables the integrals become

=

∫ 0

−∞

∫ −∞

z

1

x
fX,Y (x, s/x) ds dx+

∫ ∞

0

∫ z

−∞

1

x
fX,Y (x, s/x) dy dx

=

∫ 0

−∞

∫ z

−∞

(
−1

x

)
fX,Y (x, s/x) ds dx+

∫ ∞

0

∫ z

−∞

1

x
fX,Y (x, s/x) dy dx

=

∫ ∞

−∞

∫ z

−∞

1

|x|
fX,Y (x, s/x) ds dx

changing the order of the integrals above yields

=

∫ z

−∞

∫ ∞

−∞

1

|x|
fX,Y (x, s/x) dx ds =

∫ z

−∞
fZ(s)ds,

1

The limiting case x = 0 is covered by y < limx→∞ z/x = ∞.
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where

fZ(z) :=

∫ ∞

−∞

1

|x|
fX,Y (x, z/x) dx.

Corollary 4.4. If X and Y are independent continuous random variables with PDFs fX and fY , then

1. The PDF of the random variable Z := X + Y is given by

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx.

2. The PDF of the random variable Z := XY is given by

fZ(z) :=

∫ ∞

−∞

1

|x|
fX(x)fY (z/x)dx.

3. The PDF of the random variable Z := Y/X is given by

fZ(z) :=

∫ ∞

−∞
|x|fX(x)fY (zx)dx.

Remark 4.1. Given real-valued functions g and h, the convolution of g and h is given by

(g ∗ h)(x) =
∫ ∞

−∞
g(s)h(x− s)ds.

The result above then tells us that the mass function of the sum of two continuous independent random

variables is given by the convolution of the two mass functions.

4.6 Multidimensional random variables and joint distributions

All the concepts introduced in the previous section for two random variables can be extended naturally to

multiple variables.

We can define an n−dimensional vector-valued random variable X as the vector of component-wise ran-

dom variables

X := (X1, X2, . . . , Xn−1, Xn),

where each of the entries Xi is a scalar-valued random variable. For such a random vector, we can define the

joint distribution function as

FX(x1, . . . , xn) := P ((X1 ≤ x1) ∩ . . . ∩ (Xn ≤ xn)) .

This encodes the probability that all the inequalities are satisfied simultaneously. The notation on the right

hand side above is often shortened as

FX(x1, . . . , xn) := P (X1 ≤ x1, . . . , Xn ≤ xn).

This joint distribution function has properties analogous to the ones summarized on Theorem 2.1 for scalar

random variables.

Multivariate random variables can also be distinguished between discrete and continuous and they also have

associated joint probability mass functions

pX(x1, . . . , xn) = P (X1 = x1 . . . , Xn = xn)

17
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for discrete variables.

We will say that the random variables X1, X2, . . . , Xn are independent identically distributed (which will

be shortened as IID) if they are all pairwise independent and they all share the same PDF fX(x). In that

case, the joint pdf for the vector valued RV X := (X1, X2, . . . , Xn) can be expressed as the product of the

individual PDFs

fX(x1, . . . , xn) =
n∏

i=1

fXi(xi)

4.7 Exercises

1. Addition of continuous random variables. Consider that X and Y are continuous random variables

with joint density function fX,Y (x, y).

(a) Prove that the density function of the random variable defined as Z := X + Y is given by

fZ(z) =

∫ ∞

−∞
fX,Y (x, z − x)dx.

(b) How does the final formula change if X and Y are independent? Justify your answer.

2. Consider two independent random variables X and Y both having an exponential distribution with

parameter λ (See section A.2 for the PDF). Using the result proven in the previous problem, find the

PDF for the random variable Z := X + Y .

3. Addition of independent discrete random variables. Consider that X and Y are independent

integer-valued random variables with mass functions pX and pY . Prove that the random variable Z :=
X + Y has the mass function

pZ(x) =
∑
n∈Z

pX(n)pY (x− n).

Remark. Given two integer-valued functions f and g the discrete convolution of f and g is given by

(f ∗ g)(x) :=
∑
n∈Z

f(n)g(x− n).

The result above tells you that the mass function of the sum of two discrete independent random vari-

ables is given by the discrete convolution of the two mass functions.

4. Let X and Y be continuous random variables with joint density fX,Y .

(a) Find the joint CDF and PDF of the random variables

W := a+ bX. and Z := c+ dY,

where b > 0 and d > 0.

(b) Show that if X and Y are independent, then W and Z are independent too.

5. Let X and Y be continuous random variables with joint distribution FX,Y and density fX,Y .

(a) Find the joint CDF and joint PDF of the random variables

W := X2
and Z := Y 2.

(b) Show that if X and Y are independent, W and Z are independent as well.

6. Let X1, X2, . . . , Xn ∼ Exp(λ) be IID, and define Y = max{X1, X2, . . . , Xn}. Find the PDF of Y .

[Hint: Notice that Y ≤ y if and only if Xi ≤ y for every i ∈ {1, . . . , n}.]
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5.1 Expected value

Discrete random variables. Consider a discrete random variable X : Ω = {ω1, ω2, . . .} → R and a real

valued function g(X) taking arguments on the state space. We define the expected value or expectation as

E[g(X)] :=
∑
ωi∈Ω

g(X(ωi))P{ωi},

whenever the sum converges absolutely
1
. This definition, while intuitive (the expected value considers the

value of the function g when evaluated at every event in the sample space appropriately weighted by the

probability of the corresponding event), does not provide a practical formula for computing the expected

value of g in terms of its probability mass function pX .

In order to obtain such a formula, we first define for every real number x in the state space S (i.e. all the

possible values of X) the set of events ωi such that X(ωi) = x as

R(x) := {ω ∈ Ω : X(ω) = x}.

1

Recall that a sum

∑∞
n=1 xi is said to converge absolutely if the sum

∑∞
n=1 |xi| converges.
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We then proceed from the definition as follows

E[g(X)] :=
∑
ωi∈Ω

g(X(ωi))P{ωi} (Definition)

=
∑
x∈S

∑
ω∈R(x)

g(X(ω))P{ω} (Group all events yielding the same value of x and sum over all x ∈ S)

=
∑
x∈S

∑
ω∈R(x)

g(x)P{ω} =
∑
x∈S

g(x)
∑

ω∈R(x)

P{ω} ( For all ω ∈ R(x) we have: 1) X(ω) = x and 2) g(x) is constant)

=
∑
x∈S

g(x)P (ω ∈ R(x)) (Since all w ∈ R(x) are disjoint)

=
∑
x∈S

g(x)P (X = x) (Since all w ∈ R(x) implies that X = x)

=
∑
x∈S

g(x)pX(x) (Definition of the probability mass function pX ).

Hence, we have shown that the expected value of the function g can be computed from the probability mass

function by

E[g(X)] =
∑
x∈S

g(x)pX(x) (5.1)

whenever the sum converges absolutely.

Continuous random variables. We will use this result to derive a similar formula for a continuous random

variable. First, we consider a small value ∆x > 0 and, given a continuous random variable X , we will define

the discrete variable

X̃ := ⌊X⌋∆x,

where the function ⌊·⌋∆x rounds down the argument to the nearest integer multiple of ∆x. The discrete

variable X̃ has a discrete state space that we will denote by S∆x. Moreover, we observe that

lim
∆x→0

|X̃ −X| = 0 and lim
∆x→0

S∆x = S.

We then use (5.1) to compute

E[g(X̃)] =
∑

x̃∈S∆x

g(x̃)p(x̃)

=
∑

x̃∈S∆x

g(x̃)P (X̃ = x̃)

=
∑

x̃∈S∆x

g(x̃)P (x̃ ≤ X < x̃+∆x) (since X̃ = x̃ ⇔ x̃ ≤ X < x̃+∆x)

=
∑

x̃∈S∆x

g(x̃)
(
F
X̃
(x̃+∆x)− F

X̃
(x̃)
)
.

Then, recalling that we are assuming that the CDF of a continuous random variable is differentiable we can

use a Taylor approximation to see that

FX(x̃+∆x) = FX(x̃) + ∆xfX(x̃) +O
(
∆x2

)
,

therefore

E[g(X̃)] =
∑

x̃∈S∆x

g(x̃)
(
fX(x̃)∆x +O

(
∆x2

))
.

20



Lecture 5: Review of probability theory V 5.2 Some special cases

We observe that the first term above is actually a Riemann sum, while the second one will vanish as ∆x → 0.

Hence, if the sum above converges absolutely for any ∆x we see that

E[g(X)] = lim
∆x→0

E[g(X̃)] = lim
∆x→0

 ∑
x̃∈S∆x

g(x̃)
(
fX(x̃)∆x+O

(
∆x2

)) =

∫ ∞

−∞
g(x)fX(x) dx.

Therefore, whenever the integral below converges absolutely, the expected value of the function g with respect

to the random variable X will be given by

E[g(X)] =

∫ ∞

−∞
g(x)fX(x) dx. (5.2)

Remark 5.1. The expected value of a quantity is also referred to as the mean value. The following alternate

notations for the expected value of the function g are also very common in the literature

E[g(X)] ≡ g(X) ≡ ⟨g(X)⟩.

Remark 5.2. Notice that if the function g is the identity, then by substituting g(x) = x in either (5.1) or (5.2)

we obtain formulas for the mean value of the random variable itself

E[X] =
∑
x∈S

xpX(x) for discrete RVs, or E[X] =

∫ ∞

−∞
xfX(x) dx for continuous RVs.

The mean or expected value of X is often denoted by µX or simply µ.

Theorem5.1. IfX1, . . . , Xn are all random variables with well-definedmeans, and c1, . . . , cn are real numbers,
then

E

[
n∑

i=1

ciXi

]
=

n∑
i=1

ciE [Xi] (5.3)

5.2 Some special cases

Some special choices of the function g are particularly important. Here we provide a summary of the most

common

1. If g(x) = xk for k = 1, 2, 3, . . . then E[g(X)] is called the k-th moment. Note that the first moment

corresponds to the mean value of X .

2. If g(x) = (x)k where (x)k := (x)(x − 1)(x − 2) · · · (x − k + 1), then E[g(X)] is called the k-th
factorial moment.

3. If we denote the mean value of X by µ := E[X] and define the function g(x) = (x−µ)k, then E[g(x)]
is called the k-th central moment

4. If X is vector valued in Rd
, and we denote the Euclidean inner product between X := (X1, . . . , Xd)

and θ := (θ1, . . . , θd) as

⟨θ,X⟩ :=
d∑

i=1

θiXi

then the function

ϕ(θ) = E
[
ei⟨θ,X⟩

]
is called the characteristic function or the Fourier transform of fX .

21



Lecture 5: Review of probability theory V 5.3 Exercises

5. If X is vector valued in Rd
, then the function

m(θ) := E
[
e⟨θ,X⟩

]
is called the moment generating function or the Laplace transform of fX .

6. If X takes values in the positive integers Z+
and g(x) = zx, then the function

ρ(z) := E[g(x)] =
∞∑
n=0

P{X = x}zx

is called the probability generating function.

5.3 Exercises

1. Let c be a fixed real number, X be a discrete random variable and Y be a continuous random variable.

Prove that

(a) The expected value of c with respect to X is E[c] = c.

(b) The expected value of c with respect to Y is E[c] = c.

2. We will use induction to prove a slightly more general version of the identity (5.3) in three steps.

(a) First let X1 and X2 be random variables over a countable sample space Ω having a common state

space S. Let g1 and g2 be two integrable real-valued functions taking arguments on S, and let c1
and c2 be real numbers. Show that

E[c1g1(X1) + c2g2(X2)] = c1E[g1(X1)] + c2E[g2(X2)].

Note that equation (5.1) does not apply in this case since we have two random variables in-

volved. Instead you will have to study the steps that were used to derive (5.1) and adapt them to

this case.

(b) Then use the induction hypothesis, (i.e. that the result holds for n = k) and show that this implies

that the result holds for n = k + 1.

(c) Finally, choose gi appropriately and conclude that (5.3).

3. (a) Consider two discrete random variables X and Y with well-defined means and such that X ≤ Y .

Show that

E[X] ≤ E[Y ].

Hint: write pX(x) = pY (x) + d+(x)− d−(x) where

d+(x) := max{pX(x)− pY (x), 0} and d−(x) := |min{pX(x)− pY (x), 0}|.

(b) Modify your proof above to consider the case when X and Y are continuous RVs.

4. Let X and Y be independent continuous random variables. Use Corollary 4.4 to Prove that E[XY ] =
E[X]E[Y ]. [Hint: handle carefully the limits of integration.]

5. Consider a real valued continuous random variable X and a real number µ. We say that X is symmetric

about µ, if

fX(µ+ x) = fX(µ− x).

Consider that X is symmetric about µ and prove that
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(a) The random variables Z1 := X − µ and Z2 := µ−X have the same PDF.

(b) E[X] = µ. [Hint use part (a) to conclude that E[Z1] = E[Z2] and derive the result (b) from this

equality].

6. Let X be a non-negative continuous random variable with PDF fX and CDF FX .

(a) Show that X has finite expectation if and only if∫ ∞

0
(1− FX(x))dx < ∞

(b) Show that

E[X] =

∫ ∞

0
(1− FX(x))dx;

7. Let Z1, . . . , Zn be random variables such that E[Zi] = ζ for i = 1, . . . , n. We define the sample mean
of size n as the random variable given by

Zn :=
1

n
(Z1 + . . .+ Zn) .

Prove that E[Zn] = ζ .
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6.1 Variance, covariance and correlation

The second central moment is of particular importance. It is called the variance of X , denoted as σ2
and is

defined as

Var(X) ≡ σ2 := E
[
(X − µX)2

]
,

where µ is the expected value of X . The definition above can be used to compute the variance, but the

following formula (you will have to prove it as an exercise) provides an easier tool for computing the variance

σ2 = E
[
X2
]
− (E[X])2 . (6.1)

Note that, since the variance is defined as the expected value of a non-negative random variable, then it has

a well defined square root, which is called the standard deviation and it is denoted by σ. This quantity is

commonly used as a measure of the spread of a distribution.

