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Chapter 1

Preliminaries

1.1 Euclidean space

The Euclidean space , denoted by Rn, is defined by the set:

Rn = {x = (x1, x2, . . . , xn) : xi ∈ R}.

That is,Rn is the set ofn-tuples of real numbers. The Euclidean spaceRn is a vector spacewith addition:

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn),

and scalar multiplication:
αx = (αx1, αx2, . . . , αxn).

Remark 1.1. We should always think of vectors as columns , i.e. a vector x ∈ Rn should be pictured
as a matrix with n rows and 1 column. However, for notational convenience, in this text we will often write a
vector in terms of its components as a horizontal list (as we did above), this will make the notation a little simpler
by sparing us from writing transpose symbols over and over. However you should always think of vectors as a
column.

Additionally, the Euclidean space has scalar product given by:

x · y = x1y1 + x2y2 + · · ·+ xnyn =
n∑

i=1

xiyi.

Thescalar product product, also called thedot product or inner product , induces theEuclideannorm:

|x| =
√
x · x =

√√√√ n∑
i=1

(xi)2.

We say that vectors x, y ∈ Rn are orthogonal if x · y = 0. In this case, we say write that x ⊥ y or y ⊥ x.
Given two non-zero vectors x, y we can use the dot product to define the projection and the rejection of x
onto y respectively by

projyx :=

(
y · x
|y|2

)
y and oprojyx ≡ (projyx)

⊥ := x− (projyx).
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Chapter 1: Preliminaries 1.1 Euclidean space

Note that

projyx · oprojyx =

(
y · x
|y|2

)
y ·
(
x− (projyx)

)
=

(
y · x
|y|2

)
y ·
(
x−

(
y · x
|y|2

)
y

)
=

(
x · y
|y|

)2

−
(
x · y
|y|2

)2

|y|2 = 0 ,

and therefore projyx is orthogonal to oprojyxwhich justifies the notation oprojyx ≡ (projyx)⊥. Hence, from
the definition of the projection and the rejection we see that given any x, y we can decompose x into two
orthogonal components as

x = projyx+ (projyx)
⊥.

Vector addition, subtraction and projection all have geometric interpretations depicted in Figure 1.1.

The Euclidean norm and the dot product have the following properties

Proposition 1.1. Let x, y ∈ Rn and α ∈ R.

1. Positive definiteness
|x| ≥ 0. Moreover, |x| = 0 if and only if x = 0.

2. Absolute homogeneity
|αx| = |α||x|.

3. Cauchy-Schwarz inequality
|x · y| ≤ |x||y|.

4. Triangle inequality
|x+ y| ≤ |x|+ |y|.

Proof. The proofs of properties 1 and 2 are left as exercises. For property 3, we observe that if x = 0, then
both sides of the inequality are zero. Suppose then that x 6= 0 and let w be the projection of x onto y:

w =

(
y · x
|x|2

)
x.

Then:

0 ≤ |y − w|2 =(y − w) · (y − w)

=

(
y − y · x

|x|2
x

)
·
(
y − y · x

|x|2
x

)
,

= |y|2 − 2
(y · x)2

|x|2
+

(y · x)2

|x|4
|x|2

= |y|2 − (y · x)2

|x|2
.

From this, it follows that

|y|2 ≤ (y · x)2

|x|2

and the inequality follows after taking the square root of this expression.
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Chapter 1: Preliminaries 1.2 Geometry of Rn

Addition Subtraction Projection
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Figure 1.1: Geometric representation of vector addition, subtraction and projection. The vectors u and v are depicted in grey,
while the subtraction, addition and projections are depicted in black.

For property 4, we see that

|x+ y|2 = (x+ y) · (x+ y) = |x|2 + 2x · y + |y|2 ≤ |x|2 + 2|x||y|+ |y|2,

where the last inequality follows from the Cauchy-Schwarz inequality. Therefore, we have:

|x+ y|2 ≤ (|x|+ |y|)2.

Taking the square root above leads to the triangle inquality.

Remark 1.2. From the proof of Proposition 1.1 and Figure 1.1, we can observe that equality in point 3 holds if
and only if one of the vectors x or y is a scalar multiple of the other one. Indeed, if y is a scalar multiple of x,
then (projyx)> = y − w = 0 and y = w.

Similarly, equality holds in property 4 if and only if x · y = |x||y|, that is, when one of the vectors x or y is a
scalar multiple of the other and x · y > 0. Geometrically, this means that y lies on the line generated by x and in
the same direction.

1.2 Geometry of Rn

The canonical basis of Rn consists of the vectors e1, e2, . . . , en, where:

ei = (0, 0, . . . ,
i-th
1 , . . . , 0).

The scalar product can be used to define the angle between two vectors θ by the relation

θ := cos−1

(
x · y
|x||y|

)
.

Note that, in view of the Cauchy-Schwarz inequality, the magnitude of the argument above remains bounded
by 1, and therefore the angle is well defined. From our definition of the angle between two vectors it follows
that orthogonal vectors with respect to the Euclidean inner product are perpendicular to each other.

A straight line in Rn going through a point x∗ and pointing in the direction of a given vector x0 is the set of
points of the form

L := {x ∈ Rn : x = x∗ + αx0},
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Chapter 1: Preliminaries 1.2 Geometry of Rn
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Figure 1.2: Left: A hyperplane is completely determined by prescribing one point x∗in the plane and the normal vector n.
Right: when the point x∗ is taken to be the origin and the normal vector is parallel to the n-th canonical basis, the points
above and below are referred to as upper Rn

+ and lower Rn
− half space.

with x∗, x0 ∈ Rn and α ∈ R. The parametric equation of the line passing through x and y is:

γ(t) = (1− t)x+ ty, t ∈ R.

Note that γ(0) = x and γ(1) = y, therefore, restricting t ∈ [0, 1] we obtain the parametrization of the line
segment from x to y.

A hyperplane is a set of the form:

P := {x ∈ Rn : x · x0 = c0},

where x0 ∈ Rn, x0 6= 0, and c0 ∈ R are both fixed. The hyperplane orthogonal to n ∈ Rn passing through
x∗ ∈ Rn is given by:

P := {x : (x− x∗) · n = 0}.

In this context, the vector n is referred to as the normal vector to the plane. Alternatively, the parametric
equation of a hyperplane can be obtained by observing that a hyperplane passing through the point x∗in
Rn is the set of all linear combinations of n− 1 linearly independent vectors v1, . . . , vn−1

Γ(α1, . . . , αn−1) = x∗ +
n∑

i=1

αivi,

for α1, . . . , αn−1 ∈ R. A hyperplane P divides Rn into two half-spaces:

{x : x · x0 > c} and {x : x · x0 < c}.

If x0 = en and c = 0, these are called the upper and lower half-spaces and denoted Rn
+ and Rn

−, respectively,
as depicted in Figure 1.2. If x0 ∈ Rn and r > 0, the sphere of radius r around x0 is given by the set:

Sr(x0) = {x : |x− x0| = r},

while the open ball (or, for simplicity, simply the ball) of radius r around x0 is given by:

Br(x0) = {x : |x− x0| ≤ r}.

We say that A ⊂ Rn is convex set if, for all x, y ∈ A, the segment from x to y is completely contained in
A. The set A ⊂ Rn is said to be a star-shaped set if there exists a point O ∈ A such that, for x ∈ A, the
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Chapter 1: Preliminaries 1.3 Sequences in Rn

Convex domain Non-convex domain Star-shaped domain

x

y

x

y
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Figure 1.3: Left: In a convex set, all straight segments connecting interior points remain inside of the set. Center: Non-convex
sets contain at least one pair of points such that the straigh segment connecting them is not completely contained in the set.
Right: Star-shaped domains may not be convex, but they contain at least one point that is connected to every other point
through segments that reamain inside of the set, such as the pointO above. All convex-sets are star shaped.

segment fromO to x is completely contained inA. Examples of these kinds of sets are depicted in Figure 1.3.
We will study convex sets in more depth later on.

Let Ii ⊂ R be a bounded interval with left endpoint ai and right endpoint bi for every 1 ≤ i ≤ n. A rectangle
in Rn is a set of the form:

R = I1 × I2 × · · · × In,

in words, a rectangle is the Cartesian product of n bounded intervals Ii inR. If each Ii is an open interval, we
sayR is an open rectangle. If each Ii is closed, we sayR is a closed rectangle. A rectangle in Rn is sometimes
known as a hypercube .

In Rn, we will denote by Sn−1 the unit sphere given by

Sn−1 := {x ∈ Rn : |x| = 1}.

Note that,even if it is embedded in the n-dimensional space Rn, the sphere itself is intrinsically n− 1 dimen-
sional. This justifies the superscript n− 1 in the notation.

1.3 Sequences in Rn

A sequence {xk}∞k=1 ⊂ Rn is a countable subset ofRn that we tag using a natural number as index. Note that
since for every natural number we assign a point xk ∈ Rn, a sequence can also be considered as a function
f : N → Rn given by f(k) = xk.

Remark 1.3. In Rn, the indexing of elements of a sequence and the tagging of the componenets of each element
of the sequence can be a little confusing. When dealing with sequences, we will use a subindex to denote the index
of an element of a sequence, and a superindex to denote the component of an element of a sequence. Therefore in
the expression

xk = (x1k, x
2
k, . . . , x

i
k, . . . , x

n
k),

xik denotes the i-th component of the n-th element of a sequence. Moreover, each of the coordinates of xk defines
a sequence {xik}k in R. To avoid confusions when rising a component to a power, we will use the notation

(xik)
m
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Chapter 1: Preliminaries 1.3 Sequences in Rn

to mean the i-th component, of the k-th term of the sequence raised to them-th power.

Definition 1.1. Let A ⊂ R. We say that {xk}∞k=1 is a sequence in A if xk ∈ A for all k.

Definition 1.2. We say that {xk}∞k=1 is a bounded sequence if there existsM > 0 such that

|xk| ≤M for all k.

Equivalently, {xk}∞k=1 is bounded if there exists a rectangle R such that xk ∈ R for all k. Furthermore,
{xk}nk=1 is bounded in Rn if and only if each every component-wise sequence {xik}∞k=1 is bounded in R.

Definition 1.3 (convergence). We say that the sequence {xk} converges to L ∈ Rn if, for every ε > 0, there
exists N such that, if k ≥ N ,

|L− xk| < ε.

If the sequence {xk} converges to L, we call it the limit of {xk} and write:

L = lim
k→∞

xk or xk → L.

Furthermore, the limit of a sequence is unique (Exercise (8)).

It is not very difficult to verify the following statements; each of them characterizes the convergence of a
sequence.

1. The sequence {xk} converges to L ∈ Rn if, for every ε > 0, there exists N such that, for k ≥ N ,
xk ∈ Bε(L).

2. The sequence {xk} converges to L ∈ Rn if, for every open rectangle R containing L, there exists N
such that, for k ≥ N , xk ∈ R.

However, in practice, the following proposition that connects the convergence of a sequence of vectors to
convergence of the sequences of components is very useful.

Proposition 1.2. The sequence {xk}∞k=1 converges to L = (L1, L2, . . . , Ln) in Rn if and only if each {xik}∞k=1

converges to Li in R, i = 1, 2, . . . , n.

Proof. ⇒ Suppose xk → L, and let ε > 0. Let N be such that k ≥ N implies |xk − L| < ε. Then, for
k ≥ N ,

|xik − Li| ≤
√
(x1k − L1)2 + · · ·+ (xik − Li)2 + · · ·+ (xnk − Ln)2 < ε.

⇐ Now suppose each xik → Li, and let ε > 0. Take Ni such that, for k ≥ Ni,

|xik − Li| < ε/
√
n.

Let N = max
1≤i≤n

{Ni} and L = (L1, . . . , Ln). Then, if k ≥ N ,

|xk − L| =

√√√√ n∑
i=1

(xik − Li)2 <

√√√√ n∑
i=1

(ε2/n) = ε.

6



Chapter 1: Preliminaries 1.3 Sequences in Rn

The following proposition classifies closed sets in terms of sequences.

Proposition 1.3. A setA ⊂ Rn is closed if and only if, for every sequence {xk}∞k=1 of points inA that converges
to some L ∈ Rn, it holds that L ∈ A. In other words, a set is closed if and only if it contains all its limit points.

Proof. ⇒ Suppose A is closed, and let (xk) in A be a sequence that converges to L. Given ε > 0, since
xk → L, there existsK such that xK ∈ Bε(L). Since xK ∈ A, we have shown thatBε(L)∩(A\{L}) 6= ∅. If
L /∈ A it would follow that Bε(L)∩Ac 6= ∅ and therefore L would be a limit point of A by the defintion B.4,
but sinceAwas assumed to be closed, then Lwould have to belong toA, which is a contradiction. Therefore,
we must have L ∈ A.

⇐ Now suppose every sequence of points in A that converges has its limit in A. Let x be an accumulation
point ofA. For each k ≥ 1, let xk ∈ A such that |xk−x| < 1/k. Such xk must exist becauseB1/k(x)∩A 6= ∅.
Then xk is a sequence in A, and xk → x, so by our hypothesis x ∈ A.