The following useful properties of the variance can be proven from the definition and the properties of ex-

pectation.

Theorem 6.1. If X is a random variable with well defined mean µ, and c is a real number then:

1. Var[c] = 0,

2. Var[X + c] = Var[X],

3. Var[cX] = c2Var[X].

Proof. Exercise 2.

Two related quantities are the covariance

Cov(X,Y ) := E [(X − µX)(Y − µY )] ,

and the correlation
Corr(X,Y ) ≡ ρX,Y :=

Cov(X,Y )

σX σY
,

which provide a measure of the linear connection between the random variables X and Y .

The following properties of the covariance and the correlation are easy to prove
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Theorem 6.2. If X and Y are variables with joint PDF fX,Y (x,y), well defined means µX and µY and with
positive variances σX and σY then

|Corr(X,Y )| ≤ 1. (6.2)

Moreover, if X and Y are independent then

Cov(X,Y ) = 0. (6.3)

When the equality above holds true, we say that X and Y are uncorrelated.

Proof. We will prove the first property for continuous random variables (the proof for the discrete case is

completely analogous) and will leave the proof of the second property as Exercise 3.

We start from the definition of expectation and will use the fact that a PDF is non negative and the Cauchy-

Schwarz inequality.

|Cov(X,Y )| = |E [(X − µX) (Y − µY )]|

=

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
(x− µx)(y − µy)fX,Y (x, y) dxdy

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
(x− µx)

(√
fX,Y (x, y)

) (
(y − µy)

√
fX,Y (x, y)

)
dxdy

∣∣∣∣
≤
(∫ ∞

−∞

∫ ∞

−∞
(x− µx)

2fX,Y (x, y) dxdy

)1/2 (∫ ∞

−∞

∫ ∞

−∞
(y − µy)

2fX,Y (x, y) dxdy

)1/2

=σX σY

Hence

|Corr(X,Y )| = |Cov(X,Y )|
σXσY

≤ 1.

If we have two random variables X and Y with well defined means µX and µY , we can compute the variance

of the random variable Z := X + Y . We first note that if we denote the expected value of Z as µZ we have

µZ = E[X + Y ] = E[X] + E[Y ] = µX + µY .

We then proceed as follows

Var[Z] =E
[
(Z − µZ)

2
]

=E
[
Z2 − 2ZµZ + µ2

Z

]
=E

[
X2 + 2XY + Y 2 − 2(X + Y )(µX + µY ) + µ2

X + µ2
Y + 2µXµY

]
=E

[
X2 − 2XµX + µ2

X + Y 2 − 2Y µY + µ2
Y + 2 (XY − Y µX −XµY + µXµY )

]
=E

[
(X − µX)2 + (Y − µY )

2 + 2(X − µX)(Y − µY )
]

=E
[
(X − µX)2

]
+ E

[
(Y − µY )

2
]
+ 2E [(X − µX)(Y − µY )]

=Var[X] + Var[Y ] + 2E [(X − µX)(Y − µY )]

=Var[X] + Var[Y ] + 2Corr(X,Y ).

We have thus proven that

Var[X + Y ] = Var[X] + Var[Y ] + 2Corr(X,Y ). (6.4)

Moreover, if X and Y are uncorrelated

Var[X + Y ] = Var[X] + Var[Y ]. (6.5)
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6.2 Exercises

1. Using the definition of variance and the properties of the expected value prove the identity (6.1)

σ2 = E
[
X2
]
− (E[X])2 .

2. Prove the three properties in Theorem 6.1.

3. Here we will prove property (6.3) from Theorem 6.2. We will proceed in two steps

(a) Using the properties of the expectation and the definition of covariance, show that for any RVs X
and Y

Cov(X,Y ) = E [XY ]− E [X]E [Y ] .

(b) Show that if X and Y are independent, the expression above implies that Cov(X,Y ) = 0. [Hint:

See problem 4 from Lecture 5].

4. Let X and Y be random variables with mean 0, variance 1, and correlation ρ.

(a) Show that Y and X − ρY are uncorrelated.

(b) Show that X − ρY has mean 0 and variance 1− ρ2.

5. Here we explore more properties of the sample mean. Show that, if Z1, . . . , Zn are uncorrelated RVs

with well defined means and having common variance σ2
, then the variance of the sample mean Zn is

given by

Var

(
Zn

)
=

σ2

n
.
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7.1 Sample mean

Let X1, . . . , Xn be independent identically distributed random variables with finite mean µ and non zero

variance σ2
. The sample mean of size n, Xn, often also called the empirical average is defined as

Xn :=
1

n
(X1 + . . .+Xn) .

The cumulative distribution function for the sample mean is called the empirical distribution function and

is defined as

Fn(x) :=P (Xn ≤ x)

=
1

n
(# of observations of Xi that fall below x)

=

n∑
i=1

I(−∞,x](xi),

where the function I(−∞,x](xi) is the indicator function of the interval (−∞, x] given by

I(−∞,x](x) =

{
1 if x ∈ (−∞, x]

0 if otherwise

The sample mean is very important in statistics. You can think of the problem of estimating the mean value of

certain population parameter that is inaccessible to you due to the impossibility of polling the entire popula-

tion. Instead, you set out to poll a smaller subset of the population with size n, and compute the average of the

response. In this situation, each random variable Xi represents the act of asking a randomly selected person,

since all the people on your sample come from the same population they will all follow the same common

distribution. Moreover, if you select your sample randomly (and you design your experiment appropriately)
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then the answer provided by each individual will bare no direct relation with the answers of the rest, i.e. your

sample will consist of independent identically distributed individuals. Since a different poller conducting the

same experiment will end up interviewing a different set of individuals, Xn is indeed a random variable. Your

empirical average will correspond to one realization or observation of the possible values of Xn. You might

then ask how well will your empirical average approximate the value of the population mean µ. We will

address this question in what follows.

7.2 Law of large numbers

In exercises 7 from Lecture 5 and 5 from Lecture 6 we have already explored two important properties of this

random variable, which we will recall here.

1. E
[
Xn

]
= µ,

2. Var

[
Xn

]
=

σ2

n
.

We can combine these two properties into the following mathematical statement

∫
S
(x− µ)2fXn

(x) dx =
σ2

n
,

where the integral is computed over all possible values of xn (the state space S). From the expression above,

it follows that

lim
n→∞

∫
S
(x− µ)2fXn

(x) dx = 0.

Since all of the terms inside the integral above are non negative, the only way in which the limit can be zero

is if somehow the possible values of xn get closer and closer to the distribution mean µ as more and more

samples are gathered. Note that, due to the presence of the PDF and the fact that the entire expression is

being integrated, the statement above does not imply that limn→∞ xn = µ, but rather than, as the number

of samples increases it becomes more and more unlikely to find sample mean values that differ much from

the distribution mean µ. We will make this statement more precise with the aid of the following inequality.

Theorem 7.1 ( Chebyshev’s Inequality). Let X be a real valued random variable with finite mean µ and
variance σ2, probability density function fX , and let k be a positive constant. Then, the probability that the
distance between a realization of X and the mean µ is larger than or equal to k is bounded as

P (|X − µ| ≥ k) ≤ Var(X)

k2
. (7.1)

Proof. We start by defining the set where the distance between X and µ is at least k

Ak := {x : |X − µ| ≥ k},

and noting that for every x ∈ Ak it holds that 1 ≤ (x − µ)2/k2. We want to compute the probability that a
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sample of X belongs to Ak, so we proceed from the definition

P (|X − µ| ≥ k) =

∫
Ak

fX(x) dx

≤
∫
Ak

(x− µ)2

k2
fX(x) dx

≤ 1

k2

∫
Ak

(x− µ)2fX(x) dx+
1

k2

∫
Ac

k

(x− µ)2fX(x) dx

=
1

k2

∫ ∞

−∞
(x− µ)2fX(x) dx

=
Var(X)

k2
.

We can then combine this result with the particular properties of the sample mean Xn to state that

P (|Xn − µ| ≥ k) ≤
(σ
k

)2 1

n
(7.2)

This statement is known as the law of large numbers and it is sometimes expressed by saying that that the

sample mean converges with probability 1 to the distribution mean. The law of large numbers tells us that

• It is safe to estimate the expectation of a random variable by repeatedly sampling and computing the

empirical average.

• If we agree use the standard deviation as a measure of the distance between our approximation and the

true value, then the “size” of the error ϵ is given by

ϵ =
√

Var

[
Xn

]
=

σ√
n
,

where σ is the standard deviation of the unknown distribution. This fact might seem like an insur-

mountable issue. How are we supposed to know the variance if we do not know the expectation? As

we shall see later, this is not such a big problem, as for some distributions it is possible to compute the

variance theoretically, while for some others approximating σ by the variance of a sample provides a

remarkably good approximation. This will lead to what is known as the T distribution.

7.3 Central limit theorem

The central limit theorem also pertains to the behavior of the sample mean as the number of samples increases,

but it is a much stronger result than the law of large numbers. It is in fact one of the deepest results in applied

mathematics, and its proof is not easy, which is why we will not attempt it here (it belongs in a course of

advanced probability).

Consider a family of random variables Xn with corresponding CDFs FXn . We say that they converge in
distribution to the random variable X if

lim
n→∞

FXn(x) = FX(x)

for every point x where FX(x) is continuous.
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We recall here the CDF of a normal random variable with mean µ and standard deviation σ, which is given

by

Φ(x) :=
1√
2πσ2

∫ x

−∞
e−(

x−µ
σ )

2

dx.

We can now state the central limit theorem.

Theorem 7.2. Central limit theorem Let X1, . . . , Xn be independent identically distributed random variables
with mean µ and standard deviation σ, and let Xn be their empirical average or sample mean. Then

lim
n→∞

P

(
Xn − µ

(σ/
√
n)

≤ x

)
= Φ(x).

Intuitively, what the theorem tells us is that, as we mix more and more independent identically distributed

random variables through the empirical average, the only features that remain relevant in the CDF of the

resulting random variable are their common mean µ and standard deviation σ. The remarkable and surprising

fact is that this result remains true regardless of the of the particular form of the underlying PDFs.
One of the useful consequences of this result for statistics is that, regardless of what is the PDF of the variable

we are studying we can approximate probabilistic statements about it by using with a normal distribution

with the same mean and standard deviation, as long as our sample size is big enough.

7.4 Exercises

1. Let (X1, Y1), . . . , (Xn, Yn) be independent identically distributed random vectors with mean (µx, µy)
and variance (σ2

x, σ
2
y). Let

Xn :=
1

n

n∑
i=1

Xi and Y n :=
1

n

n∑
i=1

Yi,

and define Zn := Xn/Y n. Find limn→∞ FZn(z).
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8.1 Decisions, loss and risk

The basic idea of inferential statistics is to make a decision based on information obtained from data obser-

vations (x1, . . . , xn). The observations are modeled as realizations of a random variable X that has a (fully

or partially) unknown distribution FX .
1

Moreover, in parametric statistics, the distribution function is

assumed to depend on one or more parameters that we will denote as θ := (θ1, . . . , θm). To emphasize the

dependence of the probabilistic results on the parameter θ, we will denote the expectation as Eθ , the variance

as Varθ and so forth. The assumed true value of these parameters is sometimes referred to as the state of
nature and is chosen from a set of admissible values known as the parameter space that we will denote as

Θ.

In a well designed experiment, the outcome of one measurement should not depend on the previous ones

(i.e. all measurements should be independent from each other) which is why a set of n measurements is

considered—in the language of probability—to be a set of independent, identically distributed random vari-

ables X1, . . . , Xn. In the language of statistics a particular realization of IID random variables is known as a

simple random sample.

Given data in the state space (x1, . . . , xn) ∈ Sn, we want to make a decision, which is a function of the data.

The set of all possible decisions (i.e. functions) is called the action space A. This leads us to introduce the

decision function or decision rule
d : Sn → A.

Decisions have consequences, and we would like to be able to quantify the negative effect of a decision made

(and to minimize the negative impact). This leads to the introduction of a loss function which takes as

arguments the values of the parameters and the decision made and gives back a real number that will be

interpreted as ta measure of the consequences

L : Θ×A → R.
1

To infer means to deduce something hence, statistical inference is the process of we learning something new about our random

variable by analyzing statistical information. This not-so-new idea of using a computer (a machine) to process statistical data in order

to obtain information about certain process now goes by the much cooler name of machine learning.
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Hence, it the state of nature is given by the parameter θ then L(θ, a) quantifies the loss incurred upon taking

the action a.

Note that, since the action is a function of the random variable a = d(X), the loss is itself a random variable.

Every time that an experiment, poll, measurement, etc. is conducted, a different sample (x1, . . . , xn) will be

obtained and this will in turn lead to a different action a. We would like to measure the consequence of the

decision in a way that is not random, and a very natural way is to consider what would be the expected loss

incurred by our decision. This leads to the introduction of the risk function which takes a parameter and a

decision function and gives back the expected loss incurred by it

R : Θ×D −→ R
(θ, d) 7−→ R(θ, d) := Eθ[L(θ, d(X))]. (8.1)

The particular way of measuring the loss is up to the user and may change from application to application.

Different choices can lead to different optimal actions and decisions, as we shall see in the following example

where we explore here three natural choices for the problem of parameter estimation.

8.2 Different loss functions lead to different optimal decisions

Consider the problem of approximating the value of the parameter θ by a certain number x determined by

our data. The following three choices of loss functions seem all natural ways of quantifying the error in the

approximation

1. L1(θ, a) = |θ − a|. (Absolute error loss)

2. L2(θ, a) = (θ − a)2. (Squared error loss)

3. L3(θ, a) =

{
0 if a = θ,

1 if a ̸= θ.
(Zero-one loss)

We will consider that our data is drawn from a discrete random variable with probability mass function pX(x)
which, for simplicity, will be considered to be independent of θ in the following calculations. The decision

function takes the measured data and gives us back a number that will be used as an approximation of θ. This

can be written as d = d(X1, . . . , Xn). We would like to determine the choice for d that minimizes the risk

with respect to each of the choices of loss functions.

In the following example we will consider the decision function d(x) = x and will explore the different

optimal answers that stem from each of the choices of loss function listed above.
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1. We start with L1(θ, a) and we compute the risk associated to the decision d(x) = x.

R1(θ, d) =Eθ[L1(θ, d(X1, . . . , Xn)]

=Eθ[|θ − x|]

=
∑
x∈Sn

|θ − x|pX(x)

=
∑
x≤θ

|θ − x|pX(x) +
∑
x>θ

|θ − x|pX(x)

=
∑
x≤θ

(x− θ)pX(x|θ) +
∑
x>θ

(θ − x)pX(x)

= θ

∑
x>θ

pX(x)−
∑
x≤θ

pX(x|θ)

+
∑
x<θ

xpX(x)−
∑
x>θ

xpX(x)

= θ
(
P (X > θ)− P (X ≤ θ)

)
+
∑
x<θ

xpX(x)−
∑
x≥θ

xpX(x)

= θ
(
1− P (X ≤ θ)− P (X ≤ θ)

)
+
∑
x<θ

xpX(x)−
∑
x≥θ

xpX(x)

= θ
(
1− 2P (X ≤ θ)

)
+
∑
x<θ

xpX(x)−
∑
x≥θ

xpX(x).

We then recall that, at a minimum value, it must hold that

∂

∂θ
R1(θ, d) =

(
1− 2P (X ≤ θ)

)
= 0.

This implies that the optimal value of X must satisfy

P (X ≤ θ) = 1/2,

which is the definition of the median. Hence, the risk would be minimized by taking x to be the median

of the data.

2. For L2(θ, d) and we proceed similarly and start by computing the risk associated to the decision d(x) =
x

R2(θ, d) = Eθ

[
(θ − x)2

]
=
∑
x

(θ − x)2pX(x).

Hence, computing the derivative with respect to θ and imposing the optimality condition of vanishing

derivative we obtain

∂

∂θ
R2(θ, d) = 2

∑
x

(θ − x)pX(x) = 2(θ − Eθ[X]) = 0.

Hence, the value of X that minimizes the risk it the one satisfying

Eθ[X] = θ,

namely, the mean of the data. When the square loss is used, the risk function is also commonly known

as the mean squared error (or MSE for short), and the square root of the risk is referred to as root
mean squared error (or RMSE for short).
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3. For L3(θ, d) and d(x) = x we have that

R3(θ, d) = 0 · pX(X = θ) + 1 · pX(X ̸= θ) = pX(X ̸= θ)

Hence the risk will be minimized if the probability of X ̸= θ is as small as possible. This is equivalent

to making pX(X = θ) as large as possible which in turn implies that the best choice would be to make

x equal to the mode of the data.

8.3 Exercises

1. Consider the PDF

fX(x, θ) =
1√
2π

e−(1/2)(x−θ)2 ,

and the loss function L(θ, a) = (a − θ)2. Suppose that a single observation of X can be measured.

Compute the value of R(θ, d) if d is chosen to be the function d(x) = cx.

2. Consider a discrete random variable X binomially distributed with

fX(x, θ) =

(
2

x

)
θx(1− θ)2−x ( where x = 0, 1, 2 and 0 < θ < 1),

and a loss function L(θ, a) = (a− θ)2.

(a) Calculate R(θ, d) for d(x) = x/2.

(b) Calculate R(θ, d) for d(x) = (x+ 1)/4.
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9.1 Comparing decision functions

Given a loss function, our goal is to use statistics to find a “good” decision function that minimizes the risk.

The fact that the probability density functions involved will, in general, depend on parameter values implies

that the risk associated to a particular decision is itself a function of the parameter. Ideally, we would compare

two different decisions d1 and d2 by analyzing the plots of their respective risks and choosing the one that

always stays below (as in the left panel of Figure 9.1). However, the scenario where the risk associated to d1 is

smaller than that of d2 for all values of θ rarely happens. Instead, it is common for the graphs to cross over as

the parameter value changes (as depicted in the right panel of Figure 9.1). This may lead to situations where

two different decisions d1 and d2 can be made, and two different parameter possible parameter values θ1 and

θ2 can be chosen for which

R(θ1, d1) < R(θ1, d2) but R(θ2, d1) > R(θ1, d2).

Figure 9.1: Left: the risk associated to the decision d1 remains below that for decision d2 for all values of θ, making the decision

d1 the better option. Right: Depending on the value of θ the risk associated with d1 is larger or smaller than that associated with d2,

making a choice between the two decisions unclear.
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Since in practical applications the “true” value of the parameters involved is not known and one must rely in

an approximation θ̂, we would like to be able to compare different decision functions and chose the one that

is “better” even if our approximation θ̂ is not optimal or accurate.

9.2 Minimax decision rules

One rule that can guide our choice is to consider the worst case scenario for two different decisions, and then

chose the one for which the worst possible outcome is less severe. Since in our case the worst case scenario

involves a very large risk, we will first compute the maximum risk (as a function of the parameter θ) for each

of the decision functions under consideration, and then chose the function with the smallest maximum risk.

When we chose a decision function based on this criterion we say that d is the best decision function in the

minimax sense. We can make this rigorous through the following definition

Definition 9.1. The function d0 is called a minimax decision function in the class D if it satisfies

max
θ∈Θ

R(θ, d0) = min
d∈D

max
θ∈Θ

R(θ, d),

where Θ is the set of all possible parameter values and D is the set of decision functions under consideration.

Example. Consider a Poisson distribution with density

fX(x, θ) =
e−θθx

x!
(x ∈ Z+),

the family of decision functions d(x) = cx with c > 0, and the loss function L(θ, d) = (d− θ)2/θ. We want

to study the risk arising from this family of decision functions, hence we want to compute E[L(θ, cx)]. To

simplify the computation, we will use the fact that X is a Poisson random variable and therefore

E[X] = θ and Var[X] = θ.

Then we will rewrite the loss function in the following way

L(θ, cx) = (cX − θ)2

θ
=

c2

θ

(
(X − θ)2 + 2θ(1− 1/c)(X − θ) + θ2(1− 1/c)2

)
.

Hence

R(θ, cx) = E[L(θ, cx)] = c2 + θ(c− 1)2 = (1 + θ)c2 − 2θc+ θ.

This expression, as a function of c, is a positive parabola with vertex at (1, 1). Therefore, the smallest possible

risk will be equal to one and will happen for c = 1. Hence, the minimax decision function among the class

D := {d(x) = cx : c > 0} is d(x) = x.

By choosing a minimax decision function we are guarding against the worst possible outcome, but this may

come at the cost of being “too pessimistic” or of incurring on higher risks than necessary for non-critical

parameter values. In the right panel of Figure 9.1, decision d1 would be the best decision in the minimax

sense, since its maximum value is smaller than that of the curve generated by d2, but for small values of θ (i.e.

on the left of the graph), the risk associated with d1 is in fact larger than that stemming from d2. It would then

seem reasonable then to consider how likely it is that we would find ourselves with parameter values that

realize the worst case scenarios. If such an outcome is highly unlikely, then a different decision function may

be chosen. If we chose this approach, we must consider then Θ as a random variable, which is the hallmark

of Bayesian statistics.
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9.3 Exercises

1. Consider the PDF

fX|Θ(x|θ) =
1√
2π

e−(1/2)(x−θ)2 ,

and the loss function L(θ, a) = (a − θ)2. Determine whether there is a minimax decision function in

the class of functions d(x) = cx.

2. Consider the discrete PDF

f(x|θ) =
(
2

x

)
θx(1− θ)2−x ( where x = 0, 1, 2 and 0 < θ < 1),

and the loss function L(θ, a) = (a − θ)2. In exercise 2 from Lecture 8 you computed R(θ, d) for

d1(x) = x/2 and d2(x) = (x+1)/4. Which of the two functions is superior according to the minimax

rule?

3. A coin is known to be biased with either p = 1/4 or p = 3/4, where p is the probability of heads. Which

of the two probabilities is accurate is not known and a decision is to be made between these two values

on the basis of the outcome of two tosses of the coin. Consider the loss function to be L(p, a) = (a−p)2

(a) Calculate the value of R(p, d) for the three different decision functions listed below, where X
denotes the number of heads obtained in two tosses

d1(X) =


1/4 if X = 0

1/4 if X = 1

1/4 if X = 2

d2(X) =


3/4 if X = 0

3/4 if X = 1

3/4 if X = 2

d3(X) =


3/4 if X = 0

1/4 if X = 1

1/4 if X = 2

(b) Which is the minimax decision function with respect to these three options?

4. Let θ be a parameter taking only the values 0 or 1, X be a discrete random variable taking only non-

negative integer values (X = 0,1,2,. . . ). We define the probability density function

fX(x, θ) =

{
fX(x, 0) = 2−x

if θ = 0

fX(x, 1) = 2−(x+1)
if θ = 1

and a loss function L(θ, d(x)) such that

L(0, 0) = L(1, 1) = 0 and L(1, 0) = L(0, 1) = 1.

Consider the two decision functions

d1(x) =

{
1 if x = 0

0 if x ̸= 0
and d2(x) =

{
0 if x ≤ 1

1 if x > 1
.

Calculate the risk R(θ, d) for these two functions and determine which one is minimax with respect to

the two of them.
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10.1 Likelihood, prior and posterior

The starting point of Bayesian statistics is to consider that the parameters appearing in the probability

density functions of data measurements need not be fixed numbers. Instead, the Bayesian paradigm is to con-

sider the parameter θ as a realization of the random variable Θ with density π(θ) and cumulative distribution

Π(θ). In this case, the probability density function π(θ) is referred to as the prior density. The name stems

from the fact that we are assumed to have some previous (prior) knowledge about the general behavior of the

parameter, which translates into the knowledge of the functional form of π(θ).
In this context, the density function fX(x, θ) is referred to as the likelihood function and should be under-

stood as a conditional probability density function1
which justifies the notation

fX(x, θ) ≡ fX|Θ(x|θ).

The expression on the left side of the equivalence is preferred in the probability literature, while the notation

on the right is widespread in statistics. Since our subject matter is statistics we shall stick to the latter, but the

reader should keep in mind that the two different notations refer to the exact same concept.

Recalling the definitions (4.2) and (4.3), the joint density function for X and Θ, fX,Θ(x, θ), is then given in

terms of the prior distribution and the likelihood function by

fX,Θ(x, θ) = fX|Θ(x|θ)π(θ). (10.1)

We can use Baye’s formula (2.1) in the expression above to rewrite fX|Θ(x|θ), leading to

fX,Θ(x, θ) = fX|Θ(x|θ)π(θ) =
(
fΘ|X(θ|x)fX(x)

π(θ)

)
π(θ) = fΘ|X(θ|x)fX(x). (10.2)

The PDF fX(x) appearing in the right hand side of the expression above is the marginal distribution for X ,

while the term fΘ|X(θ|x) is the conditional probability for Θ given the data measurements x and is known

1

In this context we will abuse nomenclature and will use the term density for both continuous and discrete random variables,

although in the latter case we still mean “mass”.
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as the posterior distribution. The name refers to the fact that fΘ|X(θ|x) provides information about the

behavior of Θ after incorporating the knowledge of a particular set of measurements, x, of the variable X .

The posterior distribution gives information about the question “How likely it is that the value of the random
variable Θ is equal to θ given that we have measured a particular value x of the random variable X?”.

10.2 Bayesian decision rules

Since we are now considering Θ to be a random variable, the risk function that was defined in (8.1) is no

longer a real number, but a random variable itself. Hence, it can no longer be used to compare two different

decisions. We will now consider how risky a decision is on average as the parameter value changes. This leads

to the definition of the quantity

r(π, d) = E[R(θ, d)] =

{∫
R(θ, d)π(θ) dθ if Θ is continuous∑
R(θ, d)pΘ(θ) if Θ is discrete

(10.3)

which is known as the mean risk or Bayes risk. The sum and the integral in the definition are carried over

all possible values of θ. As defined above, the mean risk is a real number that can be then used as a criterion

to compare different decisions.

Definition 10.1. A decision function d0 is called a Bayes decision function with respect to the prior π(θ)
and the classD of decision functions if its mean risk as a function of the parameter θ following the distribution

π(θ) is the smallest amongst all functions in the class D. Put in mathematical terms, if it satisfies

r(π, d0) = min
d∈D

r(π, d).

Example. We will go back to the example in the previous section, where we considered a Poisson random

variable with distribution

fX(x, θ) =
e−θθx

x!
(x ∈ Z+),

and the family of decision functions d(x) = cx with c > 0, and the loss function L(θ, d) = (d− θ)2/θ. There

we showed that for this particular loss function and this class of decision functions, the risk is given by

R(θ, cx) = E[L(θ, cx)] = c2 + θ(c− 1)2.

Since in the Bayesian approach θ is taken to be a random variable will will consider that it is distributed

according to the prior density

π(θ) = e−θ
for θ > 0.

Hence, the mean risk or Bayes risk is given by

r(π, cx) = E[R(θ, cx)] =

∫ ∞

0
(c2 + θ(c− 1)2) e−θ dθ = c2 + (c− 1)2.

We must now find the minimum mean risk amongst the class c > 0. The optimality condition is then

d

dc
r(π, cx) = 4c− 2 = 0

which will hold for c = 1/2. Therefore the Baye’s decision function over this class will be d(x) = x
2 with

respect to the prior π(θ) = e−θ
. Contrast this with the minimax decision function of the previous section,

where c = 1.

39



Lecture 10: Statistical decision theory III 10.3 Exercises

10.3 Exercises

1. Consider the likelihood function

fX|Θ(x|θ) =
1√
2π

e−(1/2)(x−θ)2 ,

the loss function L(θ, a) = (a− θ)2, and the class of decision functions d(x) = cx for a constant value

c. Assume that the parameter θ is known to be distributed according to the prior density π(θ) = 1/2
for −1 < θ < 1 (i.e. uniformly distributed between −1 and 1).

(a) Calculate the mean risk

(b) Find the value of c that produces the Bayes solution with respect to this prior distribution.