It is easy to verify that convergent sequences are bounded (Exercise 9). However, while the converse is
clearly false (imagine, for instance, the sequence xk = e1 if k is even and xk = −e1 if k is odd, which is
clearly bounded and not convergent), the following theorem, known as the Bolzano-Weierstrass theorem,
applies. A subsequence of {xk}∞k=1 is an infinite subset of elements of the original sequence tht we tag by
the index kl as {xkl}. That is, a subsequence of {xk} is a sequence whose terms are taken from the terms of
{xk}, respecting their order.

Theorem 1.1 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

In our proof, we will assume the theorem is valid in R.

Proof. If {xk}∞k=1 ⊂ Rn is bounded, each component-wise sequence{xik}∞k=1 ⊂ R is bounded. Hence, by the
Bolzano-Weierstrass theorem in R, the sequence {x1k}∞k=1 has a subsequence that converges to a real number
L1. Call this subsequence {x1kl1} and select the subsequence of vectors with the same index {xkl1}.

This new sequence may not be convergent, but it has two important properties: 1) by construction, its first
component is convergent, and 2) b a subset of the original sequence, it is also bounded and therefore the
sequence of its second components {x2kl1} is bounded. Once again, the Bolzano-Weierstrass theorem guaran-
tees the existence of a subsequence {x2kl2} that converges to some number L2. We take the subsequence of
vectors with the same index {xkl2} and note that, by construction, the subsequence is bounded and its first
two components converge.

Proceeding inductively in this fashion, after n steps we would have produced a subsequence {xkln} ⊂ {xk}
such that its i-th component converges to the number Li. Defining L = (L1, . . . , Ln) ∈ Rn we see that the
original sequence {xk} contains a subsequence {xkln} such that

xikln → Li, ∀ i

and thus, by Proposition 1.2, it follows that the sequence of vectors xkln → L.

The Bolzano-Weierstrass theorem allows us to prove the following property of closed sets, which will be use-
ful later on.
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Chapter 1: Preliminaries 1.3 Sequences in Rn

Theorem 1.2. Let A ⊂ Rn be a non-empty closed set and x ∈ Rn. Then there exists a point y ∈ A such that
|x− y| is minimized.

Proof. First of all, we observe that for any fixed x ∈ Rn, the facts that 1) A is not empty, and 2) the Euclidean
norm | · | is non negative, guarantee that the set of real numbers

{d ∈ R : d = |x− y| for y ∈ A}

is not empty and bounded from below by 0. It therefore it has an infimum that we shall denote

r0 := inf{d ∈ R : d = |x− y| for y ∈ A}.

Then, by the characterization of the infimum given in Theorem A.2, for all k ≥ 1, there exists yk ∈ A such
that:

r0 ≤ |x− yk| < r0 +
1

k
. (1.1)

Some simple algebra hows that this implies that |yk| ≤ r0+1+ |x|. Hence, the sequence {yk} is bounded, and
by the Bolzano-Weierstrass theorem, it has a convergent subsequence. Let {ykl} ⊂ A denote the subsequence
and y be its limit. Since A is closed, Proposition 1.3 implies y ∈ A.

We shall now prove that y is indeed the point for which |x− y| is minimized. To see this, given ε > 0, take a
term ym in the convergent subsequence such that |ym − y| < ε/2 and 1/m < ε/2. Then:

r0 ≤ |x− y| ≤ |x− ym|+ |ym − y| <︸︷︷︸
From (1.1)

r0 +
1

m
+
ε

2
< r0 + ε,

which implies that
0 ≤ |x− y| − r0 < ε.

Since ε > 0 is arbitrary, we use the ε-principle (A.1) to conclude that r0 = |x− y|.

Remark 1.4. Clearly, if x ∈ A, then

inf{d ∈ R : d = |x− y| for y ∈ A} = 0.

Furthermore, since A is closed, if x /∈ A, then x is not an accumulation point of A, and there exists r > 0 such
that Br(x) ∩A = ∅. Thus, r0 ≥ r > 0.

Definition 1.4. We say that {xk}∞k=1 is a Cauchy sequence if, for every ε > 0, there exists N such that, if
k, l ≥ N , then:

|xk − xl| < ε.

In other words, (xk) is a Cauchy sequence if its terms get arbitrarily close to each other.

If a sequence converges, then it is a Cauchy sequence. To verify this, suppose xk → L. Then, given ε > 0,
there exists N such that, if k ≥ N , |xk − L| < ε/2. Therefore, if k, l ≥ N ,

|xk − xl| ≤ |xk − L|+ |L− xl| <
ε

2
+
ε

2
= ε.

Conversely, if {xk} is a Cauchy sequence, then it converges. This follows from the Bolzano-Weierstrass
theorem and is left as an exercise for the reader (Exercises 22–24).
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Chapter 1: Preliminaries 1.4 Compact sets

1.4 Compact sets

In this section, we study a very important concept in analysis and topology: compactness. We will explore
compact sets and their relationship with sequences in Rn.

Definition 1.5. Let A ⊂ Rn and let I be a collection of indices that may be uncountable. A cover for A is a
collection {Uα}α∈I of open sets such that:

A ⊂
⋃
α∈I

Uα.

If {Uα}α∈I is a cover for A, and I ′ is a (potentially uncountable) collection of indices, a subcover is a subset
of {Uα}α∈I , say {Uαβ

}αβ∈I′ ⊂ {Uα}α∈I , such that:

A ⊂
⋃
β∈I′

Uαβ
.

We say that A is compact if every cover for A contains a finite subcover.

Remark 1.5. Note that the compactness of a set A does not depend on whether it is possible to cover the set
with a single open set. Compactness hinges on whether from any possible family of opens sets containing A it
is possible to select a finite number of them that still cover A.

Example 1.1 (A non-compact set). Consider the open set A := (0, 1) ⊂ R. Even though it is possible to
cover this set with a single open set (for instance with itself), it is not compact. To prove that, we must exhibit
a family of open sets {Uα} such that A is contained in their union, but such that no finite subset ot {Uα} can
still cover A completely.

We then define the countable family of open intervals Un := (0, 1 − 1/n) for every n ∈ N. Starting from
the empty interval U1 = (0, 0), as n grows the length of the intervals Un increases until, eventually, in the
limit n→ ∞, the sets coverA. This follows from the Archimedian property of the natural numbers, since for
every x ∈ (0, 1) there exists someM ∈ N such that x < 1− 1/M . Hence (0, 1) ⊂ ∪∞

n=1Un.

Now consider, any finite subset of this collection (i.e. any finite subcover) and let I be the set containing all
the indices of the sets Un included in the subcollection. Since the number of sets is finite, there exists one
finite N such that N ≥ i for all i ∈ I . The set corresponding to this index is of the form (0, 1 − 1/N) and
has the property that Ui ⊂ UN for all i ∈ I . Therefore ∪i∈IUi = UN . However, since 1/(N + 1) < 1/N
the point x = 1 − 1/N ∈ (0, 1) does not belong to UN . Therefore, no finite collection of sets of the form
(0, 1− 1/n) can cover the interval (0, 1) and thus it is not compact.

Definition 1.6. A set A ⊂ Rn is said to be sequentially compact if for every sequence {xn}∞n=1 ⊂ A there
exists a subsequence {xnk

}∞nk=1 ⊂ {xn}∞n=1 and a point x ∈ A such that

xnk
→ x.

In words, a set is sequentially compact if every sequence of points in the set contains a convergent subse-
quence whose limit also belongs to the set.

Definition 1.7. We say that A is a bounded set if it is contained in a ball BM (0), for someM > 0.

Equivalently, A is bounded if there exists a rectangle R such that A ⊂ R.

9



Chapter 1: Preliminaries 1.4 Compact sets

Theorem 1.3. In the Euclidean space Rn the following three statements are equivalent:

1. The set A is sequentially compact.

2. The set A is compact.

3. The set A is closed and bounded.

Remark 1.6. The statements 1 and 2 are equivalent to each other in the more general setting of a metric space.
The fact that Rn, the statements 2 and 3 are equivalent to each other is known as the Heine-Borel theorem.

Proof. Wewill procceed by proving the implications 1 ⇒ 2 ⇒ 3 ⇒ 1. The first implication will be the hardest
one, while the third one will seem to be easy thanks to the power of the Bolzano-Weierstrass theorem.

1 ⇒ 2 We must show that if A is sequentially compact, then any open cover of A can be reduced to a finite
subcover. We will then start with a potentially uncountable cover, first reduce it to a countable cover, and
finally argue by contradiction to show that is is possible to obtain a finite subcover.

Step 1. Let {Uα} be a potentially uncountable cover for A and pick x ∈ A. Since {Uα} is a cover of A,
there exists at least one Uβ ∈ {Uα} such that x ∈ Uβ . Recalling that the boundary ∂Uβ is a closed set (see
Proposition B.4 in the Appendix), and that x /∈ ∂Uβ , then Proposition 1.2 and Remark 1.4 guarantee that the
minimum distance from x to ∂Uβ is strictly positive. Let us denote this distance by d > 0 and note that, by
construction, Bd(x) ⊂ Uβ .

Since the set
Qn := {x = (x1, . . . , xn) : xi ∈ Q for all 1 ≤ i ≤ n}

of vectors with rational components is dense in Rn (Exercise 7), we can then pick p ∈ Q and q ∈ Qn such
that

|x− q| < p < d/2.

Clearly, x ∈ Bp(q) and, for any other z ∈ Bp(q)

|x− z| ≤ |x− q|+ |q − z| < p+ p < d/2 + d/2 = d,

so that Bp(q) ⊂ Bd(x) ⊂ Uβ .

We have then proven that for every x ∈ A there exists a ball with rational radius centered at a rational point
that contains x and is contained in an element of the cover {Uα}. Note that there can be atmost countably
many of such balls (as the rational numbers are countable). Hence, if for every x ∈ Awe select the open set
{Uβ} containing the “rational ball” appearing in the argument above, we will end up with a countable subset
of the original open cover that still contains every element of A. Let us then denote this countable subcover
by {Un}∞n=1.

Step 2. Having obtained a countable subcover, we will now proceed by contradiction to show that there exists
a finite subcover. Assume that not finite subset of the open cover {Un}∞n=1 can cover A. Pick an arbitrary
point x1 ∈ A and note that, since A ⊂ {Un}∞n=1 there exists some Ũ1 such that x1 ∈ Ũ1, however, since
there is no finite subcover, there must exist some x2 ∈ A such that x2 /∈ Ũ1. On the other hand, given that
A ⊂ {Un}∞n=1 there exists some Ũ2 such that x2 ∈ Ũ2. Once again, due to the fact that there is no finite
subcover, we can find some x3 ∈ A such that x3 /∈ Ũ1 ∪ Ũ2 and some Ũ3 such that x3 ∈ Ũ3. Proceeding
inductively in this way we obtain a sequence of points {xk} ⊂ A and a family of open sets {Ũk} ⊂ {Un}
such that

xk /∈ ∪k+1
i=1 Ũi.

10



Chapter 1: Preliminaries 1.4 Compact sets

By construction, the open set Ũk can contain at most k terms in the sequence.

Now let us look at the sequence of points {xk}∞k=1 ⊂ A that we have obtained. Since we assumed A to be
sequentially compact, there exists a subsequence {xk`}∞`=1 ⊂ {xk}∞k=1 and a point x ∈ A such that

xk` → x.

Due to the fact that x is a limit point of the sequence, there must exist some Ũm in the family such that x ∈ Ũm

otherwise there would exist a positive number r such that for every n ∈ N

min{|x− z| : z ∈ Un} > r > 0. (the overline represents the closure of the set)

Since xk` ∈ Uk` this would imply that

|x− xk`| > r > 0 for all k` ∈ N,

in contradiction with the fact that xk` → x. Therefore x ∈ Ũm for somem. Once again due to the fact that x
is the limit of the sequence, the open set Ũm must then contain infinitely many of the terms in the sequence
{xk`}→`=1∞ but every set in the family {Ũk} could contain only finitely many terms in the sequence. We have
arrived at a contradiction. Therefore, there must be a finite subcover for A, which ensures that it is compact.

2 ⇒ 3 We will argue by contraposition and prove that, if A is either not closed or unbounded then A can
not be compact. In both cases we will build a cover for A that has no finite subcovers.

Part 1. Assume that A is not closed. Therefore there exists some x /∈ A that is an accumulation point of A.
Then, for every k ∈ N there exists xk ∈ A ∩B1/k(x). Consider the sets:

Uk = Rn \B1/k(x).

Each Uk is open because B1/k(x) is closed and, since xk → x:⋃
k

Uk = Rn \ {x}.

Since x /∈ A, the collection {Uk : k ≥ 1} is a cover for A. However, for every finite m there we have that
1/m > 1/(m+ 1) and therefore |xm+1 − x| < 1/(m+ 1) < 1/m and therefore xm+1 /∈ Um which imples
that no finite collection of Uk’s is a cover for A.

Part 2. Assume thatA is not bounded and consider the collection {Bk(0) : k ∈ N}. This collection is a cover
for A because: ⋃

k

Bk(0) = Rn.

However, since A is unbounded, for every k ∈ N, there exists xk ∈ A such that xk /∈ Bk(0). Thus, no finite
subset of this family can cover A and A is not compact.