2. Consider a likelihood function following a binomial distribution

f(x|θ) =
(
n

x

)
θx(1− θ)n−x, with x = 0, 1, 2, 3 . . . , n and θ ∈ (0, 1),

and the square loss function L(θ, a) = (a− θ)2.

(a) Calculate the risk function R(θ, d) for the class of decision functions d(x) = x/n.

(b) Given the prior π(θ) = 1 for θ ∈ (0, 1) calculate the mean risk r(π, d) for d(x) = x/n.

(c) What is the Bayes decision over this class of functions? How does it compare to the minimax

decision?

3. Repeat the previous problem using the loss function L(θ, a) = (a− θ)2

θ(1− θ)
.
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11.1 Bias

Here and in the sequel, we shall use the term density function to refer to both the density function, if X is

continuous, or to the mass function, if X is discrete. We will use interchangeably the symbols

fX(x, θ) ≡ f(x|θ)

to denote the density function. Recall that the term likelihood function is often used in connection with the

symbol f(x|θ) while the term probability density function is often used in connection with fX(x, θ) however,

both symbol and names refer to the same concept.

We begin with a sampleX = (X1, . . . , Xn) of independent identically distributed random variables following

a family of probabilities Pθ depending on a parameter (or parameters) that will be denoted by θ. The goal of

estimation is to determine which particular value of θ is the source of the measured data X = (X1, . . . , Xn),
and how to use the data measurements to come up with an approximation of the unknown parameter.

We can frame this in the context of the decision theory we explored in the previous sections. In this case the

decision function d is called an estimator and takes data values (X1, . . . , Xn) to produce an approximation,

also called an estimate, of the unknown parameter value θ̂ 1

d(X1, . . . , Xn) = θ̂.

Definition 11.1. A statistic is a function of the random variable that does not depend on any unknown

parameter.

Definition 11.2. Consider a function of the unknown parameter g(θ) and an estimator to this quantity d(X).
We define the bias bd(θ) is defined as

bd(θ) := E[d(X)]− g(θ),

where the expectation is taken with respect to the random variable X . Whenever the bias associated to an

estimator is zero, we say that the estimator is unbiased, otherwise we say that the estimator is biased.

1

It is customary in statistics to use the symbol ̂ on top of an approximation to a quantity. Hence, θ denotes the true value of the

parameter, and θ̂ should be understood as an approximation to that value.
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Example. ( sample mean) If X1, . . . , Xn are IID with mean µ, then the sample mean Xn := 1
n

∑n
i=1Xi is

an unbiased estimator for µ. Indeed, the expected value of the estimator is given by

E

[
1

n

n∑
i=1

Xi

]
=

1

n
nµ = µ,

and therefore

bXn
(θ) = E

[
1

n

n∑
i=1

Xi

]
− µ = µ− µ = 0.

Example. ( sample variance) Consider a sample X1, . . . , Xn of IID random variables with mean µ and

variance σ2
. In elementary statistics classes, it is usually taught that if one wants to approximate the variance

σ2
based on n measurements then one should use the quantity

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2,

where Xn = 1
n

∑n
i=1Xi is the sample mean. This quantity is usually referred to as sample variance. Given

that the definition of the true variance is E[(X−µ)2] one would think the most natural way of approximating

the variance based on n measurements would be

σ2 ≈ 1

n

n∑
i=1

(Xi −Xn)
2,

Therefore, the factor
1

n−1 appearing in the definition of the sample variance seems awkward. As we shall

see now, the natural choice of
1
n would lead to a biased estimator, while the slightly bizarre

1
n−1 leads to an

unbiased estimator. Lets consider a slightly more general estimator of the form

d(x) =
1

c

n∑
i=1

(Xi −Xn)
2,

where c is a constant to be determined, and determine the bias associated to it.

We start by rewriting the sum above as

n∑
i=1

(Xi −Xn)
2 =

n∑
i=1

(
(Xi − µ) + (µ−Xn)

)2
=

n∑
i=1

(
(Xi − µ)2 − 2(Xi − µ)(Xn − µ) + (Xn − µ)2

)
=

n∑
i=1

(Xi − µ)2 − 2(Xn − µ)

n∑
i=1

(Xi − µ) +

n∑
i=1

(Xn − µ)2

But

∑n
i=1Xi = nXn and

∑n
i=1 µ = nµ, and the summand in the third term is independent of i yielding

=
n∑

i=1

(Xi − µ)2 − 2n(Xn − µ)2 + n(Xn − µ)2

=
n∑

i=1

(Xi − µ)2 − n(Xn − µ)2.
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Therefore

E

[
1

c

n∑
i=1

(Xi −Xn)
2

]
=

1

c
E

[
n∑

i=1

(Xi − µ)2 − n(Xn − µ)2

]

=
1

c

n∑
i=1

E
[
(Xi − µ)2

]
− nE

[
(Xn − µ)2

]
=

1

c

n∑
i=1

Var [Xi]−
n

c
Var

[
Xn

]
=

1

c
nσ2 − n

c

σ2

n

=σ2 n− 1

c
.

Recalling the definition of bias, for the estimator
1
c

∑n
i=1(Xi −Xn)

2
to be unbiased, its expected value must

be equal to σ2
(the quantity that we are trying to estimate). Hence, it is clear that by choosing c = n − 1

we obtain the desired unbiased estimator, leading to the known form of the sample variance. If we instead

choose c = n to stick to the natural choice, we would obtain a biased estimator with bias given by

b(θ) = E

[
1

n

n∑
i=1

(Xi −Xn)
2

]
− σ2 = σ2 n− 1

n
− σ2 = −σ2

n
.

Sincen and σ2
are always positive, the estimator above will produce estimates that consistently underestimate

variance of the distribution. However, it is also clear from the expression of the bias, that as the sample size

n gets lager, the magnitude of the bias will decrease. This leads to the following concept.

Definition 11.3. We say that an estimator d(X1, . . . , Xn) for the quantity g(θ) is a consistent estimator if

lim
n→∞

bd (g(θ)) = 0.

Hence, a biased estimator need not be a hopeless tool. As long as the estimator is consistent, it is possible to

reduce the impact of the bias by considering samples that are large enough.

11.2 Exercises

1. Consider a discrete random variable X following a Bernoulli distribution with density

f(x|θ) = θx(1− θ)1−x,

where θ represents the probability of a success and x is either 0 or 1 depending whether the attempt

failed or succeeded. Consider an experiment where n attempts are carried out and s represents the

number of successes obtained.

(a) Prove that the success ratio, defined as

d(X1, . . . , Xn) =
s

n
,

where Xi is equal to either 0 or 1 depending on whether the i−th attempt is a success or a failure,

is an unbiased estimator for θ. [Hint: Note that s =
∑n

i=1Xi.]
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(b) In problem 2 from Lecture 10 you computed the minimax estimator for the parameter θ in a

binomial experiment with n attempts. Your computations there should have yielded

θ̂ =
s

4n
,

where s is the number of successes obtained in n attempts. Imagine that we use this estimator to

approximate the value of the parameter θ for n Bernoulli experiments. Show that this estimator

is biased. Is it consistent?

2. Given the likelihood function

f(x, |θ) = 1√
2πθ

e
−x2

2θ ,

and a random sample X1, . . . , Xn from this distribution. Show that the estimator

d(X) =
1

n

n∑
i=1

X2
i ,

is an unbiased estimator for θ.

3. Given f(x|θ) = 1/θ for x ∈ [0, θ], determine the value of a constant c such that d(x) = cx is an

unbiased estimator of θ.

4. Given a Gamma random variable following the distribution

f(x|θ) = xθ−1e−x

Γ(θ)
for x > 0 and θ > 0.

(a) Find a value of c such that d(x) = cx is an unbiased estimator for θ.

(b) Determine whether it is possible to find a value of c such that d(x) = cx2 is an unbiased estimator

of θ.

5. Let X1, . . . , Xn be IID with mean µ := E [X] and consider constants a1, . . . , an. Determine the re-

strictions that are needed on a1, . . . , an so that

d(X) =
n∑

i=1

aiXi

is an unbiased estimator of µ.
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12.1 Bias and mean squared error

Note that the fact that an estimator is unbiased does not imply that there is no error associated to the estimator.
Instead, it implies that when using the estimator over a large number of experiments, the aggregated average

of the error will be zero. An unbiased estimator will, on average, provide the correct answer. When making

estimations based on measurements, there will be always some error associated to the estimate. Part of the

error stems from the fact that data measurements are realizations of random variables and therefore there

is always some degree of variability in the prediction, but another part can potentially come from a flaw in

the estimator. The bias refers precisely to a systematic deviation of an estimate that is independent from the

random variable: notice that the expectation in the definition of bias cancels out the influence of the random

variable.

The splitting of the contributions coming from the data variability and the bias of an estimator to the error

can be seen cleanly when we consider the mean squared error (i.e. the risk function when using square

loss). Consider that d(X) is an estimator for a certain function of the parameter g(θ). In this case we have

that

MSE =R(g(θ), d)

=E [L(d, θ)]
=E

[
(d(X)− g(θ))2

]
=E

[(
(d(X)− E[d(X)]) + (E[d(X)]− g(θ)

)2]
=E

[
(d(X)− E[d(X)])2

]
+ 2E

[(
d(X)− E[d(X)]

)(
E[d(X)]− g(θ)

)]
+ E

[
(E[d(X)]− g(θ))2

]
However E

[
(d(X)− E[d(X)])2

]
= Var[d(X)] and E[d(X)]− g(θ) = bd(g(θ)) is independent of X , hence

=Var[d(X)] + 2bd(θ)E
[(
d(X)− E[d(X)]

)]︸ ︷︷ ︸
=0

+bd(θ)
2.
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Therefore it follows that

MSE = Var[d(X)] + bd(θ)
2. (12.1)

Thus, the mean square error is comprised of a contribution due to the variability of the data measurements,

Var[d(X)], and a contribution due to the bias of the estimator.

Since the only source of error for an unbiased estimator is the variance Var[d(X)], it is natural to ask if there

is a limit to how small the variance on the left hand side of the inequality can be. Given that d(X) is a function

of the data after all, the variance is tied to the data itself; one would expect that the particular properties of

the random variables X and Θ should somehow play a role in determining how small can the variance be.

We will explore this question in the following section.

12.2 The information inequality

In this section we will show how the variance of an unbiased estimator for a function g(θ) is controlled from

below by the sensitivity of g to changes in θ, as well as (inversely) by the sensitivity of the likelihood function

to changes in θ. In order to show this important result we first introduce some notation. We remind the reader

that x = (x1, . . . , xn) is a vector of data observations sample from IID random variables X = (X1, . . . , Xn).

Definition 12.1. Let fX|Θ(x|θ) be a likelihood function that is differentiable with respect to θ and that

is different from zero except possibly at a set of measure zero
1
. We will define the following three related

functions

log fX|Θ(x, θ) Log-likelihood function (12.2)

∂θ log fX|Θ(x, θ) Score function (12.3)

In(θ) := Var

[
∂θ log fX|Θ(x, θ)

]
Fisher information (12.4)

The logarithms appearing above are natural logarithms, while the expected value in the definition of Fisher

information is taken with respect to X . The subscript n in the definition of the Fisher information emphasizes

the fact that the the vector X contains the information of n independent observations.

Let us start by proving the following property

Proposition 12.1. The score function has mean zero.

Proof. Since the likelihood function is a PDF, the following equality holds

1 =

∫
Rn

fX|Θ(x, θ)dx.

Hence, differentiating both sides with respect to θ we have

0 =

∫
Rn

∂θfX|Θ(x, θ)dx

=

∫
Rn

∂θfX|Θ(x, θ)

fX|Θ(x, θ)
fX|Θ(x, θ)dx

=

∫
Rn

∂θ
(
log fX|Θ(x, θ)

)
fX|Θ(x, θ)dx

=E
[
∂θ
(
log fX|Θ(x, θ)

)]
.

1

If you are unfamiliar with the notion of a set of measure zero you can picture it as a set consisting of only isolated points in R1

(i.e. a set of length zero), or isolated points and isolated lines in R2
(i.e. a set or area zero), or a set consisting only of isolated points,

isolated lines and isolated surfaces in R3
(a set of volume zero), etc.
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Above we have used the fact that the likelihood function was assumed to be different from zero except possibly

in a set of measure zero.

We will use the result above in combination with the following fact about random variables with mean zero.

Proposition 12.2. LetX and Y be random variables with mean µX and µY respectively, and let µY = 0. Then

Cov(X,Y ) = E [XY ]

Proof. The proof follows from the definition of covariance

Cov(X,Y ) = E [(X − µx))(Y − µY )] = E [(X − µx))Y ] = E [XY − µXY ] = E [XY ]− µxE [Y ] = E [XY ] .

We now have all the tools that we need to prove the following result known as the Cramér-Rao bound or

or the information inequality regarding how the interaction between the parameter θ the quantity the we

are trying to estimate g(θ) and the random variable X determine how small can Var [d(X)] be, and therefore

how good can we hope for an unbiased estimator to be.

Theorem 12.1. Let X and Θ be random variables, and let the likelihood function fX|Θ(x, θ) be differentiable
with respect to θ and non zero except possible for a set of measure zero. Consider a differentiable function g(θ)
and an unbiased estimator for this function dg(X). Then

(∂θg(θ))
2

In(θ)
≤ Var [dg(X)] . (12.5)

Proof. Since dg(X) is an unbiased estimator for g(θ) we have that

g(θ) = E [dg(X)] =

∫
Rn

dg(X)fX|Θ(x, θ)dx.

Hence, we can differentiate both sides with respect to θ to obtain

∂θg(θ) =

∫
Rn

dg(X)∂θfX|Θ(x, θ)dx

=

∫
Rn

dg(X)
∂θfX|Θ(x, θ)

fX|Θ(x, θ)
fX|Θ(x, θ)dx

=

∫
Rn

dg(X)∂θ
(
log fX|Θ(x, θ)

)
fX|Θ(x, θ)dx

=E
[
dg(X)∂θ

(
log fX|Θ(x, θ)

)]
.

However in Proposition 12.1 we showed that the expected value of the score function ∂θ
(
log fX|Θ(x, θ)

)
is

zero, hence we can apply Proposition 12.2 to the expected value above leading to

∂θg(θ) = Cov

(
dg(X), ∂θ

(
log fX|Θ(x, θ)

))
. (12.6)

We now recall that the correation is bounded above by one, hence

Corr
2(X,Y ) =

Cov
2(X,Y )

Var[X]Var[Y ]
≤ 1.

Combining this result with the equation (12.6) above, we obtain

(∂θg(θ))
2 = Cov

2
(
dg(X), ∂θ

(
log fX|Θ(x, θ)

))
≤ Var [dg(X)]Var

[
∂θ
(
log fX|Θ(x, θ)

)]
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From which we arrive at

(∂θg(θ))
2

Var

[
∂θ
(
log fX|Θ(x, θ)

)] = (∂θg(θ))
2

In(θ)
≤ Var [dg(X)] .

The inequality above is known as the information inequality or the Cramér-Rao bound.

From the observation that the mean squared error of an estimator has a component due to its bias and one

due to its variance, we could conclude that an ideal estimator would be unbiased and have a very small

variability—zero if possible. This leads to the notion of an ideal estimator: one that is unbiased and whose

variance is smaller than that of any other.

Definition 12.2. We say that an estimator d̂g(X) for the function g(θ) is a uniformly minimum variance
unbiased estimator or UMVUE if, for any other unbiased estimator dg(X) it holds that

Var

[
d̂g(X)

]
≤ Var [dg(X)] .

An UMVUE can be regarded as “the gold standard” against which all other estimators are measured. Naturally,

the smallest possible variance of an estimator is given by the Crámer- Rao bound derived above. Hence, an

UMVUE will have variance equal to the left hand side of (12.5). If d̂g(X) is an UMVUE, the efficiency of an
estimator dg(X) is given by

e(dg(X)) =
Var

[
d̂g(X)

]
Var [dg(X)]

.

The efficiency takes values between 0 and 1. We say that a particular estimator dg(X) is an efficient estimator
whenever the variance Var[dg(X)] is equal to the lower bound given by the information inequality (12.5) and

therefore has efficiency equal to 1.

12.3 Examples

Example 1: Measurements from n independent identically distributed random variables. Consider

n IID measurements X = (X1, . . . , Xn) from a random variable with likelihood function fX|θ(X|θ). Since

the measurements are independent, the likelihood function for X given θ can be expressed as a product of

the marginal likelihood functions

fX|θ(X|θ) = fX|θ(X1, . . . , Xn|θ) = fX1|θ(X1|θ)× · · · × fX1|θ(Xn|θ) =
n∏

i=1

fXi|θ(Xi|θ).

Therefore we can write the log-likelihood function as

log
(
fX|θ(X|θ)

)
= log

(
n∏

i=1

fXi|θ(Xi|θ)

)
= log

(
n∑

i=1

fXi|θ(Xi|θ)

)
,

and the score function as

∂θ log
(
fX|θ(X|θ)

)
=

n∑
i=1

∂θ log fXi|θ(Xi|θ).

Hence the information from n IID measurements is given by

In(θ) = Var

[
∂θ log

(
fX|θ(X|θ)

)]
= Var

[
n∑

i=1

∂θ log fXi|θ(Xi|θ)

]
=

n∑
i=1

Var

[
∂θ log fXi|θ(Xi|θ)

]
= nI(θ), (12.7)
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where we have used the fact that the samples are all independent and have common variance; I(θ) refers to

the information carried by a single measurement.

Example 2: Independent Bernoulli trials. We consider a Bernoulii random variable with pdf given by

fX|Θ(x|θ) = θx(1− θ)1−x,

where x = 1 represents a success and x = 0 a failure, and the probability of success given by θ. If we are

trying to estimate the value of θ based on n observations we have that

∂θfX|Θ(x|θ) = ∂θ log
(
θx(1− θ)1−x

)
= ∂θ (x log θ + (1− x) log(1− θ)) =

x

θ
− 1− x

1− θ
=

x− θ

θ(1− θ)
,

and therefore, recalling that for a Bernoulli random variable Var[X] = θ(1− θ) we conclude that

I(θ) = Var

[
∂θ log

(
θX(1− θ)1−X

)]
= Var

[
X − θ

θ(1− θ)

]
=

Var[X]

θ2(1− θ)2
=

1

θ(1− θ)
=

1

Var[X]
.

Hence, for n independent measurements, equation (12.7) leads to

In(θ) =
n

θ(1− θ)
=

n

Var[X]
.

Then, from the information inequality we conclude that if we are trying to estimate θ using an unbiased

estimator dg(X1, . . . , Xn) we have that the lower bound established by the information inequality is

Var[dg(X1, . . . , Xn)] ≥
1

In(θ)
=

Var[X]

n
,

where we have used that for the estimation of θ the function g appearing in (12.7) is the identity function

g(θ) = θ. If we now use the sample mean as the estimator for θ we have

dg(X1, . . . , Xn) =
1

n

n∑
i=1

Xi,

and then

Var[dg(X1, . . . , Xn)] =
Var[X]

n
.

Hence, the sample mean has in fact the minimum variance allowed by the information inequality and is

therefore a uniformly minimum variance unbiased estimator.

12.4 Exercises

1. Show that the sample mean d(X) = 1
n

∑n
i=1Xi is both unbiased and efficient as an estimator for the

parameter θ for the Poisson density

f(x|θ) = e−θθx

x!
x = 0, 1, 2, 3, . . .

2. Consider Problem 5 from Lecture 11. In addition to the constraints that you determined in the afore-

mentioned problem, determine
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(a) What is the best set of coefficients ai if d(X) =
∑n

i=1 aiXi is to be an unbiased estimator of

µ := E [X] with minimum variance?

(b) How should the ai’s be chosen if the measurements Xi are independent variables with the same

unknown mean µ but different known variances σ2
i ?

3. Consider a random sample X = (X1, . . . , Xn) from a random variable X with finite mean E [X].

(a) Show that the estimator

d(X) =
X1 +X2

2

is an unbiased estimator for E[X].

(b) Calculate the efficiency of d(X) as defined in the previous point if X possesses the density

f(x|θ) = 1√
2π

e−
(x−θ)2

2 .

4. Find the lower bound (as given by the information inequality) for the variance for unbiased estimators

of the parameter θ for a Cauchy random variable with density

f(x|θ) = 1

π (1 + (x− θ)2)
.

5. The information inequality in Theorem 12.1 does not apply to the uniform random variable f(x|θ) = 1/θ
for x ∈ [0, θ]. Can you point the hypotheses of the theorem that are not satisfied by f(x|θ)?
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13.1 Method of Moments

Consider a random variable X with a probability density function fX(x,θ) depending on one (or multiple)

parameters θ := (θ1, . . . , θn). Recall the definition of the k-th moment of the random variable X

mk(θ) := E
[
Xk
]
=

∫ ∞

−∞
xkfX(x,θ)dx. (13.1)

The explicit dependence of mk on the parameters θ is a result of the fact that the PDF is a function of the

parameters θ and the integration is carried over with respect to x only.

Now consider a random, independent sample X := (X1, . . . , Xn) from the same distribution fX(x,θ). By

analogy, we define the k-th sample moment as

mk :=
1

n

n∑
i=1

Xk
i . (13.2)

The (strong) law of large numbers says that as the sample size grows, the k-th sample moment converges to

the k-th moment of a distribution

lim
n→∞

mk = mk(θ).

The method of moments takes advantage of this fact to estimate the values of the parameters appearing in

the PDF. The idea is that, for a particular sample of the random variables X1, . . . , Xn the function mk(θ)
should be approximately equal to the number mk. Thus, the method of moments estimate for θ, denoted as

θ̂, is determined by the equation

mk(θ̂) = mk.

Hence, the estimator is given by

θ̂ = m−1
k (mk),
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whenever the inverse function m−1
k exists. Note that the law of large numbers guarantees that the estimator

produced by the method of moments is consistent, since

lim
n→∞

θ̂ = lim
n→∞

m−1
k (mk) = m−1

k ( lim
n→∞

mk) = m−1
k (mk(θ)) = θ.

In the sequence of equalities above, we assumed that the moments are continuous with respect to the param-

eters. We can condense the method into an algorithm as follows.

Step 1. If the PDF has d parameters θ = (θ1, . . . , θd) that we want to estimate, we then use equation (13.1)

to compute the first d moments of the distribution

m1(θ1, . . . , θd), m2(θ1, . . . , θd), . . . ,md(θ1, . . . , θd).

This yields d expressions for the first d moments as functions of the d parameters θ1, . . . , θd.

Step 2. We then use the data observations and equation (13.2) to compute the first d sample moments

m1, m2, . . . ,md.

These are d random variables whose particular value will change if we change the sample, but for any fixed

sample they are d fixed numbers.

Step 3. The law of large numbers states that for a finite sample size n we have that

m1(θ1, . . . , θd) ≈ m1, m2(θ1, . . . , θd) ≈ m2, . . . ,md(θ1, . . . , θd) ≈ md.

Hence, we will define our estimates for (θ1, . . . , θd) to be the numbers (θ̂1, . . . , θ̂d) that satisfy the system of

d equations

m1(θ̂1, . . . , θ̂d) = m1, m2(θ̂1, . . . , θ̂d) = m2, . . . ,md(θ̂1, . . . , θ̂d) = md.

Remarks:

1. The equations arising from the method of moments may be non-linear or may not even be solvable.

2. We are by no means obliged to always use the moments in order. For example in a distribution with a

single parameter we do not necessarily have to use the equation for the first moment, we could use the

second, third, etc. Sometimes the equations arising from higher order moments may be easier to solve

or give rise to estimators with less variability.

13.2 Examples

Example 1. Consider a simple random sample X1, . . . , Xn from a Pareto random variable with PDF

fX(x, β) =
β

xβ+1
, for x ∈ (1,∞).

If we wish to estimate the parameter β using the method of moments, we need to compute the first moment

from the distribution, which for this particular type or random variable can be shown to be

m1(β) = E [X] =
β

β − 1
.

To obtain the method of moments estimator β̂ we then set this moment equal to the first sample moment

β̂

β̂ − 1
= m1.
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Solving this equation for β̂ yields

β̂ =
m1

m1 − 1
.

Equation (13.2) can be used to compute the first sample moment m1 from the data which, upon substitution

in the relation above, will yield the desired estimate.

Example 2. Consider an exponential random variable with PDF

fX(x, λ) = λe−λx
for x ∈ [0,∞) and λ > 0.

To obtain the method of moments estimator for λ, we compute the first moment of the distribution

m1(λ) = E [X] =
1

λ
.

The method of moments estimator λ̂ will then be the number for which the relation above holds true when

we substitute m1(λ) for the sample moment m1, namely

m1 =
1

λ̂
.

Solving for λ̂ above leads to the estimate

λ̂ =
1

m1
.

Example 3. The PDF for a Gamma random variable depends on two parameters and is given by

f(x, α, β) =
βα

Γ(α)
α−α−1e−β/x

for x ∈ [0,∞), α > 0, and β > 0,

where Γ(·) is the Gamma function. If we want to estimate the values of α and β based on n independent

measurements X1, . . . , Xn drawn from Gamma we will need to use the first two moments of the distribution.

For a Gamma random variable it can be proven that

E [X] = α/β and Var [X] = α/β2.

Since for any random variable Var [X] = E
[
X2
]
− (E [X])2 we can then use the equations above to write

E [X] = α/β and E
[
X2
]
= α/β2 + (α/β)2.

Then, letting m1 and m2 be the first and second sample moments, the method of moments estimators α̂ and

β̂ will be the solutions to the equations

m1 = α̂/β̂ and m2 = α̂/β̂2 + (α̂/β̂)2.

Solving this system in terms of α̂ and β̂ leads to

α̂ =
m2

1

m2 −m2
1

and β̂ =
m1

m2 −m2
1

.

Hence, once the measurements are made, it is enought to compute the first two sample moments and substitute

the values in the expressions above to obtain the method of moments estimators.
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13.3 Exercises

1. Show that the k-th sample moment based on an IID sample of size n of a random variable X as defined

in equation (13.2) is an unbiased estimator of the k-th theoretical moment of X .

2. Consider a uniform density function given by

fX(x, θ) = 1/θ for x ∈ [0, θ],

(a) Use the method of moments to estimate the value of the parameter θ based on a random sample

of size n.

(b) Use a random number generator (you can use R, matlab, numpy, etc.) To generate a sample of 20

numbers uniformly distributed between 0 and 1/2. Use this sample in combination with the result

from the previous point to obtain an estimate of θ. [Note that since you are sampling uniformly

between 0 and 1/2 the exact value for theta in this case is θ = 1/2].

3. Consider a simple random sample X1, . . . , Xn from a random variable X uniformly distributed in the

interval [a, b] where both a and b are unknown parameters. Build the method of moments estimator

for a and b.

4. Sometimes the calculations using a higher moment are easier to handle than those arising from a lower

moment (we say that the moment mk
is higher than the moment mk̃

if k > k̃). Consider the random

variable X with PDF given by

fX(x, θ) =
x

θ
e−

x2

2θ for x > 0, θ > 0.

(a) Derive the method of moments estimator of θ based on a sample of size n using the second
moment of the distribution.

(b) Now try to derive the method of moments estimator of θ based on a sample of size n using the first

moment of the distribution. Is it possible to arrive at a closed-form expression for this moment?

5. The method of moments fails to produce an estimator for the parameter θ of a Cauchy random variable

with PDF given by

fX(x, θ) =
1

π (1 + (x− θ)2)
.

Try to follow the steps to build such an estimator and explain what point of the process breaks down

for this particular random variable.
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We recall here that the likelihood function is simply the probability density function fX(x, θ) when θ is

considered to be a particular realization from a random variable Θ. In this context the notation

L(θ|x) ≡ fX(x, θ)

is often preferred, and we will use it for this lecture. We remark that even though fX(x, θ) is a probability

distribution for the random variableXthe likelihood function is not necessarily a PDF for the random variable

Θ. In fact, when integrated with respect to θ the PDF may not even integrate to one over the entire parameter

space.