3 ⇒ 1 Assume that A is bounded and let {xk}∞k=1 be a sequence of point in A. Since A is bounded, the
sequence {xk}∞k=1 has a subsequence that converges, by the Bolzano-Weierstrass theorem. Since A is closed,
the limit of this subsequence is in A.

In plain English, the word “compact” suggests that something is not too large and also it is ”dense” or “does
not have holes”. As we shall see now, this notion carries over the the mathematical definition of compactness:
a compact set must be bounded and must contain all its limit points (so there is no sequence of points in the
set converging towards a missing point, i.e. “a hole”, in the set).

11
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1.5 Exercises

1. Prove the first two parts of Proposition 1.1.

2. Prove the reverse triangle inequality: if x, y ∈ Rn,

||x| − |y|| ≤ |x− y|.

3. Prove the parallelogram identity: if x, y ∈ Rn,

|x|2 + |y|2 = 1

2

(
|x+ y|2 + |x− y|2

)
.

Explain how this identity relates to a parallelogram (Hint: use the geometric interpretation of vector
addition and subtraction).

4. Let V be a subspace of Rn and x ∈ Rn. If y1, y2 ∈ V are such that:

x− y1 ⊥ z and x− y2 ⊥ z for all z ∈ V,

show that y1 = y2. (Hint: Compute |y1 − y2|.)

5. Show that, if x1, x2 ∈ Rn, the set:

{x ∈ Rn : |x− x1| = |x− x2|}

is a hyperplane.

6. Show that the intersection of two rectangles in Rn is empty or is another rectangle.

7. Prove that the set of n-dimensional vectors with rational components

Qn := {x = (x1, . . . , xn) : xi ∈ Q for all 1 ≤ i ≤ n}

is dense in Rn. Namely, that for every x ∈ Rn and ε > 0 there exists q ∈ Qn such that |x− q| < ε. You
can use the fact that Q is dense in R.

8. Let (xk) be a sequence in Rn such that xk → L and xk →M . Show that L =M .

9. Show that, if {xk}∞k=1 converges, then it is bounded.

10. Show that a sequence (xk) is Cauchy in Rn if and only if each sequence (xik) is Cauchy in R.

11. If (xk) is a Cauchy sequence, then it is bounded.

12. Let (xk) be a Cauchy sequence such that a subsequence converges, say xkl → L. Show that xk → L.

13. Conclude, from the previous problems, that every Cauchy sequence inRn converges. (Use the Bolzano-
Weierstrass theorem.)

14. Show that every infinite and bounded set in Rn has an accumulation point.

15. Consider, in R, the cover: {(
1

2n
,
3

2n

)
: n = 1, 2, . . .

}
of the set: {

1,
1

2
,
1

3
, . . .

}
.

Show that this cover has no finite subcovers.

12
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16. Consider, in Rn, the cover {An}n,

An =

{
x ∈ Rn :

1

2n
< |x| < 3

2n

}
,

for the punctured ball B∗
1(x) = {x : 0 < |x| ≤ 1}. Show that this cover has no finite subcovers.

17. Let A1 ⊃ A2 ⊃ · · · be compact non-empty subsets of Rn. Show that:⋂
i

Ai 6= ∅.

18. Show that the previous statement is false if the Ai are only closed.

19. Show that, if x ∈ Rn and E ⊂ Rm is compact, then {x} × E is compact in Rn+m.

20. Show that if E ⊂ Rn and F ⊂ Rm are compact, then E × F is compact in Rn+m. (Hint: Use the
previous problem.)

21. Let E ⊂ F ⊂ Rn. Prove that i8f E is closed and F is compact, then E is compact.

13



Chapter 2

Functions of Several Variables

2.1 Basic definitions

Wewill consider functions f : A ⊂ Rn → Rm. Since each coordinate of x = (n1, . . . , xn) ∈ A can be viewed
as an independent variable of f , such functions are commonly referred to as functions of several variables.
In fact, we write, for x ∈ A,

f(x) = f(x1, x2, . . . , xn).

Give that f(x) ∈ Rm, expressing the vector f(x) in terms of its coordinates we get

f(x) = (f1(x), f2(x), . . . , fm(x)),

where every f i(x) is referred to as a component function.

Recall that the image of f is the set

f(A) = {f(x) ∈ Rm : x ∈ A},

and the preimage or inverse image of B ⊂ Rm under f is the set

f−1(B) = {x ∈ A : f(x) ∈ B}.

Lets take A ⊂ Rn and B ⊂ Rm. If f : A → B and g : B → Rp, then the composition g ◦ f : A → Rp is
given by

(g ◦ f)(x) = g(f(x)).

A function f : A→ Rm is said to be injective if x 6= y implies that f(x) 6= f(y), or equivalently, f(x) = f(y)
only if x = y.

Proposition 2.1. If f : A ⊂ Rn → Rm is injective, then there exists a function f−1 : f(A) ⊂ Rm → Rn such
that f−1(y) = x if and only if f(x) = y.

Proof.

⇒ Assume that f is injective and there exists a function f−1 : f(A) ⊂ Rm → Rn such that f−1(y) = x.
Then, since f is injective, we have that y = f(f−1(y) = f(x)), as desired.

⇐ Assume that f is injective, and pick y ∈ Rm such that y = f(x). This implies that there is at least one
x ∈ Rn such that f(x) = y. However, the injectivity of f implies that this x is unique. Therefore for every
y ∈ f(A), we can define the inverse function univocally by the relation f−1(y) = x, as desired.

14



Chapter 2: Functions of Several Variables 2.2 Continuity

When the inverse of a function exists, we say that f is bijective or invertible . Moreover, in this case, f−1◦f :
A→ A is the identity function on A and f ◦ f−1 : f(A) → f(A) is the identity on f(A).

The projections πi : Rn → R are given by πi(x) = xi. Note that, for f : A→ Rm,

f i = πi ◦ f

for each i = 1, . . . ,m.

If x0 is an accumulation point of A, we say that the function f : A → Rm has a limit at x0 if there exists
L ∈ Rm such that, for every ε > 0, there exists δ > 0 such that, if 0 < |x−x0| < δ, then |f(x)−L| < ε.

If this vector L exists, it is unique (Exercise 1) and is called the limit of f at x0. We write:

lim
x→x0

f(x) = L.

In the definition of the limit, we note that x0 does not necessarily belong to A. If x0 /∈ A. then f is not
defined at x0. In fact, even when f is defined at x0, it is possible that f(x0) 6= L.

The relationship between the limit of a function and the limit of a sequence is given by the following propo-
sition.

Proposition 2.2. Let f : A→ Rm and x0 be an accumulation point of A. Then:

lim
x→x0

f(x) = L

if and only if, for every sequence (xk) in A that converges to x0 with xk 6= x0 for all k, the sequence (f(xk)) in
Rm converges to L.

We leave the proof of this equivalence as an exercise (Exercise 2).

2.2 Continuity

Let f : A → Rm. We say that f is continuous at x0 ∈ A if, for every ε > 0, there exists δ > 0 such that,
if

|x− x0| < δ then |f(x)− f(x0)| < ε.

The definition of continuity is local, meaning that it must be verified at each point. If a function f : A→ Rm

is continuous at every point in its domain, we simply say that it is continuous. Similarly, if B ⊂ A, we say
that f is continuous on B if it is continuous at each point x ∈ B.

The proof of the following proposition is not too complicated and will be left as an exercise (Exercise 3).

Proposition 2.3. A function f : Rn → Rm is continuous if and only if each of its components fi(x) is contin-
uous.

Example 2.1 (Projections). The projections πi : Rn → R are continuous: given x ∈ Rn and ε > 0, if δ = ε
and |x− x0| < δ, then

|πi(x)− πi(x0)| = |xi − xi0| ≤

(
n∑

i=1

(xi − xi0)
2

)1/2

= |x− x0| < ε.

The proof of the following proposition is essentially identical to the equivalent statement for functions of a
single variable. Alternatively, the proof can be done component-wise using Proposition 2.3.

15
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Proposition 2.4. Let f, g : A→ Rm be continuous at x0 ∈ A. Then:

1. f + g is continuous at x0.

2. λf + µg is continuous at x0, for λ, µ ∈ R.

3. fg is continuous at x0.

4. Ifm = 1 and g(x0) 6= 0, then f/g is defined in an open neighborhood around x0 and is continuous at x0.

The composition of two continuous functions is continuous.

Proposition 2.5. Let A ⊂ Rn, B ⊂ Rm and consider f : A → B and g : B → Rp. If f is continuous at
x0 ∈ A and g is continuous at f(x0). Then g ◦ f : A→ Rp is continuous at x0.

Proof. Given ε > 0, let η > 0 be such that, if |y−f(x0)| < η, then |g(y)−g(f(x0))| < ε. Such η exists because
g is continuous at f(x0). Now, by the continuity of f at x0, there exists δ > 0 such that, if |x− x0| < δ, then
|f(x)− f(x0)| < η.

Thus, if |x− x0| < δ, then |f(x)− f(x0)| < η and

|g ◦ f(x)− g ◦ f(x0)| = |g(f(x))− g(f(x0))| < ε.

Therefore, g ◦ f is continuous at x0. �

The relationship between continuity and sequences is very important and is given by the following proposi-
tion, analogous to Proposition 2.2. Its proof follows an analogous argument and will also be left as an exercise
(Exercise 8)

Proposition 2.6. Let f : A → Rm and x0 ∈ A. Then f is continuous at x0 if and only if, for every sequence
{xk}∞k=1 ⊂ A that converges to x0, we have that the sequence f(xk) → f(x0).

A function satisfying the second property in the proposition above is said to be sequentially continu-
ous.

The Proposition 2.6 above, together with Proposition 2.2, implies that a function f continuous at an accumu-
lation point x0 must have the limit f(x0) at x0 (Exercise 11).

The previous results refer to the continuity of a function locally (at a point). The following proposition,
however, analyzes the global continuity of a function, that is, on its entire domain. To avoid some technical
difficulties, in the proposition below we will consider that A is the largest possible set where the
function f can be defined

Proposition 2.7. f : A → Rm is continuous if and only if, for every open set V ⊂ Rm, the inverse image
f−1(V ) is open.

Proof.

⇒ Suppose f is continuous and let V ⊂ Rm be open.

If f−1(V ) = ∅, since ∅ is open, we are done. Let us then consider that f−1(V ) 6= ∅, thus there exists some
x ∈ f−1(V ). Since V is open, there exists ε > 0 such that

Bε(f(x)) ⊂ V.
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Since f is continuous at x, there exists δx > 0 such that, if |x − y| < δx, then |f(x) − f(y)| < ε, i.e.,
f (Bδx(x)) ⊂ Bε(f(x)) ⊂ V . Hence, since Bδx(x) ⊂ A we have

f (Bδx(x) ∩A) ⊂ Bε(f(x)) ⊂ V,

so that Bδx(x)∩A ⊂ f−1(V ). Since this argument is valid for all points x ∈ f−1(V ) it follows that f−1(V )
is open.

⇐ Now suppose that for every open set V ⊂ Rm, the inverse image f−1(V ) is open in Rn.

Let x ∈ A and ε > 0, and consider the open set V := Bε(f(x)). Then f−1(V ) is open. Since x ∈ f−1(V ),
there exists δ > 0 such that Bδ(x) ⊂ f−1(V ). This implies that

Bδ(x) ∩A ⊂ f−1(V ),

that is,
f(Bδ(x) ∩A) ⊂ Bε(f(x)).

This means that, if |x− y| < δ, then |f(x)− f(y)| < ε, and therefore f is continuous at x.

The previous proposition provides us with a very useful criterion for understanding the topological properties
of continuous functions.

Proposition 2.8. If A is compact and f : A→ Rm is continuous, then f(A) is compact.

Proof. Let {Vα} be a cover for f(A), so that

f(A) ⊂ ∪αVα.

By Proposition 2.7, since f is continuous for each α, the inverse image f−1(Vα) is continuous. Therefore

A ⊂ f−1 (∪αVα) = ∪αf
−1 (Vα) .

The equality above can be easily proven from the definition of the inverse image (Exercise 5).

Then {f−1(Vα)} is a cover for A, and since A is compact, it has a finite subcover, say {f−1(Vi)}Ni=1. Since

A ⊂ ∪N
i=1f

−1(Vi),

then
f(A) ⊂ f

(
∪N
i=1f

−1(Vi)
)
= ∪N

i=1Vi,

where the equality follows easily from the defintion. We have then proved that {Vi}Ni=1 is a finite subcover
for f(A) and f(A) is compact.

We say that f : A ⊂ Rn → Rm is a bounded function if there existsM > 0 such that

|f(x)| ≤M |x| for all x ∈ A

A function f : A ⊂ Rn → Rm for which there existsM > 0 such that

|f(x)− f(y)| ≤M |x− y|

is called a Lipschitz function, and the infimum of suchM is called the Lipschitz constant of f . Depictions
of Lipschitz and non-Lipschitz functions are shown in Figure 2.1.