14.1 Maximum likelihood estimation

For a parameter-dependent density function fX(x, θ) = L(θ|x) with unknown θ, the principle of maximum
likelihood states that, given a sample X1, . . . , Xn drawn from fX(x, θ), the value of θ should be approxi-

mated by the number θ̂ that would make our particular sample the most likely to be measured. This is in

accordance with the common-sense notion that a collection of random observations of X will most likely

contain values of X that happen very commonly. After all, how probable it is to observe a rare occurrence?

Guided by this reasoning, the maximum likelihood estimator for θ is defined as the number θ̂ such that

L(θ̂|x) > L(θ|x) for all θ ∈ Θ.

We can write the statement above in the alternate form

θ̂(x) = argmax
θ∈Θ

L(θ|x). (14.1)

This definition implicitly assumes that the likely function has a unique global maximum. However, not ev-

ery function has a global maximum, and even if it does, locating it may present significant computational

challenges. Recalling that the natural logarithm is a strictly monotonically increasing function, maximizing
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L(θ|x) is equivalent to maximizing the log-likelihood function log [L(θ|x)] which is in most instances much

simpler to deal with.

The method is pretty straightforward and can be summarized as follows.

Step 1. Starting from the likelihood function L(θ|x), compute the log-likelihood function log [L(θ|x)].

Step 2. Find the critical points θc1, θc2, . . . , etc. (there could possibly be more than one) of the log-likelihood

function by solving for θ in the equation

∂θ log [L(θ|x)] = 0.

Remember that if θ is defined in an interval with at least a finite endpoint, for instance if θ ∈ [a, b] with both

a and b finite, or θ ∈ [0,∞), then the endpoints of the interval are also critical points.

Step 3. Verify which of the critical points is a maximizer of the log likelihood function. You can do this

through the first or second derivative tests to determine local maxima, and through evaluation and direct

comparison of L(θci|x) if there is more than one local maximum.

Step 4. Set the maximum likelihood estimator θ̂ to be the global maximizeer that you determined in the

previous step.

14.2 Examples

Example 1. The PDF for a Bernoulli random variable is

fX(x, θ) = θx(1− θ)1−x = L(θ|X),

where x = 0 denotes a failure and x = 1 denotes a success, and θ is the probability of success. If the

parameter θ is unknown and we wish to estimate it based on n independent measurements, the joint PDF for

X = (X1, . . . , Xn) is

L(θ|X) =

n∏
i=1

θxi(1− θ)1−xi = θ
∑n

i xi(1− θ)
∑n

i (1−xi) = θs(1− θ)n−s,

where we have used the fact that the trials are independent to express the joint PDF as a product of the

marginals, and s :=
∑n

i xi is the number of successes obtained after n attempts
1
. We can then compute the

log-likelihood function

ln [L(θ|X)] = s ln (θ) + (n− s) ln (1− θ) ,

which is defined for θ ̸= 0 and θ ̸= 1 (these two cases would yield trivial cases when x is not a random

variable, since success or failure would be certain). From here we can compute the derivative with respect to

θ

∂θ ln [L(θ|X)] =
s

θ
− n− s

1− θ
=

s− nθ

θ(1− θ)

Setting the relation above equal to zero and solving for θ leads to the critical point

θc =
s

n
,

1

Note that since xi = 0 if the i−th attempt failed and xi = 1 if the i−th attempt succeeded, the sum

∑n
i xi is in fact simply

counting the number of successes, s.
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which is known as the success rate. To verify if this critical point corresponds to a global maximum, we note

that the denominator θ(1−θ) is always positive. On the other hand, if θ < s/n then the numerator is positive,

while if θ > s/n the denominator is negative. This implies that the function has a maximum at the value

θc = s/n. Hence the estimator

θ̂ =
s

n
(14.2)

is the maximum likelihood estimator for the Bernoulli parameter θ.

Example 2. We will now consider data X = (X1, . . . , Xn) sampled independently from a normal distri-

bution with mean µ and variance σ2
. Since the samples are taken independently, we can write the joint

likelihood function as a product of the marginal distributions:

L(µ, σ2|X) =
1√
2πσ2

e−
(x1−µ)2

2σ2 × · · · × 1√
2πσ2

e−
(xn−µ)2

2σ2 =

(
1√
2πσ2

)n

e−
1

2σ2

∑n
i=1(xi−µ)2 .

If we want to compute the maximum likelihood estimators for the mean and variance of the distribution, it

is easier to work with the log-likelihood function

ln
[
L(µ, σ2|X)

]
= −n

2
ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(xi − µ)2.

Computing the partial derivatives of this function with respect to µ and σ2
yields

2

∂µ ln
[
L(µ, σ2|X)

]
=

1

σ2

n∑
i=1

(xi − µ) and ∂σ2 ln
[
L(µ, σ2|X)

]
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2.

The critical points µ̂ and σ̂2
are located by setting the two derivatives equal to zero and solving the corre-

sponding system of equations, which yields

µ̂ =
1

n

n∑
i=1

xi = xn and σ̂2 =
1

n

n∑
i=1

(xi − xn)
2. (14.3)

We then need to verify if these critical points are indeed maximizers of the likelihood. This can be achieved

through the second derivative test, so we compute the corresponding derivatives and evaluate them at µ̂ and

σ̂2
, leading to

∂2
µ ln

[
L(µ̂, σ̂2|X)

]
= − n

σ̂2
< 0

and

∂2
σ2 ln

[
L(µ̂, σ̂2|X)

]
=

n

2σ̂4
− 1

σ̂6

n∑
i=1

(xi − xn)
2 =

n

2σ̂4
− nσ̂2

σ̂6
= − n

2σ̂6
< 0.

Hence, the critical points in equation (14.3) correspond to a maximum of the likelihood function and are the

maximum likelihood estimators for the mean and variance. Note that the maximum likelihood estimator for

the variance is actually a biased estimator.

Example 3. Linear regression. We now consider two sets of data observations X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn) of pairs of data points that we consider to be related. If a scatter plot of the data suggests

a linear relation between the two (as depicted in Figure 14.1), a reasonable model would be to consider them

to be linearly related and attribute the deviations from a clean straight line to a random source of error. In

2

Note that we are using the variance σ2
as the differentiation variable and not the standard deviation σ.
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Figure 14.1: Left: The scatter plot of the data suggests a linear relation between the variables X and Y . The deviations out linear

behavior are assumed to be due to normally distributed noise ∼ N(0, σ2) with unknown variance σ2
. Right: Under the assumption

of normally distributed noise, the maximum likelihood coefficients for the linear regression minimize the sum of the squared vertical

distances of the data to the theoretical line (dotted). The point with coordinates given by the sample means (xn, yn) (indicated by

the red dot in the plot) is located on top of the regression line.

absence of any information about the possible origins of the deviations, the error term can be considered to be

a random variable normally distributed with mean zero and unknown standard deviation σ2
. Mathematically,

this leads to the relation

Yi = α+ βXi + ϵi,

where α and β are parameters that need to be determined and ϵi is an independent realization of the random

error ϵ ∼ N(0, σ2).
Our model then includes three unknown parameters that we will estimate using the maximum likelihood

strategy. We have assumed the error ϵ = (ϵn, . . . , ϵn) to be normally distributed and independent, which

leads to the likelihood function

L(σ2|ϵ) = 1√
2πσ2

e−
ϵ21
2σ2 × · · · × 1√

2πσ2
e−

ϵ2n
2σ2 =

(
1√
2πσ2

)n

e−
1

2σ2

∑n
i=1 ϵ2i =

(
1√
2πσ2

)n

e−
1

2σ2

∑n
i=1(yi−α−βxi)

2

,

where in the final step we used our model to write ϵi = Yi −α− βXi. Since the last expression features the

random variables X and Y along with the parameters α, β and σ2
, we will then denote the function above as

L(α, β, σ2|X,Y ) =

(
1√
2πσ2

)n

e−
1

2σ2

∑n
i=1(yi−α−βxi)

2

.

As before, it is easier to work with the log likelihood function which in this case is

ln
[
L(α, β, σ2|X,Y )

]
= −n

2
ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − α− βxi)
2.

One first observation is that if we were to maximize the function above with respect to α and β alone (in

which case the first term above would be constant), the problem would be equivalent to that of minimizing

the term

SS(α, β) := −
n∑

i=1

(yi − α− βxi)
2 = −

n∑
i=1

ϵ2i .

Therefore, the maximum likelihood estimators for α and β will coincide with the values resulting from the

least squares criterion, which minimizes the sum of squares of the difference between the data points Yi and

the values predicted by the regression.
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We then compute the partial derivative of the score function with respect to α and impose the optimality

condition to find the critical points α̂, β̂ and σ̂2

∂α ln
[
L(α̂, β̂, σ̂2|X,Y )

]
=

1

σ̂2

n∑
i=1

(yi − α̂− β̂xi) = 0.

From this condition it follows that

n∑
i=1

(yi − α̂− β̂xi) = nyn − nα̂− nβ̂ xn = 0.

Hence, the sample means xn and yn satisfy the regression equation

yn = α̂+ β̂ xn, (14.4)

and therefore will be located right along the regression line (this is illustrated in the right panel of Figure

14.1). We can verify that the critical point satisfying the equation above is indeed a maximum, since

∂2
α ln

[
L(α̂, β̂, σ̂2|X,Y )

]
= − n

σ̂2
< 0.

We now use the fact that α̂ = yn + β̂ xn to modify the score function as

ln
[
L(α, β, σ2|X,Y )

]
= −n

2
ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − yn − β(xi − xn))
2.

Note that if α and β are indeed the maximizers then the expression above is identical to the original score

function. We then compute the partial derivative of the score function with respect to β and evaluate at the

critical points to obtain

∂β ln
[
L(α̂, β̂, σ̂2|X,Y )

]
=

1

σ̂2

n∑
i=1

(yi − yn − β̂(xi − xn))(xi − xn) = 0

Solving for β̂ in the equation above leads to

β̂ =

∑n
i=1(yi − yn)(xi − xn)∑n

i=1(xi − xn)2
=

1
n−1

∑n
i=1(yi − yn)(xi − xn)

1
n−1

∑n
i=1(xi − xn)2

=
Cov(X,Y )

Var(X)
. (14.5)

Once again, we can verify that β̂ is indeed a maximizer by computing

∂2
β ln

[
L(α̂, β̂, σ̂2|X,Y )

]
= − 1

σ̂2

n∑
i=1

(xi − xn)
2 < 0.

Finally, to determine the MLE for the variance we compute

∂σ22 ln
[
L(α̂, β̂, σ̂2|X,Y )

]
= − n

2σ̂2
+

1

2σ̂4

n∑
i=1

(yi − α̂− β̂xi)
2 = 0,

from which we conclude that

σ̂2 =
1

n∑
i=1

(yi − α̂− β̂xi)
2 =

1
n∑

i=1

(yi − ŷi)
2

(14.6)

where we denoted by ŷi = α̂+ β̂xi the value of y predicted by the regression line evaluated at x = xi.
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14.3 Exercises

1. Consider an exponential random variable f(x|θ) = θe−θx, x > 0 and a sample of size n.

(a) Find the maximum likelihood estimator of θ.

(b) Find the maximum likelihood estimator for E [X]. How does this compare to the result of the

previous problem?

2. Find the maximum likelihood estimator of θ based on a sample of size n for the random variable with

density f(x|θ) = (1 + θ)xθ, x ∈ [0, 1], θ > 0.

3. Consider a geometric random variable with density f(x|θ) = θ(1− θ)x, x = 0, 1, 2, 3, . . . Geometric

random variables model the number of attempts, given by x, required before obtaining the first success

in a binomial process with probability of success θ.

(a) Compute the maximum likelihood estimator of θ for this distribution.

(b) Perform the following experiment. Using a six-faced dice, roll the die and record the number

of attempts before a four appear on the dice. Repeat this experiment 20 times to obtain a sam-

ple (x1, . . . , x20) where every xi is the number of rolls required before success. Then use this

information and the result from the previous part to obtain the MLE for θ.

4. Consider the PDF f(x|θ) = θ2xe−θx, x ≥ 0.

(a) Using the PDF,compute an expression for the mean and the variance of X .

(b) Compute the maximum likelihood estimators for the mean and the variance.
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15.1 Bayesian estimation

Up to this point in our introduction to estimation, we have considered that the parameter θ that we are

attempting to estimate has a fixed value. However, the Bayesian paradigm considers that the parameter

might in fact be a realization from an independent random variable that varies according to the probability

density function π(θ) known as the prior distribution, or prior for short.

When considering two random variables X and Θ, we need to consider their joint probability density
function which we will denote by fX,Θ(x, θ). According to Baye’s rule, the joint PDF can be written in

terms of the product between a conditional density and a marginal density in two different ways:

Likelihood function︷ ︸︸ ︷
fX|Θ(x|θ) π(θ)︸︷︷︸

prior

=

Joint PDF︷ ︸︸ ︷
fX,Θ(x, θ) =

Posterior︷ ︸︸ ︷
fΘ|X(θ|x) fX(x)︸ ︷︷ ︸

Marginal density

. (15.1)

On the left hand side, we express the joint distribution as the product between the likelihood function (i.e. the

conditional probability for X given an assumed or measured value of the parameter θ) and the prior density

(i.e. the assumed marginal behavior of the random variable θ before making any data measurements). On

the right hand side, we express the joint PDF as the product between the conditional density for the random

variable θ conditioned to a given set of measurements of x (known as the posterior density, it captures the

behavior of θ after taking into account the measured information of x) and the marginal density of X .