Boundedness of a functions pertains how the function affects the size of its argument compared to itself (i.e.
regardless of what the function may do to a neighbor): bounded functions do not stretch their arguments too
much. On the other hand, the property of being Lipchitz does involve the neighbors of a point: a Lipschitz
function does not take neighboring points too far apart. This sounds too similar to continuity…
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z

xy

z

xy

Figure 2.1: Left: The function f(x, y) =
√
x2 + y2 is Lipschitz since the slope of any secant line connecting two points on its

graph is uniformly bounded. Right: On the other hand, the function f(x, y) =
√
|x|+ |y| is not Lipschitz, since the slope

of the secant lines connecting two points in the graph become unboundedly steep as the points approach the origin, forming
a needle-like shape called a cusp.

Theorem 2.1. If a function f : A ⊂ Rn → Rm is Lipschitz on A, then it is continuous on A.

Proof. Let x ∈ ARn. Given ε > 0, we take δ = ε/M , where M is the Lipschitz constant of f . Then, if
|x− y| < δ,

|f(x)− f(y)| =≤M |x− y| < M
ε

M
= ε.

For this reason, the property of being Lipschitz is sometimes referred to as Lipschitz continuity . In fact,
this property is even a little stronger than continuity, as we shall see in the next section.

2.3 Linear functions

We say that f : Rn → Rm is a linear function if, for x, y ∈ Rn and λ ∈ R,

f(x+ y) = f(x) + f(y) and f(λx) = λf(x).

In this section, we will review the basic properties of linear functions.

First, we must observe that if f is linear then necessarily f(0) = 0, since

f(0) = f(0x) = 0f(x) = 0.

Also, for any linear combination,

f(α1x1 + α2x2 + · · ·+ αkxk) = α1f(x1) + α2f(x2) + · · ·+ αkf(xk). (2.1)

From equation 2.1, we can conclude that, for x = (x1, . . . , xn) ∈ Rn,

f(x) = x1f(e1) + x2f(e2) + · · ·+ xnf(en),

so the values f(e1), f(e2), . . . , f(en) define the function f on all of Rn. In general, if u1, u2, . . . , un form a
basis of Rn, then the vectors f(u1), . . . , f(un) define f in Rn.

Recall that f : Rn → Rn can be written in terms of its component functions as

f(x) = (f1(x), . . . , fm(x)).
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Let us denote the action of the i-th component function on the j-th basis vector ej as

aij := fi(ej), (2.2)

and let’s write the i-th component of the vector f(x) as

fi(x) = ai1x1 + ai2x2 + · · ·+ ainxn. (2.3)

If we gather all the constants appearing above in one vector we see that the expression above can be expressed
as the dot product

fi(x) = ai · x where ai := (ai,1, . . . , ai,n). (2.4)

Moreover, recalling the rules for matrix-vector muiltiplication, we also see that the expression (2.3) shows
that the full vector f(x) can be expressed in the form

f1(x)
f2(x)

...
fm(x)

 =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn



x1
x2
...
xn

 .

So that every linear function f is determined by the matrix multiplication

f(x) = Ax

where the ij-th entry of the matrix A is given by the action of the i-th component function fi on the j-th
basis vector ej as defined in (3.3).

Consider a fixed vector b ∈ Rm and a matrix A ∈ Rn×m. An affine function is a function f : Rn → Rm of
the form

f(x) = Ax+ b.

Theorem 2.2. If f : Rn → Rm is linear, then

1. f is bounded and,

2. f is is Lipschitz.

Proof. We start by computing the norm

|f(x)| =
√
(f1(x))2 + · · ·+ (fm(x))2

=
√
(a1 · x)2 + · · ·+ (am · x)2 (By (2.4))

≤
√
(|a1||x|)2 + · · ·+ (|am||x|)2 (By Cauchy-Schwarz)

= |x|
√

|a1|2 + · · ·+ |am|2.

Therefore, since the term multiplying |x| in the last line above is a constant, we can define

M :=
√
|a1|2 + · · ·+ |am|2
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and boundedness has been proven.

To show that the function is Lipschitz, we now consider x, y ∈ Rn and compute

|f(x)− f(y)| = |f(x− y)| (By linearity)

≤M |x− y| (since the function is bounded).

The previous result, together with Theorem 2.1 imply the following:

Corollary 2.3. If f : Rn → Rm is linear then f is continuous.

2.4 Uniform continuity

We say that a function f : A → Rm is uniformly continuous if, for every ε > 0, there exists δ > 0 such
that |x− y| < δ implies

|f(x)− f(y)| < ε, for all x, y ∈ A.

The difference between a continuous function and a uniformly continuous function is that, in the latter case,
for each ε > 0, the number δ > 0 in the definition of continuity is independent of the point where we want
to verify continuity.

From the final comments of the previous section, we see that linear functions are uniformly continuous. In
general, Lipschitz functions are uniformly continuous. The proof of this statements is left as an exercise (Ex-
ercise 12).

Example 2.2. Consider the function f : R2\{(0, 0)} → R given by f(x) = 1/|x|. This function is continuous
but, it is not uniformly continuous: for any δ > 0, if δ ≥ 1, we take x1 = (1, 0) and x2 = (1/2, 0), then
|x1 − x2| < δ and |f(x1) − f(x2)| = 1; whereas, if δ < 1, taking x1 = (δ, 0) and x2 = δ/2, we obtain
|x1 − x2| < δ and

|f(x1)− f(x2)| = 1/δ > 1.

In the previous example, f is not bounded in any neighborhood of 0. However, as we will show briefly, this
can not happen if the function is uniformly continuous. In fact, something even stronger holds: a uniformly
continuous function has a limit at every accumulation point of its domain. To prove this result we will make
use of the following lemma, whose proof will be left as an excercise (Exercise 10).

Lemma 2.1. Let f : A ⊂ Rn → Rm be uniformly continuous, and {xk} ⊂ A be a Cauchy sequence. Then the
sequence of images {f(xk)} is Cauchy.

Theorem 2.4. Let f : A → Rm be uniformly continuous and x0 be an accumulation point of A. Then f has a
limit at x0.

Proof. Let ε > 0 be given and x0 be an accumulation point of A. We will consider two cases:

Case 1: x0 ∈ A.
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Since f is uniformly continuous, there is a fixed δ > 0 such that, for all x ∈ A such that |x − x0| < δ it
follows that |f(x)− f(x0)| < ε. This proves, by the definition of the limit of a function, that

lim
x→x0

f(x) = f(x0).

Case 1: x0 /∈ A.

The previous case argument is remarkably simple: uniform continuity tells us that it is enough to build a ball
of radius δ around x0, and all the images of points in this ball will be within ε distance to f(x0). However, if
x0 /∈ A, then f(x0) is not defined, and the previouis argument does not hold. However, the geometric idea
remains: since x0 is an accumulation point of A there is a point in A arbitrarily close to x0 where we can
evaluate the function, and shifting the ball of radius δ to be centered around this point will also work just as
before. We now formalize this idea.

Since x0 is an accumulation point of A, we can pick a sequence {xk} ⊂ A such that xk → x0. Since f is
uniformly continuous, Lemma 2.1 guarantees that the sequence {f(xk)} ⊂ Rm is also Cauchy. Given that
the Euclidean space is complete, we then know that there exists some L ∈ Rm such that f(xk) → L. We will
show that this L is indeed the limit fo the function as x→ x0 by showing that, for some point in the sequence
{xk} that is ”close enough” to x0, there is a ball Bδ(xk) that gets mapped into the ball Bε(L) ⊂ Rm.

Since f is uniformly continuous, there exists δ > 0 such that if |x − y| < δ then |f(x) − f(y)| < ε/2. We
then go back to the sequence {xk} and fixK such that, for k ≥ K ,

|xk − x0| < δ/2 and |f(xk)− L| < ε/2.

Then, if |x− x0| < δ/2,

|x− xK | ≤ |x− x0|+ |x0 − xK | < δ/2 + δ/2 = δ,

and thus |f(x)− f(xK)| < ε/2. Therefore, if 0 < |x− x0| < δ/2, we have

|f(x)− L| < |f(x)− f(xK)|+ |f(xK)− L| < ε/2 + ε/2 = ε,

which proves that
lim
x→x0

f(x) = L.

Theorem 2.4 above provides a necessary condition on a setA to guarantee that a continuous function defined
on A will be uniformly continuous: A must be closed. In fact, if x0 is an accumulation point of A that does
not belong to A, then the function

x 7→ 1

|x− x0|
is a continuous function that cannot be uniformly continuous (Exercise 15). If, in addition, the set is bounded
(i.e.,A is compact), then every continuous function will be uniformly continuous, as we will now show.

Theorem 2.5. If f : A→ Rm is continuous and A is compact, then f is uniformly continuous.

Proof. Let ε > 0 be given. For each x ∈ A, let δx > 0 be such that |y − x| < δx implies |f(y)− f(x)| < ε/2.
The collection of open balls

{Bδx/2(x) : x ∈ A}
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A

x0

x
δ

A

xkx0

x
δ

Figure 2.2: Left: When the accumulation poit x0 ∈ A, it is possible to evaluate f(x0) and use the δ given by the uniform
continuity of f to ensure that all the points in the ball Bδ(x0) will be mapped by f to the interior of the ball Bε (L), which
proves that L = limx→x0 f(x) = f(x0). Right: When x0 /∈ A it is not possible to evaluate f at x0. However, the fact
that x0 is an accumulation point of A allows us to find a point xk arbitrarily close, where it is possible to evaluate f(xk).
Shifting the ball rom the previous argument to this new center, we can then use the δ given from the uniform continuity to
ensure that points within a distance δ of x0 will be mapped to the ball Bε(L).

is a cover of A. Since A is compact, there exist x1, . . . , xk such that

A ⊂ Bδx1/2
(x1) ∪ · · · ∪Bδxk/2

(xk).

We will show that δ = 1
2 min{δx1, . . . , δxk

} satisfies the definition of uniform continuity. Let x, y ∈ A such
that |x− y| < δ. If i is such that x ∈ Bδxi/2

(xi), then |f(x)− f(xi)| < ε/2. Now,

|y − xi| ≤ |y − x|+ |x− xi| < δ +
δxi

2
≤ δxi

2
+
δxi

2
= δxi,

and thus |f(y)− f(xi)| < ε/2. Then,

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ε

2
+
ε

2
= ε.

In particular, Theorem 2.18 guarantees that a continuous function on a closed rectangle is uniformly contin-
uous. This result will be very important later when we study the integral of functions defined on rectangles
in Rn.

The converse of Theorem 2.18 is false (Exercise 16).

2.5 Exercises

1. Show that if f : A→ Rm has limits L andM at x0, then L =M .

2. Prove Proposition 2.2.

3. Show that the function f : A → Rm is continuous at x ∈ A if and only if each of its components
f i : A→ R is continuous at x.

4. Consider the function in R2 defined by

f(x, y) =

{
xy

x2+y2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).
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(a) Show that each of the functions

x 7→ f(x, y0) and y 7→ f(x0, y)

is continuous in R for any fixed x0, y0 ∈ R.

(b) Show that, despite the previous part, the function f is not continuous at (0, 0).

5. Consider a function f : Rn → Rm and a family of sets {Vα} ⊂ Rm. Use the definitioninition of the
inverse image of a set to prove that

(a) ∪αf
−1(Vα) = f−1 (∪αVα).

(b) ∩αf
−1(Vα) = f−1 (∩αVα).

6. Let f : A → Rm be continuous at x0 ∈ A such that f(x0) 6= 0. Then there exists α > 0 and an open
set U ⊂ Rn such that x0 ∈ U and |f(x)| > α for all x ∈ U ∩A.

7. Prove Proposition 2.4 (you will need the previous exercise to prove property 4).

8. Prove Proposition 2.6.

9. Let f : A → Rm be continuous. Show that the function |f | : A → R given by |f |(x) = |f(x)| is
continuous.

10. Let f : A ⊂ Rn → Rm be uniformly continuous, and {xk} ⊂ A be a Cauchy sequence. Prove that the
sequence of images {f(xk)} is Cauchy.

11. Let f : A→ Rm and x0 be an accumulation point of A. Show that f is continuous at x0 if and only if

lim
x→x0

f(x) = f(x0).

12. Show that a Lipschitz function is uniformly continuous.

13. Let E ⊂ Rn be compact and f : E → Rm be continuous. Show that there exist x1, . . . , xn and
y1, . . . , yn in E such that

f i(xi) = max{f i(x) : x ∈ E} and f i(yi) = min{f i(x) : x ∈ E}.

That is, each of the components of f attains its maximum and minimum in E.

14. Similarly to the previous problem, show that if E ⊂ Rn is compact and f : E → Rm is continuous,
then there exist x′, x′′ ∈ E such that

|f(x′)| = max{|f(x)| : x ∈ E} and |f(x′′)| = min{|f(x)| : x ∈ E}.

15. Let A ⊂ Rn and x0 /∈ A be an accumulation point of A. Show that the function f : A→ R given by

f(x) =
1

|x− x0|

is continuous but not uniformly continuous.

16. Give an example of an unbounded set A ⊂ Rn such that every continuous function on A is uniformly
continuous.
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Chapter 3

Differentiability

3.1 Introduction

In this section, wewill define the derivative of a function at a point. Let us recall that, for a real-valued function
of a real argument f : R → R, the derivative of f at a point x0 ∈ R is given, if it exists, by the limit

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

If we attempt to mimic the definition above for vector-valued functions of a vector variable f : Rn → Rm, we
will face several difficulties. First of all, the objects appearing in the Newton quotient are vectors in potentially
different spaces:

f(x)− f(x0) ∈ Rm while x− x0 ∈ Rn.

Therefore, arithmetic operations between them may not make any sense. Moreover, even ifm = n > 1, the
division of two vectors is not defined. A natural attempt for solving this issue would be to propose using the
norm |x − x0| in the denominator. However, the original definition is sensitive to the sign of the difference
x−x0 and replacing this by the norm would interfere with this. In particular, using the norm |x−x0| would
result in an object that is different from the derivative ifm = n = 1, as clearly in general

lim
x→x0

f(x)− f(x0)

x− x0
6= lim

x→x0

f(x)− f(x0)

|x− x0|
.

Another reasonable-but-unsuccessful attempt would be to notice that, in the alternative the alternative (but
equivalent) definition of the derivative of f : R → R

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
,

the argument x0 + h can be interpreted as a perturbation of size h around the point x0. Thus the derivative
measures the reaction of a function to infinitesimally small perturbations of its argument. With this in mind,
we could take a point x0 ∈ Rn, a vector x ∈ Rn and a real number h ∈ R, and consider small perturbations
of the form x0 + hx. This would lead to a definition involving the term

lim
h→0

f(x0 + hx)− f(x0)

h
. (3.1)

The term above is a much better approach: it avoids the issue of “division” by vectors and the absolute value
problem; it even recovers the “correct” definition of derivative if m = n = 1. It, however, presents the
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limitation when n > 1, of measuring only the change in the particular direction of x. In fact, whenever the
limit (3.1) exists, it is known as the directional derivative of f at x0 in the direction of x (we will come
back to this concept a little later). However, we would still like to obtain an object that gives us information
about how the function f reacts to perturbations in any direction. To obtain that, we will have to resort to a
approximation argument.

Let us first introduce some asymptotic notation. Consider a function f : R → R. We will say that

1. f is big O of x, and write f(x) = O(x) if

lim
x→0

f(x)

x
= C 6= 0

for some non zero constant C ∈ R.

2. f is little o of x, and write f(x) = o(x) if

lim
x→0

f(x)

x
= 0.

We remark that the equalities of the form f(x) = O(x) of f(x) = o(x) are not statements about the
equality between two functions. Instead, they are statements about the behavior of the function f as its
arguments approach zero.

The following arithmetic properties are easy to verify (Exercise 1):

Proposition 3.1. Consider distinct functions f, g : R → R. The following hold

1. If f(x) = O(x) and g(x) = O(x), then f(x)± g(x) = O(x).

2. If f(x) = O(x) and g(x) = o(x), then f(x)± g(x) = O(x).

3. f(x) = o(x) and g(x) = o(x), then f(x)± g(x) = o(x).

4. f(x) = O(x) and g(x) = O(x), then f(x)g(x) = o(x).

5. f(x) = O(x) and g(x) = o(x), then f(x)g(x) = o(x).

3.2 The derivative

Lets consider real-valued functions functions of a single variable. If f ′(x0) is the derivative of f at x0,
then

f(x) ≈ f(x0) + f ′(x0)(x− x0)

is a linear approximation of f near x0; in fact, it is a very good approximation. This follows from the definition
of the derivative as a limit: given any ε > 0, there exists δ > 0 such that, if

0 < |x− x0| < δ then
∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣ < ε,

which implies that for any ε > 0

0 ≤ lim
x→x0

|f(x)− f(x0)− f ′(x0)(x− x0)|
|x− x0|

< ε.
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By the ε-principle, this implies that the limit is zero. This fact can be expressed in asymptotic notation com-
pactly as

f(x) = f(x0) + f ′(x0)(x− x0) + o(|x− x0|).

This observation motivates us to define the differentiability of a function in Rn as follows.

Definition 3.1. Let U be an open set in Rn and f : U → Rm. We say that f is differentiable at x0 ∈ U if
there exists a linear transformation T : Rn → Rm such that

f(x) = f(x0) + T (x− x0) + o(|x− x0|). (3.2)

Remark 3.1. We insist that (3.2) should be understood as a limiting statement as x → x0. The value of the
function f can be approximated by the affine function

f(x0) + T (x− x0)

at the expense of a small error o(|x−x0|) that vanishes faster than the distance between x and x0. The definition
3.1 can be expressed in several equivalent ways:

1. The function f is differentiable at x0 if there exists a linear transformation T such that, for every ε > 0,
there exists δ > 0 such that if |x− x0| < δ, x ∈ U , then

|f(x)− f(x0)− T (x− x0)| < ε|x− x0|.

2. The function f is differentiable at x0 if and only if there exists a linear transformation T such that

lim
x→x0

|f(x)− f(x0)− T (x− x0)|
|x− x0|

= 0,

3. The function f is differentiable at x0 if and only if there exists a linear transformation T such that

lim
h→0

|f(x+ h)− f(x)− Th|
|h|

= 0. (3.3)

We shall now prove that, whenever this transformation exists, it is unique. We will first prove an auxiliary
result that establishes the intuitive fact that if two linear mappings coincide on a neighborhood, they must be
equal everywhere.

Lemma 3.1. Let T, S : Rn → Rm be linear transformations such that

T (x) = S(x) for all |x| = 1.

Then T (x) = S(x) for all x ∈ Rn.

Proof. If the argument x = 0, the linearity of the mappings ensures that T (x) = 0 = S(x). Thus, we will
assume that x 6= 0 but is otherwise arbitrary and observe that

T (x) = T

(
|x| x

|x|

)
= |x|T

(
x

|x|

)
=︸︷︷︸

Since
∣∣∣ x
|x|

∣∣∣=1

|x|S
(
x

|x|

)
= S

(
|x| x

|x|

)
= S(x).
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We can now prove the following

Theorem 3.1. If f : Rn → Rm is differentiable at x0, then the linear function T in the equation (3.2) is unique.

Proof. Suppose that T, S : Rn → Rm are linear functions both satisfying (3.2), namely

f(x0) + S(x− x0) + o(|x− x0|) = f(x) = f(x0) + T (x− x0) + o(|x− x0|).

This implies that
(T − S) (x− x0) = o(|x− x0|).

Clearly, if x = x0 it follows that T (x− x0) = 0 = S(x− x0), so we assume that x 6= x0, define

t := |x− x0| y := t
x− x0
|x− x0|

,

and express the equality above as
(T − S) (ty) = o(t).

The expression above implies that

0 = lim
t→0

(T − S) (ty)

t
= lim

t→0

t (T − S) (y)

t
= lim

t→0
(T − S) (y).

Since the rightmost expression does not depend on t this implies that

(T − S) (y) = 0.

However, y is an arbitrary unit vector, therefore we can use Lemma 3.1 to assert that T (x) = S(x) for all
x ∈ Rn.

The linear function T in (3.2) is called the derivative of f at x0 and is denoted byDf(x0). Using this notation
we can rewrite equation (3.2) as

f(x) = f(x0)−Df(x0)︸ ︷︷ ︸
:=T

(x− x0) + o(|x− x0|).

Note that the entire expression Df(x0) denotes a linear function that then takes a vector x ∈ Rn as an
argument and produces the vector Df(x0)(x) ∈ Rm as a result.

As we established in equation (2.3), any linear transformation f can be represented as a matrix whose entries
are the result of applying the component functions of f to the basis vectors of Rn. The particular values
appearing in the matrix will depend on the basis that is used. The matrix induced by the transformation
Df(x0) in the standard basis of Rn is called the Jacobian, and is denoted by Jf(x0). When the matrix
representation ofDf(x0) is not written using the canonical basis, we will denote the matrix by f ′(x0).

We will now introduce the derivatives of a few functions.

Proposition 3.2.

1. If f : Rn → Rm is constant, then
Df(x0) = 0

for each x0 ∈ Rn. Note that this is not the number zero, but the linear transformation that assigns the
vector 0 ∈ Rm to every vector x ∈ Rn. This transformation is represented, in any basis, by a matrix with
n rows andm columns all of whose entries are zero.
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2. If f : Rn → Rm is linear, then
Df(x0) = f

for each x0 ∈ Rn. Therefore, if F is the matrix representing f in the canonical basis, Jf(x0) = F .

3. If we define the function sum : Rn → R by sum(x) :=
∑n

i=1 xi, then

Dsum(x0) = sum

for each x0 ∈ Rn. Therefore, Jf(x0) = (1, . . . , 1). This is a matrix with 1 row and n columns, i.e. a row
vector.

4. For n > 1, we define the function mult : Rn → R by mult(x) := Πn
i=1xi = x1 · x2 · . . . · xn, then

Dmult(x0)(x) =
n∑

i=1

∏
j 6=i

xj0

xi

for each x0 ∈ Rn. Therefore, Jf(x0) =

∏
j 6=1

xj0, . . . ,
∏
j 6=i

xj0, . . . ,
∏
j 6=n

xj0

. This is a matrix with 1 row

and c columns, i.e. a row vector.

Proof. Our proofs will not be constructive, at this stage we will simply show that the proposed transformation
satisfy the property (3.3) from the definition, and therefore from the uniqueness guaranteed by Lemma 3.1,
they are the derivative of each of the functions.

1. If f is constant,
|f(x0 + h)− f(x0)− 0|

|h|
= 0

for all x0, h ∈ Rn, h 6= 0. And therefore (3.3) is verified with Df(x0) = 0.

2. If f is linear, then f(x0 + h) = f(x0) + f(h), so that

|f(x0 + h)− f(x0)− f(h)|
|h|

= 0

for all x0, h ∈ Rn, h 6= 0.

3. We start by noting that the function sum is linear. Indeed, for x, y ∈ Rn and α, β ∈ R we have

sum (αx+ βy) = sum ((αx1, . . . , αxn) + (βy1, . . . , βyn))

= sum (αx1 + βy1, . . . , αxn + βyn)

=

n∑
i=1

(αxi + βyi)

=α
n∑

i=1

xi + β
n∑

i=1

yi

=αsum(x) + βsum(y).

We can therefore apply the previous point to conclude that Dsum = sum. Therefore, when applied to
a vector x we have that

Dsum(x) = sum(x) = x1 + . . .+ xn = (1, . . . , 1) · (x1, . . . , xn) = (1, . . . , 1)(x1, . . . , xn)
>,
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where the superscript “> ” denotes matrix transposition (recall that we consider vectors to be columns).
From the uniqueness of the derivative we then conclude that

Jsum = (1, . . . , 1).

4. We first observe that

mult(x0 + h) =


mult(x0) +mult(h) +

∑n
i=1

(∏
j 6=i x

j
0

)
hi if n = 2

mult(x0) +mult(h) +
∑n

i=1

(∏
j 6=i x

j
0

)
hi +

∑n
i=1

(∏
j 6=i h

j
)
xi0 if n > 2

.

Therefore we have∣∣∣mult(x0 + h)−mult(x0)−
∑n

i=1

(∏
j 6=ix

j
0

)
hi
∣∣∣

|h|

≤



∣∣∏n
i=1 h

i
∣∣

|h|
if n = 2,

∣∣∏n
i=1 h

i
∣∣

|h|
+

∣∣∣∑n
i=1

(∏
j 6=i h

j
)
xi0

∣∣∣
|h|

if n > 2.

(3.4)

Analyzing separately the last two terms in the inequality above we have that∣∣∏n
i=1 h

i
∣∣

|h|
=

(∏n
i=1 |hi|2

)1/2
|h|

≤
(∑n

i=1(h
i)2

n|h|

)n/2

︸ ︷︷ ︸
By the geometric-arithmetic mean inequality

≤
(
1

n

)n/2

|h|n/2,

and also ∣∣∣∑n
i=1

(∏
j 6=i h

j
)
xi0

∣∣∣
|h|

≤

∑n
i=1

(∏
j 6=i |hj |

)
|xi0|

|h|
≤
∑n

i=1 |h|n−1|x0|
|h|︸ ︷︷ ︸

Since |zi|≤|z| ∀ z∈Rn

≤ n|h|n−2|x0|.

And therefore the right hand side of the inequality (3.17) vanishes as h → 0 which, by the uniqueness
of the derivative proves the result.

Finally, applying Dmult to a vector x ∈ Rn we observe that

Dmult(x0)(x) =
n∑

i=1

∏
j 6=i

xj0

xi

=

 n∏
i=2

xj0, . . . ,
∏
j 6=i

xj0, . . . ,
n−1∏
i=1

xj0

 · (xi, . . . , xn)

=

 n∏
i=2

xj0, . . . ,
∏
j 6=i

xj0, . . . ,
n−1∏
i=1

xj0

 (xi, . . . , xn)>

proving that

Jmult(x0) =

 n∏
i=2

xj0, . . . ,
∏
j 6=i

xj0, . . . ,
n−1∏
i=1

xj0

 .
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Just as in the single-variable case, differentiability is a stronger condition than continuity, as established by
the following proposition, whose proof will be left as an Exercise (3.3).

Proposition 3.3. If f : U → Rm is differentiable at x0 ∈ U , then it is continuous at x0.

In Proposition 2.3 we established that a function f is continuous if and only if each of its components f i is
continuous. We have an analogous result for differentiability.