The paradigm of Bayesian estimation is to consider that the particular realization of the random variable

Θ that gave rise to certain measurements X = (X1, . . . , Xn) is the value θ̂ that minimizes the mean risk
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r(π, d). Hence, to determine what would the Bayesian estimate θ̂ be, we analize the mean risk as follows:

r(π, d) =E [R(θ, d)]

=

∫
Θ
R(θ, d)π(θ) dθ

=

∫
Θ
E [L(θ, d)]π(θ) dθ

=

∫
Θ

(∫
X
L(θ, d(x))f(x|θ) dx

)
π(θ) dθ

=

∫
Θ

∫
X
L(θ, d(x)) f(x|θ)π(θ)︸ ︷︷ ︸

=Joint PDF

dx dθ

=

∫
Θ

∫
X
L(θ, d(x))fX,Θ(x, θ) dx dθ (Using 15.1)

=

∫
Θ

∫
X
L(θ, d(x))fΘ|X(θ|x) fX(x) dx dθ (Using 15.1)

=

∫
X

(∫
Θ
L(θ, d(x))fΘ|X(θ|x) dθ

)
fX(x) dx

Note that all the functions, L(θ, d(x)), fΘ|X(θ|x), and fX(x), involved in the integral above are non-

negative. Moreover, we have not control over the random variables, hence we can not optimize neither

fΘ|X(θ|x), nor fX(x). Hence the mean risk will be minimized if we can choose d(X) such that the inner-

most integral ∫
Θ
L(θ, d(x))fΘ|X(θ|x) dθ (15.2)

is minimized. This expression is in fact the definition of the conditional expectation of the loss. Hence, the

Bayes estimator d(x) should be chosen such that the conditional expectation of the loss is minimized. If we

consider a squared loss function, then (15.2) becomes∫
Θ
(θ − d(x))2fΘ|X(θ|x) dθ,

and hence the optimality condition is

∂

∂d

∫
Θ
(d(x)− θ)2fΘ|X(θ|x) dθ = 2

∫
Θ
(d(x)− θ)fΘ|X(θ|x) dθ = 0

which leads to

d(x) = d(x)

∫
Θ
fΘ|X(θ|x) dθ︸ ︷︷ ︸

=1

=

∫
Θ
d(x)fΘ|X(θ|x) dθ =

∫
Θ
θfΘ|X(θ|x) dθ =: E [θ|x] .

Therefore, the Bayesian estimator should be chosen to be the conditional expectation

d(x) = E [θ|x] :=
∫
Θ
θfΘ|X(θ|x) dθ. (15.3)

15.2 Computing the conditional expectation

As we showed in the previous section, when loss is measured through squared loss, the Bayesian estimator

is given by the conditional expectation. Hence, at least in principle, the only thing that we need to do is to
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compute the integral ∫
Θ
θfΘ|X(θ|x) dθ,

involving the posterior density function fΘ|X(θ|x). However, in most application this density is not known

directly. Instead what we have at our disposal are: 1) the likelihood function, 2) the prior distribution, and 3)

a set of measurements x = (x1, . . . , xn). Fortunately, the posterior distribution can be written in terms of

these three quantities as follows.

From equation (15.1) we can conclude that

fΘ|X(θ,x) =
fX,Θ(x, θ)

fX(x)
(Posterior = Joint / Marginal )

=
fX|Θ(x, θ)π(θ)

fX(x)
(From (15.1) )

=
fX|Θ(x, θ)π(θ)∫
Θ fX,Θ(x, θ) dθ

(Definition of marginal PDF)

=
fX|Θ(x, θ)π(θ)∫

Θ fX|Θ(x, θ)π(θ) dθ
(From (15.1)).

Hence the conditional expectation in equation (15.3) may be computed using only the prior, the likelihood

and the data measurements according to the formula

E [θ|x] =
∫
Θ θfX|Θ(x, θ)π(θ) dθ∫
Θ fX|Θ(x, θ)π(θ) dθ

, (15.4)

where the integrals are carried over the set Θ consisting of all admissible values of θ.

15.3 Examples

Example 1. We start by considering the problem of estimating the probability of success, p, on a Bernoulli

trial based on n independent experiments. The PDF for a single experiment is given by

fX|P (x, p) = px(1− p)1−x,

therefore, using the fact that the experiments are independent, the likelihood function for n trials x =
(x1, . . . , xn) is given by

fX|P (x, p) = px1(1− p)1−x1 × · · · × pxn(1− p)1−xn = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi ,

We can go one step further by realizing that, since in a Bernoulli trial xi = 1 only if the attempt was a success,

the term s =
∑n

i=1 xi will equal the number of successes obtained after n trials. Hence

fX|P (x, p) = ps(1− p)n−s.

We need now a PDF that encodes out knowledge (or belief) about the behavior of P as a random variable.

For this example we will consider that the true value of P can be anywhere in the interval [0, 1] with equal

probability, leading to the uniform prior π(p) = 1 for p ∈ [0, 1]1. To obtain the Bayesian estimate, we must

then compute the integrals∫ 1

0
pfX|P (x, p)π(p) dp =

∫ 1

0
ps+1(1− p)n−s dp and

∫ 1

0
fX|P (x, p)π(p) dp =

∫ 1

0
ps(1− p)n−s dp.

1

A more general approach would be to assume that P follows a Beta distribution. This choice allows for some more flexibility

regarding the shape of the distribution while still ensuring that the integral of the product of prior and likelihood remains somehow

manageable. Very loosely speaking, the families of priors and likelihoods that “go well together” (in the sense that the integrals

resulting from their product can be computed analytically with relative ease) are called conjugate densities.
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Even though in this particular case we could compute these integrals by expanding the binomial term and

integrating the resulting polynomial, we will make use of the following properties of the Gamma function
2
.

1. For any complex number z whose real part is positive Re[z > 0], the Gamma function is defined as

Γ(z) :=

∫ ∞

0
tz−1e−tdt. (15.5)

2. For any real numbers a and b ∫ 1

0
pa−1(1− p)b−1 dp =

Γ(a)Γ(b)

Γ(a+ b)
. (15.6)

3. For any real number r
Γ(r + 1) = rΓ(r). (15.7)

Using the property (15.6) we see that∫ 1

0
pfX|P (x, p)π(p) dp =

∫ 1

0
ps+1(1− p)n−s dp =

∫ 1

0
ps+2−1(1− p)n−s+1−1 dp =

Γ(s+ 2)Γ(n− s+ 1)

Γ(n+ 3)

and∫ 1

0
fX|P (x, p)π(p) dp =

∫ 1

0
ps(1− p)n−s dp =

∫ 1

0
ps+1−1(1− p)n−s+1−1 dp =

Γ(s+ 1)Γ(n− s+ 1)

Γ(n+ 2)
,

and therefore according to equation (15.4) the conditional expectation is

E [p|x] =
∫ 1
0 θfX|P (x, p)π(p) dp∫ 1
0 fX|P (x, p)π(p) dp

=

∫ 1
0 ps+1(1− p)n−s dp∫ 1
0 ps(1− p)n−s dp

=
Γ(s+ 2)Γ(n− s+ 1)

Γ(n+ 3)

(
Γ(s+ 1)Γ(n− s+ 1)

Γ(n+ 2)

)−1

=
Γ(n+ 2)Γ(s+ 2)

Γ(n+ 3)Γ(s+ 1)

=
Γ(n+ 2)(s+ 1)Γ(s+ 1)

(n+ 2)Γ(n+ 2)Γ(s+ 1)
(Using property (15.7))

=
s+ 1

n+ 2
.

Hence, the Bayesian estimator for the probability of success of a Bernoulli random variable, based on n ex-

periments is

d(x)Bayes =
s+ 1

n+ 2
.

This expression would seem a little bit odd, specially when compared with the one in equation (14.2) obtained

through maximum likelihood

d(x)MLE =
s

n
,

2

This would be the only way to perform the integral if the prior were chosen to be the more general Beta density.
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which seems to be more natural: when trying to estimate the probability of success, one carries out n exper-

iments, counts the number of successes s and determines the what percentage of the total turned out to be

successes.

The advantage of the Bayesian estimator becomes clear when we consider the estimates produced when a

single experiment is performed. Since the number of successes in a single experiment is either 0 or 1, then

the maximum likelihood estimator would prescribe a probability of success equal to 0 if the experiment fails

or a probability of 1 if the experiment succeeds. It should be clear that estimating that a coin is completely

rigged one way or another one based on a single experiment is a little too extreme. On the other hand, the

Bayesian estimator would predict a probability of success equal to 1/3 if the experiment fails, or a probability

of 2/3 if the experiment succeeds. The Bayesian estimates seem more measured (and believable) even with

the extremely low amount of information provided by a single experiment.

15.4 Exercises

1. Consider the problem of minimizing the integral in equation (15.2).

(a) Show that if the loss is measured through the absolute error loss

L(θ, d(x)) = |d(x)− θ|,

then the Bayesian estimator is given by the conditional median, defined as the value θm such that

P (θ < θm|X) = 1/2.

(b) Show that if the loss is measured through the absolute error loss

L(θ, d(x)) =

{
0 if d(x) = θ

1 if d(x) ̸= θ
,

then the Bayesian estimator is given by the conditional mode defined as the most common value

θM given a set of measurements X .

2. Find the Bayes estimator for the parameter p of a Bernoulli random variable based on a random sample

of size n if L(p, a) = (a− p)2 and π(p) = 3p(1− p) for p ∈ [0, 1].

3. Given the likelihood fX|Θ(x|θ) = 1/θ for 0 ≤ x ≤ θ, the loss function L(p, a) = (a − p)2, the prior

π(θ) = θe−θ
for θ > 0, and considering a sample of size n:

(a) Compute the marginal density fX(x).

(b) Use fX(x) to compute the posterior density fΘ|X(θ|x).

(c) Use the posterior density to compute the conditional expectation E [Θ|X].

[Hint: Use the properties of the Gamma function Γ(r) to compute the integrals involved].

4. Find the Bayes estimator of the Poisson parameter µ based on a random sample of size n if squared loss

is used and the prior is π(µ) = e−µ
for µ > 0. [Hint: Use the properties of the Gamma function Γ(r)

to compute the integrals involved].

5. Find the Bayes estimator for the parameter θ in the likelihood function fX|Θ(x|θ) = θe−θx
for x > 0

based on a single observation of X if the loss is measured as the square loss and π(θ) = 1 for θ ∈ [0, 1].
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6. You will need a computer to do the integrals involved in this exercise. We will consider the problem

studied in Example 1 with a prior that is not a conjugate density of the Bernoulli distribution. The

likelihood for a single trial is fX|P (x, p) = px(1 − x)1−x
where the probability of success p is known

to vary around fairness according to a normal-like distribution π(p) = Cexp

(
−4(p− 1/2)2

)
for 0 ≤

p ≤ 1 and C is a constant to be determined.

(a) Compute the value of the constant C so that π(p) is a probability density function.

(b) Consider a squared loss function and compute the Bayesian estimator for p based on an indepen-

dent sample of size n.
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16.1 Estimating expectation when the variance is known

Consider the problem of estimating the value of the mean value of a random variable X with finite mean µ
and variance σ2

based on a simple random sample of size n. We will assume that the variance is known. As

we have seen in the preceding sections, the sample mean Xn is the best unbiased estimator (i.e. it has the

minimum variance allowed by the information inequality). However, it would be nice to know how likely

the resulting estimation xn is to be within a certain range of the actual value µ. We will use the fact that the

sample mean has the probability density function

fXn
(x, µ, σ2, n) =

√
n

2πσ2
e
− (xn−µ)2

2(σ2/n)

we can compute the probability that a particular realization of xn falls within a certain distance from the true

value µ. We first observe that if we define

z :=
xn − µ

(σ/
√
n)

, (16.1)

the resulting random variable Z (often known as the z-score of the sample) is also normally distributed, has

mean zero, unit variance, and PDF

fZ(z) =
1√
2π

e−z2/2.

Hence the probability that a particular realization of Z falls within two units (two standard deviations) of

zero (the mean value of Z) is

P (|Z| < 2) ≈ 0.95 (16.2)
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Figure 16.1: Left: The area under the standard normal curve and between the points −z γ and z γ determines the confidence level

of the interval. If z γ1 > z γ2 the confidence associated to z γ1 is larger, but the margin of error increases as well. Right: The area

under the curve of the χ2
density between the points χ2

γ determines the confidence level for the variance interval. The values of χ2
a

and χ2
b will change depending on the target confidence level γ and the sample size n (degrees of freedom).

Substituting the value of z and observing that

|xn − µ|
(σ/

√
n)

< 2 ⇐⇒ − 2σ√
n
+ µ < xn < µ+

2σ√
n

this is equivalent to

P

(
− 2σ√

n
+ xn < µ < xn +

2σ√
n

)
≈ 0.95.

Hence, approximately 95% of the realizations of the sample mean xn will be within a distance 2σ/
√
n of the

true value. Note that the values the distance |Z| < 2 and the probability 0.95 in equation are related. If we

allow the distance to grow, the probability will increase and vice versa.

Hence, given a target probability γ ∈ [0, 1] (known as the confidence level) there will be a corresponding

distance z γ that will guarantee that

P

(
−z γσ√

n
+ xn < µ < xn +

z γσ√
n

)
= γ, (16.3)

where, for a target confidence level γ, the critical value z γ is found by applying the inverse of the cumulative

distribution function of the standard normal distribution. We then define the z-confidence interval for the
mean with confidence level γ as

xn ± z γ
σ√
n
, (16.4)

where the term z γσ/
√
n is known as the z-margin of error . When providing an estimate of the mean, we

would like to have the smallest possible margin of error. Since we have no control over the variance σ2
of the

random variable, we can achieve this by two mechanisms: (1) decreasing the magnitude of the critical values

z γ , or (2) increasing the sample size n. Given that the parameter z γ controls the size of the region under the

normal curve, as can be seen in the left pab=nel of Figure16.1 decreasing this value has the disadvantage of

decreasing the confidence level of the estimate. Increasing the sample size on the other hand will not decrease

the confidence level, but may be expensive or impossible in practice.
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distribution

16.2 The χ2 distribution

Consider a random variable X and define Y := X2
. The CDF FY (y) of Y is given by

FY (y) = P (Y ≤ y) = P
(
X2 ≤ y

)
= P (−√

y ≤ X ≤ √
y) = FX(

√
y)− FX(−√

y) for y > 0.