Proposition 3.4. Let f : U → Rm and x0 ∈ U . Then f is differentiable at x0 if and only if each f i : U → R,
i = 1, . . . ,m, is differentiable at x0. In that case,

Df(x0)(x) =
(
Df1(x0)(x), . . . , Df

m(x0)(x)
)
.

That is, the components of the derivative of f are precisely the derivatives of the components of f .

Proof. First, suppose that f is differentiable at x0 and, for each i, let T i = πi ◦Df(x0). Then,

|f i(x0 + h)− f i(x0)− T ih|
|h|

≤ |f(x0 + h)− f(x0)−Df(x0)(h)|
|h|

→ 0

as h→ 0, so that each f i is differentiable at x0 and

Df i(x0) = πi ◦Df(x0).

Now suppose that each f i is differentiable at x0 and let T : Rn → Rm be the transformation

Tx =
(
Df1(x0)(x), . . . , Df

m(x0)(x)
)
.

Given ε > 0, we choose δ > 0 such that, if 0 < |h| < δ, each

|f i(x0 + h)− f i(x0)−Df i(x0)(h)|
|h|

<
ε√
m
.

Then, if 0 < |h| < δ,

|f(x0 + h)− f(x0)− Th|
|h|

=
1

|h|

√√√√ m∑
i=1

(
f i(x0 + h)− f i(x0)−Df i(x0)(h)

)2
< ε.

Thus, f is differentiable at x0 and Df(x0) = T .

Theorem 3.2 (Chain Rule). Let U ⊂ Rn and V ⊂ Rm be open sets, f : U → V be differentiable at x0 ∈ U ,
and g : V → Rp be differentiable at f(x0) ∈ V . Then, g ◦ f : U → Rp is differentiable at x0, and

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0).

That is, the derivative of the composition of two functions is given by the composition of their derivatives.
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Proof. Define y0 := f(x0), T := Df(x0), and S := Dg(y0). We will show that D(g ◦ f)(x0) = S ◦ T by
verifying the approximation property (3.2). Namely, that

g ◦ f(x)− g(y0)− S ◦ T (x− x0) = o(|x− x0|).

Define the auxiliary functions

φ(x) := f(x)− f(x0)− T (x− x0), (3.5a)

ψ(y) := g(y)− g(y0)− S(y − y0), (3.5b)

ρ(x) := g ◦ f(x)− g(y0)− S ◦ T (x− x0). (3.5c)

Since f and g are differentiable at x0 and y0 we have that

φ(x) = o (|x− x0|) , and ψ(y) = o (|y − y0|) , (3.6)

and we want to prove that

ρ(x) = o (|x− x0|) .

First, observe that

ρ(x) = g(f(x))− g(y0)− S(T (x− x0))

= g(f(x))− g(y0)− S(f(x)− y0) + S(φ(x))

=ψ(f(x)) + Sφ(x).

We will consider each of the two terms above separately. It will be useful to recall that every linear function
is bounded (Theorem 2.2), therefore there exist positive constantsMS ,MT such that

|Sy| ≤MS |y| ∀ y ∈ Rm and |Tx| ≤MT |x| ∀x ∈ Rn.

From the first equation in (3.6) we see that, given ε > 0 there exists δf > 0 such that if |x−x0| < δf we have
|φ(x)| ≤ ε|x− x0|/MS . From this, it follows that

|Sφ(x)| ≤MS |φ(x)| ≤MSε|x− x0|/Ms = ε|x− x0|,

which implies that Sφ(x) = o (|x− x0|).

For the other term, we observe that the second equality in (3.6) implies that there exists δg > 0 such that, as
long as |y − y0| < δg , we have that

|ψ(y)| < ε

max{ε,MT }
|y − y0|.

The need for the somewhat strange denominator max{ε,MT } will be come apparent soon. The important
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part is that we can bound |ψ(y)| by a multiple of ε|y − y0|. Hence letting |x− x0| < min{δf , δg}

|ψ(f(x))| ≤ ε

max{ε,MT }
|y − y0|

=
ε

max{ε,MT }
|f(x)− f(x0)|

=
ε

max{ε,MT }
|φ(x) + T (x− x0)| (From (3.5a))

≤ ε

max{ε,MT }
(|φ(x)|+ |T (x− x0)|)

≤ ε

max{ε,MT }
(ε|x− x0|+MT |x− x0|) (From (3.6))

≤ ε

max{ε,MT }
max{ε,MT }|x− x0|

= ε|x− x0|

and therefore ψ (f(x)) = o (|x− x0|). In view of Proposition 3.1, the previous discussion proves that

ρ(x) = ψ (f(x)) + Sφ(x) = o (|x− x0|) ,

and therefore g ◦ f : Rn → Rp is differentiable and by the uniqueness of the derivative it follows that

D(f ◦ g)(x0) = S ◦ T (x0) = Dg(f(x0)) ◦Df(x0).

3.3 Directional and partial derivatives

So far, we have only defined the notion of differentiability, introduced the derivative as the unique linear
transformation that satisfies the approximation property (3.2), proved some properties about this transforma-
tion, but we have not defined how to actually compute the derivative. In this section, we will finally study
how to compute derivatives by exploiting the differentiability of a function through its component-wise dif-
ferentiability. We begin by considering real-valued functions.

Definition 3.2. Let U ⊂ Rn be an open set, f : U → Rm, x0 ∈ U , and u ∈ Rn a unit vector. If the limit

lim
t→0

f(x0 + tu)− f(x0)

t
, t ∈ R, (3.7)

exists, we call it the directional derivative of f in the direction u, denoted by Duf(x0).

The derivative of a function, in fact, contains the information of all its directional derivatives. To extract it,
we must evaluate the derivative by providing the desired direction as an argument, as we now prove.

Theorem 3.3. If f : Rn → Rm is differentiable at x0 ∈ Rn, then its directional derivativesDuf(x0) are defined
for every direction u and

Duf(x0) = Df(x0)(u).

Proof. Since f is given to be differentiable at x0, the linear mapping Df(x0) : Rn → Rm is well defined. All
we need to do is to verify that the limit (3.7) exists for any u and that it is equal to Df(x0)(u). To that avail,

32



Chapter 3: Differentiability 3.3 Directional and partial derivatives

we compute

Duf(x0) = lim
t→0

f(x0 + tu)− f(x0)

t

= lim
t→0

Df(x0)(tu) + o(|x− x0|)
t

(By (3.2))

= lim
t→0

(
tDf(x0)(u)

t
+
o(|x− x0|)

t

)
(The derivative is linear)

=Df(x0)(u) + lim
t→0

o(|x− x0|)
t

=Df(x0)(u) (Definition of o(|x− x0|)).

This proves the result.

Definition 3.3. Lets consider for now real-valued functions, i.e. f : Rn → R. In this case, if in the limit
(3.7) appearing in the definition directional derivatives, we let u be one of the canonical basis vectors ei, then
Deif(x0) is called the i-th partial derivative of f at x0. Partial derivatives are denoted in many different
ways, the most common being

Dif(x0) ≡ fxi(x0) ≡
∂f

∂xi
(x0) ≡ ∂xif(x0).

In these notes, we will prefer to use the latter of the above, ∂xif(x0) to refer to the partial derivative with
respect to the xi variable.

Substituting u = ei in t(3.7) we see that i-th partial derivative of f is given by

∂xif(x0) = lim
t→0

f(x10, . . . , x
i
0 + t, . . . , xn0 )− f(x10, . . . , x

i
0, . . . , x

n
0 )

t
.

This observation provides an easy way to compute partial derivatives:

The partial derivative ∂xif is the “usual” derivative of f viewed as a function
of the single variable xi, and considering the rest of the variables as constants.

Since the partial derivatives of a function are essentially derivatives of single-variable functions, it is no sur-
prise that the partial derivatives have very similar properties to those of the derivative of functions from R
to R.

Definition 3.4. Let A be a set in Rn and x0 ∈ A. We say that f : A→ R has a minimum at x0 if

f(x0) ≤ f(x) for all x ∈ A.

We say that f has a local minimum at x0 if there exists a ball Bε(x0) ⊂ U such that

f(x0) ≤ f(x) for all x ∈ Bε(x0) ∩A.

Similarly, we say that f has a maximum at x0 if

f(x0) ≥ f(x) for all x ∈ A,

and we say that f has local maximum at x0 if there exists a ball Bε(x0) ⊂ U such that

f(x0) ≥ f(x) for all x ∈ Bε(x0) ∩A.
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Proposition 3.5. If f : U → R has a local minimum or maximum at x0 and its partial derivatives exist, then
∂xif(x0) = 0, for i = 1, . . . , n.

The following is a weak version of the mean value theorem.

Proposition 3.6. If U ⊂ Rn is open, f : U → R has partial derivatives at each x ∈ U , x0 ∈ U , and t ∈ R is
such that

(x10, . . . , x
i
0 + s, . . . , xn0 ) ∈ U

for all s ∈ [0, t] (or s ∈ [t, 0], if t < 0), then there exists c between xi0 and x
i
0 + t such that

f(x10, . . . , x
i
0 + t, . . . , xn0 )− f(x10, . . . , x

i
0, . . . , x

n
0 ) = t∂xif(x

1
0, . . . , c, . . . , x

n
0 ).

The proofs of these propositions follow directly from their single-variable versions, and we leave them as
exercises (Exercises 9 and 10).

We will make use of the fact that the partial derivatives behave just like the “regular” derivative (one that we
know how to compute) to finally compute the total derivative of a function at a point x0.

Theorem 3.4. Let U ⊂ Rn be open and f : U → Rm be differentiable at x0 ∈ U . Then each ∂xif(x0) exists,
and the ij-th entry of the Jacobian of f at x0 (i.e. the matrix representation of Df(x0) in the canonical basis)
is given by

(Jf(x0))i,j = ∂xjf
i(x0).

Proof. The fact that every partial derivative exists is a simple consequence of taking u = ei inTheorem 3.3. In
order to compute the entries of the Jacobian matrix, we recall that in the discussion leading to Equation eqref
we established that, given a basis {u1, . . . , un} for Rn, the ij-th component of the matrix representation of a
linear mapping T = (T1, . . . , Tm) : Rn → Rm is given by the action of the i-th component function of T on
the j-th basis vector uj .

Moreover, in Proposition 3.4 we proved that its i-th component function is simply the derivative of the i-th
component of f , we have that

[Df(x0)]i = Df i(x0).

In view of these two observations, and since Df(x0) is linear, it follows that

(Jf(x0))i,j = [Df(x0)]i(ej) = Df i(x0)(ej) =︸︷︷︸
definition

∂xjf
i(x0).

The Jacobian of a real-valued function is particularly important and we will devote a few lines to its proper-
ties.

Definition 3.5. Let f : Rn → R be differentiable at x0. The Jacobian of f is known as the gradient of f and
is denoted by

∇f(x0) := Jf(x0) =︸︷︷︸
By Theorem 3.4

(∂x1f(x0), . . . , ∂xnf(x0)).

Remark 3.2. Note that the representation of the gradient as “the vector of partial derivatives” appearing in the
definition above, holds only when using the Cartesian canonical basis. In some applications is convenient
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to use a different coordinate system (spherical, cylindrical, etc.) and in those cases the gradient is not repre-
sented by the vector of partial derivatives.

The symbol ∇ appearing in the definition of ∇f(x0), is known as nabla. In Cartesian coordinates it is possible
(and convenient) to understand it as the “vector of partial differential operators”

∇ := (∂x1, . . . , ∂xn).

However, just as in the remark above, this representation is only correct in Cartesian coordinates.

As we will show in the next two results, the gradient encodes important information about the optimal di-
rection of growth/decrease of a scalar valued function.

Theorem 3.5. Let f : Rn → R be differentiable at x0. Then, there exists a direction ũ ∈ Sn−1 such that

Df(x0)(−ũ) ≤ Df(x0)(u) ≤ Df(x0)(ũ) for all u ∈ Sn−1. (3.8)

Moreover, if Df(x0) 6= 0, then ũ is unique. In other words, if a real-valued function is differentiable and its
derivative is not the zero mapping, then there exists a unique direction ũ of maximal growth at x0. Moreover, the
anti parallel direction ũ is the unique direction of maximal descent.

Proof. Existence of the optimal direction follows easily from two observations: 1) since Df(x0) is linear, it
must then be continuous (Corollary 2.3), and 2) the unit sphere Sn−1 is compact (as it is closed and bounded).
Therefore, by the extreme value theorem, there exists ũ ∈ Sn−1 such that

Df(x0)(u) ≤ Df(x0)(ũ) for all u ∈ Sn−1.

We now observe that u ∈ Sn−1 implies that −u ∈ Sn−1 and therefore we have

Df(x0)(−u) ≤ Df(x0)(ũ).

However, since Df(x0)(−u) = −Df(x0)(u), this implies that

Df(x0)(u) ≥ −Df(x0)(ũ) = Df(x0)(−ũ).

Putting these inequalities together we obtain (3.8).

Clearly, if Df(x0) = 0 then any direction is both a maximum and a minimum. We will now assume that
Df(x0) 6= 0 and that there exist two directions ũ1, ũ2 ∈ Sn−1 satisfying (3.8). We first show that they are
not antipodes, as if ũ1 = −ũ2 it would follow that

0 = Df(x0)(ũ1 + ũ2) = Df(x0)(ũ1) +Df(x0)(ũ2) = 2Df(x0)(ũ1),

which would imply that Df(x0)(ũ1) = 0, but since ũ1 is the direction of maximum growth, this contradicts
the assumption that Df(x0) 6= 0.