Noting that since Y is non negative, it follows that FY (y) ≡ 0 for y ≤ 0. From here differentiation with

respect to y yields the PDF for Y as

fY (y) =

{
0 for y ≤ 0,

1
2
√
y

(
fX(

√
y) + fX(−√

y)
)

for y > 0,
(16.5)

We will now assume that X ∼ N(0, 1), then the random variable X2
is particularly important in statistics

and receives the name of chi squared distribution with one degree of freedom and is denoted by χ2(1) (we

will come back to the point of the degrees of freedom below). We can use (16.5) to express the PDF for χ2(1)
as:

fχ2(1)(x) =

{
0 for x ≤ 0,

1√
2πx

e−
x
2 for x > 0.

(16.6)

The density above is a particular case of a Gamma density with parameters α = 1/2 and β = 1/2. One

property of Gamma densities is that if X1, . . . , Xn are independent random variables each of them following

the Gamma density Γ(αi, β) then the random variable Z = X1 + · · · + Xn follows the Gamma density

Γ (α, β) , where α =
∑n

i=0 αi. As a consequence of this property we can state the following

Theorem 16.1. IfX1, . . . , Xn are independent random variables each of them following the chi squared density
χ2(1), then

Z = X1 + · · ·+Xn

follows also a chi squared distribution with n degrees of freedom with PDF given by Γ(n/2, 1/2). This distri-
bution is denoted as χ2(n).

In summary we can say that, if X1, . . . , Xn are IID from a normal distribution with mean µ and standard

deviation σ, then the random variable

χ2(n) :=
1

σ2

n∑
i=1

(Xi − µ)2,

has a chi squared distribution with n degrees of freedom given by the Gamma distribution Γ(n/2, 1/2).
The expected value and the mean of χ2(n) can be shown to be given by

E [X] = n and Var [X] = 2n.

16.3 Estimating variance when the expectation is known

We will now construct a confidence interval for the variance σ2
of a normal density when the mean µ of the

distribution is known. We have determined that

∑n
i=1(Xi − µ)2/n is the best unbiased estimator for the

variance and we will use this estimator to construct a confidence interval.

As we have seen in the previous section, given a simple random sample X1, . . . , Xn drawn from a normal

distribution, the set

χ2
i := (Xi − µ)2/σ2

for i = 1, . . . , n,
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follows a chi squared density with n degrees of freedom as shown on the right panel of Figure 16.1. Hence,

using the inverse CDF for χ2(n) (numerically if necessary), it is possible to find numbers χ2
a and χ2

b such that,

for a target confidence level γ ∈ [0, 1]

P
(
χ2
a < χ2 < χ2

b

)
= γ.

Substituting the definition of χ2
, the expression above is equivalent to

P

(
n∑

i=1

(Xi − µ)2/χ2
b < σ2 <

n∑
i=1

(Xi − µ)2/χ2
a

)
= γ.

Hence, the γ-confidence interval for σ2
is(

n∑
i=1

(Xi − µ)2/χ2
b ,

n∑
i=1

(Xi − µ)2/χ2
a

)

16.4 Estimating the variance when the expectation is unknown

It can be shown that the random variable

1

σ2

n∑
i=1

(Xi − xn)
2,

where xn denotes the sample mean, follows a chi squared distribution with n− 1 degrees of freedom.

Hence, if the value of µ is not known, we can approximate µ ≈ xn by the sample mean and repeat the process

outlined in the previous section using a chi squared distribution with n − 1 degrees of freedom and
adjusting the values of χ2

a and χ2
b accordingly.

16.5 Student’s T distribution

When neither the mean nor the variance of a distribution are known it is natural to use the sample mean xn
and the sample variance s2n := 1

(n−1)

∑n
i=1(Xi − xn)

2
as estimators for the mean and variance respectively.

To determine a confidence interval for the mean similar to the one given in (16.3) but replacing σ by the

sample standard deviation sn we need to study the properties of the random variable

T :=
X

sn/
√
n
.

We will start by defining a random variable formed by taking the quotient between two chi squared random

variables. Let us Y1 and Y2 be follow chi squared distributions with k1 and k2 degrees of freedom respectively

and define

Z :=
Y1/k1
Y2/k2

. (16.7)

Using Corollary 4.4 it is possible to show that Z has the PDF

fZ(x, k1, k2) =
(k1/k2)Γ[(k1 + k2)/2](k1x/k2)

(k1+k2)/2−1

Γ(k1/2)Γ(k2/2)(1 + (k1x/k2))(k1+k2)/2
, for x > 0. (16.8)

This random variable is said to have an F-distribution and its CDF is denoted as F (k1, k2).
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-3 -2 -1 0 1 2 3
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N(0,1)

Figure 16.2: Left: Comparison between a standard normal distribution (black line) and T distributions with

different degrees of freedom. Right: The value of Tγ is determined by the location such that the area under

the curve and between −Tγ and Tγ is equal to γ.

We then consider a simple random sample X1, . . . , Xn taken from a normal distribution with mean µ and

standard deviation σ. We know from the previous section that if we take a subset of the sample (say from 1
to j) the random variables

Y1 :=
1

σ2

j∑
i=1

(Xi − µ)2 Y2 :=
1

σ2

n∑
i=j+1

(Xi − µ)2

are independent and follow the distributions χ2
1(j) and χ2

2(n − j). Consider then the case j = 1 (i.e. the

sample is split into one group with a single observation and one group with all the rest). Defining Y1 ∼ χ2(1)
and Y2 ∼ χ2(n− 1) as above and substituting into equation (16.7) yields

Z2 :=
(X1 − µ)2∑n

i=2(Xi − µ)2/(n− 1)

which is a random variable with F (1, n− 1) distribution. Recalling that all Xi are normally distributed and

therefore have a symmetric PDF, we can conclude that the random variable

Z :=
(X1 − µ)√∑n

i=2(Xi − µ)2/(n− 1)
(16.9)

has a symmetric PDF as well. This fact, combined with the formula (16.5) (where we make the substitution

y = z2) and the (16.8), can be used to obtain the PDF for Z

fZ(z) =
Γ [(n+ 1)/2]

(
1 + z2/n

)−(n+1)/2

√
nπ Γ(n/2)

for y ∈ (−∞,∞). (16.10)

A random variable of the form (16.9) with PDF given by (16.10), is said to have a T-distribution with n
degrees of freedom. As shown in Figure 16.2, the T-distribution looks remarkably similar to the standard

normal distribution as the number of degrees of freedom increases. However, for n < ∞ the two distributions

are indeed different and the difference manifests itself more clearly for larger values of |x| as the fact that if

m is a large integer, and T and Z follow respectively a T distribution and a standard normal distribution then

P (|T | > m) > P (|Z| > m).

16.6 Estimating the mean when the variance is unknown

When using the sample variance s2n instead of the variance σ2
to determine a confidence interval, a very

similar argument to the one we used in Section 16.1 (using the T distribution with n degrees of freedom
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Lecture 16: Confidence intervals 16.7 Summary

instead of the normal distribution) can be used to show that for a target confidence level γ the confidence

interval takes the form

xn ± Tγ
sn√
n
, (16.11)

where, for a given confidence level γ the number Tγ is such that an area equal to γ is enclosed by the curve

of the T-density function (16.10) and the values −Tγ and Tγ , as shown in Figure 16.2.

16.7 Summary

Consider a simple random samples consisting of measurements X1, . . . , Xn from a random variable X with

mean µ and standard deviation σ and a target confidence level γ ∈ [0, 1]. We recall the definition of the

sample mean and the sample variance respectively

xn :=
1

n

n∑
i=1

Xi s2n :=
1

n− 1

n∑
i=1

(Xi − xn)
2.

Confidence intervals for the mean.

• If the variance is known, then the relevant distribution for zγ is N(0, 1) and the interval is(
xn − zγ

σ√
n
, xn + zγ

σ√
n

)
• If the variance is unknown, then the relevant distribution for Tγ is T (n) and the interval is(

xn − Tγ
sn√
n
, xn + Tγ

sn√
n

)
Confidence intervals for the variance.

• If the mean is known, then the relevant distribution for χ2
a and χ2

b is χ2(n) and the interval is(∑n
i=1(Xi − µ)2

χ2
b

,

∑n
i=1(Xi − µ)2

χ2
a

)

• If the mean is unknown, then the relevant distribution for χ2
a and χ2

b is χ2(n− 1) and the interval is(∑n
i=1(Xi − xn)

2

χ2
b

,

∑n
i=1(Xi − xn)

2

χ2
a

)

16.8 Exercises

1. Consider that a sample of size n = 25 was drawn from the distribution

f(x|µ) = 1√
32π

e−
(x−µ)2

32 ,

and has a sample mean xn = 20.

(a) Find a 90% confidence interval for µ.

(b) How large should the sample be if the confidence interval is to be reduce to half its length.
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2. Construct a 95% confidence interval for the parameter p of a Bernoulli density

f(x|p) = px(1− p)1−x,

if a random sample of sizen = 50 yielded

∑50
i=1Xi = 15. Use the normal approximation for

∑50
i=1Xi/50

and replace its variance by its sample variance
1
n

∑n
i=1(Xi − µ)2.

3. Consider a sample of size n = 20 drawn from

f(x|σ) = 1√
2πσ2

e−
(x−10)2

2σ2 .

If

∑20
i=1Xi = 180 and

∑20
i=1X

2
i = 2000:

(a) Find a 90% confidence interval for σ2
.

(b) Find a 90% confidence interval for σ under the assumption that µ = 0 but it is not known that

the true value of the variance is σ2 = 1.

(c) Find a 90% confidence interval for σ under the assumption that the value of µ is unknown.

4. Build an 80% confidence interval for the parameter θ in the density

f(x|θ) = 1

θ
e−x/θ

for x > 0,

if a random sample of size n = 20 yielded

∑20
i=1Xi = 80. Use the normal approximation for∑20

i=1Xi/20.
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Appendix A

Examples of random variables

The following list is of course incomplete, and should be considered a reference. You are not expected to

memorize all, but many of these random variables are so relevant in applications that it is to your best interest

to at least be acquainted with them. In all instances below, p represents the probability mass function, and D
represents the (discrete) set of possible values of x. The natural numbers (i.e. positive integers) are represented

by N := {1, 2, 3, . . .}.

A.1 Discrete random variables

1. Uniform. U(a, b), D = {a, a+ 1, . . . , b− 1, b}.

p(x) =
1

b− a+ 1
.

The probability of drawing an integer between a and b in one attempt when all the integers in the

interval are equally likely to be drawn.

2. Bernoulli. Ber(p), D = {0, 1}.

p(x) = px(1− p)1−x.

Represents the probability of attaining either success (x = 1) or failure (x = 0) in a single attempt with

constant probability of success p.

3. Binomial. Bin(n, p), D = {0, 1, . . . , n}

p(x) =

(
n

x

)
px(1− p)n−x.

Note that Ber(p) = Bin(1, p). A binomial RV is usually interpreted as giving the probability of succeed-

ing exactly x times in an experiment with n attempts each of which has probability p of succeeding.

4. Geometric Geo(p), D = N.

p(x) = p(1− p)x.

Represents the probability that exactly x Bernoulli trials are required to produce the first success. Al-

ternatively, it represents the probability that x − 1 failures occur in a Bernoulli trial before the first

success.

5. Hypergeometric. Hyp(N,n, k), N ∈ N, k, n ∈ {0, 1, . . . , N},
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Lecture A: Examples of random variables A.2 Continuous random variables

D = {max{0, n−N + k}, . . . ,min{n,K}}.

p(x) =

(
n
x

)(
N−n
k−x

)(
N
n

) .

The hypergeometric distribution considers a population of size N containing n individuals with a “spe-

cial” property (for instance k red balls in a bag otherwise containing N blue balls) and returns the

probability of finding x individuals with the special property within a sample of size n when drawing

is done without replacement.

6. Negative binomial. Negbin(n, p), D = N.

p(x) =

(
n+ x− 1

x

)
pn(1− p)x

This distribution pertains to the probability that x successes are achieved before n failures happen on

on independent Bernoulli trials with probability of success p. Note that Geo(p) = Negbin(1, p).

7. Poisson. Pois(λ), D = N, λ ∈ (0,∞).

p(x) =
λx

x!
e−λ.

Describes the probability that x independent events take place within a fixed interval, if the events are

known to happen randomly with constant mean rate λ.

A.2 Continuous random variables

1. Uniform. U(a, b), x ∈ [a, b].

f(x) =
1

b− a
.

2. Beta. Beta(α, β), x ∈ [0, 1], α > 0, β > 0.

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

3. Cauchy. Cau(µ, σ2), x ∈ R, µ ∈ R, σx ∈ (0,∞).

f(x) =
1

πσ

1

(x− µ/σ)2 + 1
.

4. Chi-squared. χ2
a, x ∈ [0,∞), a ∈ N.

f(x) =
x
a
2−1

2a/2Γ(a/2)
e−x/2.

5. Exponential. Exp(θ), x ∈ [0,∞), θ > 0.

f(x) = θe−θx.
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6. Fischer’s F. Fq,a, x ∈ [0,∞), q > 0, a > 0.

f(x) =
Γ((q + a)/2)qq/2aa/2

Γ(q/2)Γ(a/2)
x
q
2−1(a+ qx)−(q+a)/2.

7. Gamma. Γ(α, β), x ∈ [0,∞), α > 0, β > 0.

f(x) =
βα

Γ(α)
xα−1e−βx.

Observe that Exp(θ) = Γ(1, θ).

8. Inverse Gamma. Γ−1(α, β), x ∈ [0,∞), α > 0, β > 0.

f(x) =
βα

Γ(α)
α−α−1e−β/x.

9. Laplace. Lap(µ, σ), x ∈ R, µ ∈ R, σ ∈ (0,∞)

f(x) =
1

2σ
e−|x−µ|/σ.

10. Normal. N(µ, σ2), x ∈ R, µ ∈ R, σ ∈ (0,∞)

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 .

11. Pareto. Par(α, c), x ∈ [c,∞), c ∈ (0,∞), α ∈ (0,∞).

f(x) =
cαα

xα+1
.
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