We can therefore assume that |ũ1 + ũ2| 6= 0 and define

v :=
ũ1 + ũ2
|ũ1 + ũ2|

∈ Sn−1.

We start by remarking that, since ũ1, ũ2 ∈ Sn−1 and these vectors are not multiples of each other we have
that

1 = |v| = |ũ1 + ũ2|
|ũ1 + ũ2|

<
1 + 1

|ũ1 + ũ2|
=

2

|ũ1 + ũ2|
, (3.9)
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x

y

z
f(x, y)

Figure 3.1: The function from Example 3.1 takes the constant value 0 along the x and y axes, hence its partial derivatives at
(0, 0) exist and equal 0. However the function is discontinuous at (0, 0), and therefore is not differentiable.

where, to obtain the strict inequality, we used the fact that the equality case in the triangle inequality holds
only if the two vectors are multiples of each other.

We then compute

Df(x0)(v) =
1

|ũ1 + ũ2|
(Df(x0)(ũ1) +Df(x0)(ũ2)) =

2

|ũ1 + ũ2|
Df(x0)(ũ1) >︸︷︷︸

By (3.9)

Df(x0)(ũ1)

but this contradicts the maximality of ũ1. Therefore, the maximizer ũ must be unique.

Theorem 3.6. If f : Rn → R is differentiable at x0, the direction of maximal growth guaranteed by Theorem
3.5 is given by the normalized gradient

∇f(x0)
|∇f(x0)|

=
(∂x1f(x0), . . . , ∂xnf(x0))

((∂x1f(x0))
2 + · · ·+ (∂xnf(x0))

2)1/2
.

Proof. Using the canonical basis we see that, for any u ∈ Sn−1 it follows that

Df(x0)(u) = ∇f(x0) · u = |∇f(x0)| · |u| cos θ,

where θ is the angle between u and the gradient |∇f(x0)|. Since the magnitudes of∇f(x0) and all u ∈ Sn−1

are constant, it follows that the maximum value of Df(x0)(u) on the sphere will happen when θ = 0; i.e.
when u = λ∇f(x0) for λ > 0. Hence, the direction of maximum growth in the unit sphere must be given by

ũ =
∇f(x0)
|∇f(x0)|

=
(∂x1f(x0), . . . , ∂xnf(x0))

((∂x1f(x0))
2 + · · ·+ (∂xnf(x0))

2)1/2
.

Example 3.1. Let f : R2 → R (depicted in Figure 3.1) be given by

f(x, y) =

{
1, if 0 < y < x2,

0, otherwise.

Then f(x, 0) = f(0, y) = 0 for all x, y, so that ∂xf(0, 0) = ∂yf(0, 0) = 0. However, f is not even continuous
at (0, 0).
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This shows that the converse of Theorem 3.4 does not hold in general. However, with the additional require-
ment of continuity of the partial derivatives, the result is true, as we will now prove.

Definition 3.6. Let U ⊂ Rn be open. We say that f : U → Rm is continuously differentiable at x0 if each
of the partial derivatives ∂xjf

i(x) exists in a ball Bε(x0) and is continuous at x0.

Theorem 3.7. Let U ⊂ Rn be open and x0 ∈ U . If f : U → R is continuously differentiable at x0, then f is
differentiable at x0 and its Jacobian is given by

(Jf(x0))i = ∂xif(x0).

Proof. Suppose that the partial derivatives ∂xif(x) exist at each x ∈ Bε(x0). If h is such that x0+h ∈ B0
ε (x0),

then by Proposition 3.6,

f(x10 + h1, x
2
0 + h2, . . . , x

n
0 + hn)− f(x10, x

2
0, . . . , x

n
0 )

= f(x10 + h1, x
2
0 + h2, . . . , x

n
0 + hn)− f(x10, x

2
0 + h2, . . . , x

n
0 + hn)

+ f(x10, x
2
0 + h2, . . . , x

n
0 + hn)− f(x10, x

2
0, x

3
0 + h3, . . . , x

n
0 + hn)

+ · · ·+ f(x10, x
2
0, . . . , x

n
0 + hn)− f(x10, x

2
0, . . . , x

n
0 )

= ∂x1f(c1, x
2
0 + h2, . . . , x

n
0 + hn)h1 + · · ·+ ∂xnf(x

1
0, x

2
0, . . . , cn)hn,

where each ci ∈ R is between xi0 and xi0 + hi. When |h| → 0, each ci → xi0. Then,

|f(x0 + h)− f(x0)−
∑

i ∂xi
f(x0)hi|

|h|
≤
∑
i

∣∣∂xif(c1, . . . , x
i
0 + h2, . . . , x

n
0 + hn)− ∂xif(x0)

∣∣ |hi|
|h|

and therefore,

lim
h→0

|f(x0 + h)− f(x0)−
∑

i ∂xif(x0)hi|
|h|

= 0,

because the ∂xif are continuous at x0.

By applying the result above to every component function of f : Rn → Rm we obtain the following

Corollary 3.8. If f : U → Rm is continuously differentiable at x0, then it is differentiable at x0.

The inverse of this corollary is false, as shown by the following well-known example.

Example 3.2. Let f : R → R be given by

f(x) =

{
0, x = 0,

x2 sin 1
x , x 6= 0.

The function is depicted in the center panel of Figure 3.2. We claim that f is differentiable in R, but its
derivative is not continuous at 0. Clearly the function is differentiable for x 6= 0. We will show that f ′(0) = 0.
Indeed, from the definition of the derivative we have that

|f ′(0)| =
∣∣∣∣ limh→0

f(0 + h)− f(0)

h

∣∣∣∣ = ∣∣∣∣ limh→0

h2 sin(1/h)− 0

h

∣∣∣∣ = ∣∣∣∣ limh→0
h sin(1/h)

∣∣∣∣ ≤ ∣∣∣∣ limh→0
h

∣∣∣∣ = 0.
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x

y

x

y

x

y

Figure 3.2: Left: The function sin(1/x), known as the topologist’s sine is undefined at x = 0, and as its argument approaches
0, the frequency of the oscillation tens to infinity. Center: Modulating the amplitude of the topologist’s sine by the factor x2

and defining the value of the resulting function to be 0 for x = 0makes the function differentiable everywhere. Right: Despite
the fact that the derivative of the function is defined everywhere (and in particular equals 0 for x = 0), it is discontinuous
at the origin.

Therefore f is differentiable at 0 and f ′(0) = 0. On the other hand, for x 6= 0 we have that

f ′(x) = 2x sin(1/x)− cos(1/x),

that is not defined for x = 0. In particular, the limit as x → 0 of the above expression does not exist. From
this we conclude that

0 = f ′(0) 6= lim
x→0

f ′(x),

and f ′ is not continuous at x = 0.

To conclude this section, we will establish the classical version of the chain rule

Proposition 3.7. Let U ⊂ Rn, V ⊂ Rm be open sets, g : U → V be continuously differentiable at x0 ∈ U , and
f : V → R be differentiable at g(x0). Then,

∂xi(f ◦ g)(x0) =
m∑
j=1

∂xjf(g(x0))∂xig
j(x0). (3.10)

Proof. Since g is continuously differentiable at x0, it is differentiable at x0, and by the chain rule, f ◦ g is
differentiable at x0 and

D(f ◦ g)(x0) = Df(g(x0)) ◦Dg(x0).

Hence, using the canonical basis we can represent each of the derivatives appearing above by their Jacobians,
leading to

J(f ◦ g)(x0) = Jf(g(x0)) · Jg(x0) =
[
∂x1f(g(x0)) . . . ∂xmf(g(x0))

]
·


∂x1

g1(x0) . . . ∂xn
g1(x0)

∂x1
g2(x0) . . . ∂xn

g2(x0)
...

. . .
...

∂x1
gm(x0) . . . ∂xn

gm(x0)

 .
Finally, recalling the definition of the partial derivatives and using the matrix representation above we see
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that

∂xi(f ◦ g)(x0) =D(f ◦ g)(x0)(ei)

= Jf(g(x0)) · Jg(x0) · ei

=

Jf(g(0))︷ ︸︸ ︷[
∂x1f(g(x0)) . . . ∂xmf(g(x0))

]
·

Jg(x0)︷ ︸︸ ︷
∂x1g

1(x0) . . . ∂xng
1(x0)

∂x1g
2(x0) . . . ∂xng

2(x0)
... . . . ...

∂x1g
m(x0) . . . ∂xng

m(x0)

 ·


0
...
1
...
0

 i-th row

︸ ︷︷ ︸
This product picks the i-th column of Jg(x0)

=
[
∂x1f(g(x0)) . . . ∂xmf(g(x0))

]
·


∂xig

1(x0)
∂xig

2(x0)
...

∂xig
m(x0)


=

m∑
j=1

∂xjf(g(x0))∂xig
j(x0) ,

as we were trying to prove.

3.4 The inverse function theorem

We know that the derivative of a function f at a point x0 is the best linear approximation to f around x0,
that is,

f(x) ≈ f(x0) +Df(x0)(x− x0).

If the expression above were the exact equality, (i.e. if we could drop the term o(|x−x0|) in the linear approx-
imation)

f(x) = f(x0) +Df(x0)(x− x0),

and the linear transformation Df(x0) were invertible, then we could solve explicitly for x, leading to

x =x0 + [Df(x0)]
−1 (f(x0)) + [Df(x0)]

−1 (f(x))

= b+ [Df(x0)]
−1 (f(x)),

where we first grouped the first two constant terms in the right hand side into the vector b. Therefore, the
inverse function of f would also be linear. Since linear functions are differentiable and the derivative of
a linear function is equal to the linear function, this would then imply that f−1 is differentiable at f(x0)
and

[Df(x0)]
−1 (f(x0)) = [Df(x0)]

−1 (f(x)).

More generally, ifA is an n×nmatrix associated to the linear transformation T : Rn → Rn, then the function
T is invertible if and only if the determinant of A is nonzero. Moreover, if A is anm×nmatrix withm < n,
then we can solve the homogeneous equation

Ax = 0
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form of its variables in terms of the remaining n−m (i.e. m variables are implicit functions of the remaining
n −m), provided that m of the columns of A (or equivalently, its m rows) are linearly independent, i.e., A
has full rank.

Thus, we want to know under what circumstances these invertibility and differentiability properties of the
linear transformationDf(x0) are transferred to f in a neighborhood of x0. For functions of a single variable,
we have an answer: if f is continuously differentiable in a neighborhood of x0 ∈ R and f ′(x0) 6= 0, we know
that there exists a local inverse function. In a neighborhood of x0, say U , such that f is invertible in U , f−1

is differentiable in f(U), and

(f−1)′(f(x)) =
1

f ′(x)
.

In what follows, we will answer these questions. We will start by answering the question about invertibility,
establishing the multi variable version of this result, known as the Inverse function theorem. The proof
of this theorem is quite involved, and we will need to prove three useful results first. The first one is a spe-
cial case of an incredibly powerful and useful theorem both for theory and applications. It is at the heart of
many numerical methods for the solution of nonlinear equations (algebraic, differential, partial differential,
integral, etc.) and variants of it are used to prove many important theoretical results. For instance, Picard’s
classic proof for the existence and uniqueness of solutions for a wide class of ordinary differential equations.
The theorem can be stated and proven in a more general setting, without much difficulty, but we will focus
here on its version for Rn.

Theorem 3.9 (Contraction mapping theorem). Let X ⊆ Rn be closed, 0 < c < 1, and f : X → X be such
that

|f(x)− f(y)| < c|x− y| for all ∀x, y ∈ X. (3.11)

Then there exists a unique x∗ ∈ X such that f(x∗) = x∗.

The proof of this result will be left as an exercise, but a few remarks are in order. A function satisfying the
condition (3.11) with 0 < c ≤ 1 is called a contraction; if the constant c is strictly less than one (as in the
statement of the theorem), the function is called a strict contraction. If the constant is equal to 1, it is easy to
build examples of functions that have infinitely many fixed points, and also that have no fixed points.

The second result will allow us to use the information from the derivatives of a function to ensure that the
function is Lipschitz continuous.

Lemma 3.2. Let ε > 0, f : Bε(x0) → Rn be differentiable, andM > 0 such that

|∂jf i(x)| ≤M for i, j = 1, . . . , n, and x ∈ Bε(x0).

Then, f is Lipschitz on the ball Bε(x0). More precisely

|f(x)− f(y)| ≤ n2M |x− y|, x, y ∈ Bε(x0).

Proof. The proof of this lemma involves an argument similar to the one used in the proof of Theorem 3.7,
where a bunch of zeros where added in order to express the difference f(x) − f(y) by changing only one
component of the argument at a time and be able to use the mean value theorem. By the mean value theorem
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3.6, there exist z1, . . . , zn ∈ Bε(x0) such that

f i(x)− f(y) = f i(x1, x2, . . . , xn)− f i(y1, y2, . . . , yn)

= f i(x1, x2, . . . , xn)− f i(y1, x2, . . . , xn)

+ f i(y1, x2, . . . , xn)− f i(y1, y2, . . . , xn)

...
...

+ f i(y1, y2, . . . , yn−1, xn)− f i(y1, y2, . . . , yn)

=

n∑
j=1

∂xjf
i(zj)(xj − yj),

so that

|f i(x)− f i(y)| ≤
n∑

j=1

|∂xjf
i(zj)||xj − yj | ≤ nM |x− y|.

Thus, repeating the argument for each component we obtain

|f(x)− f(y)| ≤
n∑

i=1

|f i(x)− f i(y)| ≤
n∑

i=1

nM |x− y| = n2M |x− y|.

Finally, the third lemma below will be the core of the proof of the inverse function theorem.

Lemma 3.3. Let r > 0 and g : Br(0) ⊂ Rn → Rn be such that

g(0) = 0 and |g(x)− g(y)| ≤ 1
2 |x− y| ∀x, y ∈ Br(0). (3.12)

Define
f : Br(0) → Rn by f(x) := g(x) + x. (3.13)

Then:

(a) f is injective.

(b) Br/2(0) ⊂ f(Br(0)).

The two conditions (a) and (b) above imply that if we restrict the co-domain of f to consist only of Br/2(0), the
resulting function f : Br(0) → Br/2(0) is invertible.

Proof. We start by proving (a) by contradiction. If f were not injective, then there would exist x 6= y ∈ Br(0)
such that f(x) = f(y). This would imply that

|x− y| = |f(x)− x− f(y) + y| = |g(x)− g(y)| ≤ 1
2 |x− y|,

which can only hold if |x− y|, in contradiction with the hypothesis x 6= y.

We now prove (b). We want to show that for every y ∈ Br/2(0) there exists x ∈ Br(0) such that y = f(x).
Using the definition of f and reordering terms, we see that this is equivalent to proving that for every y ∈
Br/2(0) there exists x ∈ Br(0) such that

x = y − g(x) =: Gy(x). (3.14)
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r
0

Br(0)

f

f(Br(0))

1
2
r

0

Figure 3.3: The image of the ball Br(0) under the function f defined in (3.13) contains the ball Br/2(0). Therefore, every
point y ∈ y = Br/2(0) is the image under f of a point in Br(0), which guarantees surjectivity of f when the range is
restricted to Br/2(0).

In other words, we want to show that for every y, the functionGy(x) has a fixed point. We will do that using
the contraction mapping theorem 3.9. Take 0 < ε < r and consider a point

y ∈ B(r−ε)/2(0) := {y ∈ Rn : |y| ≤ (r − ε)/2},

and define Gy : B(r−ε)(0) → Rn as in (3.14). Taking a point

x ∈ B(r−ε)(0) := {y ∈ Rn : |y| ≤ (r − ε)},

and applying Gy we see that:

|Gy(x)| = |y − g(x)| ≤ |y|+ |g(x)|

= |y|+ |g(x)− g(0)| (Since g(0) = 0)

≤ 1
2(r − ε) + |g(x)− g(0)| (Since y ∈ B(r−ε)/2(0))

≤ 1
2(r − ε) + 1

2 |x|

≤ 1
2(r − ε) + 1

2(r − ε) (Since x ∈ B(r−ε)(0))

= r − ε.

Therefore, if x ∈ B(r−ε)(0) it follows that Gy(x) ∈ B(r−ε)(0), which proves that

Gy : B(r−ε)(0) −→ B(r−ε)(0).

It only remains to show that Gy is a contraction. To do that, we take x1, x2 ∈ B(r−ε)(0) and compute

|Gy(x1)−Gy(x2)| = |y − g(x1)− y + g(x2)| = |g(x1)− g(x2)| ≤ 1
2 |x1 − x2|,

which verifies that Gy is a contraction. We can therefore apply the contraction mapping theorem (3.9) to
conclude that for all 0 < ε < r and all y ∈ B(r−ε)/2(0), there exists x∗ ∈ B(r−ε)(0) such that f(x∗) = y.
Finally, since this argument can be repeated varbatim for all 0 < ε < r, and f is injective on Br(0), we
conclude that f : Br(0) → Br/2(0) is invertible. This is depicted in Figure 3.3.

We are finally in the position to state and prove the inverse finction theorem.
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Theorem 3.10 ( Inverse function theorem ). Let U ⊂ Rn, x0 ∈ U , and f : U → Rn be differentiable in U ,
continuously differentiable at x0, and such that

det
(
f ′(x0)

)
6= 0.

Then, there exist a neighborhood V of x0 and a neighborhoodW of f(x0) such that f : V →W has an inverse
f−1 :W → V , f−1 is differentiable inW , and for each y ∈W ,

D(f−1)(y) = [Df(f−1(y))]−1.

Or, in terms of matrices,
Jf−1(y) = [Jf(f−1(y))]−1.

In words: the inverse f−1 is differentiable, and its Jacobian matrix is the inverse of the Jacobian matrix of f .

Proof. We will make three simplifying assumptions:

1. We will assume that the function produces the zero vector at the point of differentiability. Explicitly,
that f(x0) = 0.

2. We will assume that the point of differentiability is the origin, i.e. x0 = 0.

3. We will assume that the derivative of f at the point of differentiability is the identity; i.e. Df(x0) = I .

The fully general result stated above can be recovered from this simplified statement easily, and will be left
as an exercise.

Our first goal is to use Lemma 3.3 to prove that the function f is invertible in a neighborhood of x0 and f(x0).
To that avail, we define g : U → Rn by

g(x) := f(x)− x.

By definition, f and g satisfy condition (3.13) from Lemma 3.3, while the first and second simplifying assump-
tions yield

g(0) = f(0)− 0 = 0,

and this the first condition in (3.12) is satisfied.

Since f and x are both continuously differentiable at x0, it follows that g is continuously differentiable at x0,
and its derivative is given by

Dg(x0) = Df(x0)− I = I − I = 0,

where we made use of the third simplifying assumption Df(x0) = I . This provides condition (3.12) from
Lemma 3.3. It only remains to show that g is a contraction with constant equal to 1

2 .

We then observe that, sinceDg(x0) = 0, it follows that ∂xjg
i(x0) = 0 for every i, j ∈ {1, . . . , n}. Moreover,

since g is continuously differentiable at x0, then every partial derivative is cotinuous at x0 and thus, there
exists a ball Br(x0) such that

|∂xjg
i(x)| ≤ 1

2n2
for every x ∈ Br(x0) and i, j ∈ {1 . . . , n}.

This bound allows us to use Lemma 3.2 withM := 1
2n2 to conclude that g satisfies the Lipschitz condition

|g(x)− g(y)| ≤
(

1

2n2

)
n2|x− y| = 1

2 |x− y| (3.15)
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for all x, y ∈ Br(x0). This contraction bound provides us with the final condition required to apply Lemma
3.3. We can therefore conclude that the function f : Br(x0) → Br/2(f(x0)) is invertible.

Before moving on to prove differentiability of the inverse function, we will extract one more useful inequality
from the result above. Substituting the definition of g in terms of f in the inequality (3.15) and using the two
possibilities afforded by the reverse triangle inequality yields

|x− y| − |f(x)− f(y)|

|f(x)− f(y)| − |x− y|

}
≤ 1

2 |x− y|.

From the top line above we can infer the first inequality below, while from the bottom line we can obtain the
second one, yielding

1
2 |x− y| ≤ |f(x)− f(y)| ≤ 3

2 |x− y|. (3.16)

This inequality will prove useful shortly.

We must now prove that the inverse function f−1 is differentiable, and we will do that by exhibiting the
candidate for the derivative and proving that it satisfies the linear approximation property (3.2).

By definition, the functions f and f−1 satisfy the property(
f−1 ◦ f

)
(x) = x.

If the inverse function were differentiable, we could differentiate both sides of the expression above and use
the chain rule to obtain

Df−1 (f(x0)) ◦Df(x0) = I.

Since we assumed that Df(x0) = I , the expression above simplifies to

Df−1 (f(x0)) = I,

which gives us a candidate for the derivative of the inverse function.

We will now prove, by verifying the linear approximation property, that the identity is indeed the derivative
of f−1. Concretely, our goal is to prove that

lim
x→x0

|f−1(x)− f−1(x0)− I(x− x0)|
|x− x0|

= 0.

From the first two simplifying assumptions, namely that f(x0) = 0 and x0 = 0, together with the invertibility
of f : Br(0) → Br/2(0) it follows that

f−1(0) = 0.

Therefore, the quotient above simplifies into

lim
x→0

|f−1(x)− x|
|x|

.

The invertibility of f also guarantees that for every x ∈ Br/2(0) there is a y ∈ Br(0) such that y = f−1(x).
We can thus express the quotient in terms of f as

|y − f(y)|
|f(y)|

.
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By letting x = 0 in the sequence of inequalities (3.16) and observing the leftmost inequality we conclude that:

1

|f(y)|
≤ 2

|y|
(3.17a)

If f(y) → 0, then y → 0. (3.17b)

We therefore have that

0 ≤ lim
x→0

|f−1(x)− x|
|x|

= lim
f(y)→0

|y − f(y)|
|f(y)|

≤︸︷︷︸
(3.17a)

2 lim
f(y)→0

|y − f(y)|
|y|

=︸︷︷︸
(3.17b)

2 lim
y→0

|f(y)− y|
|y|

.

However, since f is differentiable at y = 0 and Df(0) = I , the limit on the right must be zero. This proves
that f−1 is differentiable at x = 0 and Df−1(0) = I .

Remark 3.3. From the proof of the inverse function theorem, we can conclude that if f is continuously differ-
entiable in a neighborhood of x0 and detJf(x0) 6= 0, then we can choose V andW such that f : V → W and
f−1 :W → V are continuously differentiable.

This follows from the expression for the Jacobian of f−1 and from Cramer’s rule, which implies that the entries
of (f−1)′(f(x)) are rational functions of the entries of f ′(x), and therefore continuous.

3.5 Implicit function theorem

In this section, we consider the second part of the question posed at the beginning of the previous one. Recall
that if A is a matrix of sizem× (n+m), and z is a vector in R(n+m) then the equation

Az = 0

has a solution if A hasm columns that are linearly independent—we say that the rank ofA is equal to m.
To see why this is the case, let us assume that the columns ofA have been ordered so that the lastm columns
are indeed linearly independent, and let us write

A = [An|Am] and z = (x, y)>

where An ∈ Rm×n and Am ∈ Rm×m are the matrices formed by taking the first n and lastm columns of A
respectively, and x ∈ Rn y ∈ Rm.

Doing so, we can then express the equation as

Az = [An|Am](x, y)> = Anx+Amy = 0.

From here, and using the fact that the columns of Am are linearly independent, we can solve for y, obtain-
ing

y = −A−1
m Anx.

Therefore, knowledge of the values of the n components of x determines the value of y, and we caopuld
write

y = g(x) where g(x) := −A−1
m Anx.

For this reason we say that y is implicitly determined as a function of x by the equation

A(x, y)> = 0.
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It then makes sense for some function f : R(m+n) → Rm to ask whether the equation

f(x, y) = 0,

implicitly defines y ∈ Rm as a function of x ∈ Rn in some neighborhood of a point (x0, y0) ∈ R(n+m) that
satisfies the equation. Moreover, if implicitly y = g(x), then we are also interested in the differentiability of
g. The answer is given by the implicit function theorem.

Theorem 3.11 ( Implicit function theorem). Let U ⊂ Rn+m be open, f : U → Rm differentiable, and
continuously differentiable at (x0, y0) ∈ U , with f(x0, y0) = 0. Let M be the m × m matrix whose i, j-th
component is given by

Mi,j := ∂xn+jf
i(x0, y0), for i, j = 1, . . . ,m,

i.e. the Jacobian of f with respect to the lastm variables, and suppose that detM 6= 0. Then there exist an open
set V ⊂ Rn, x0 ∈ V , and an open set W ⊂ Rm, y0 ∈ W , such that for each x ∈ V , there exists a unique
differentiable g(x) ∈W such that f(x, g(x)) = 0. That is, the equation

f(x, y) = 0

implicitly defines y as a function of x, provided that the derivatives in y form a nonsingular matrix. Thus, we
indeed have the analogous result to the linear case.

Proof. Let F : U → Rn+m be the function F (x, y) = (x, f(x, y)). Then its Jacobian F ′(x0, y0) is given by



1 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0
... . . . ...

... . . . ...
0 . . . 1 0 . . . 0

∂x1f
1(x0, y0) . . . ∂xnf

1(x0, y0) ∂xn+1f
1(x0, y0) . . . ∂xn+mf

1(x0, y0)
... . . . ...

... . . . ...
∂x1f

m(x0, y0) . . . ∂xnf
m(x0, y0) ∂xn+1f

m(x0, y0) . . . ∂xn+mf
m(x0, y0)


.

That is, it is of the form

F ′(x0, y0) =

[
I 0
∗ M

]
,

so that detF ′(x0, y0) = detM 6= 0.

By the inverse function theorem, there exists a neighborhood V ×W of (x0, y0) and a neighborhoodW ′ of
F (x0, y0) such that F : V ×W →W ′ has an inverse F−1 :W ′ → V ×W that is differentiable.

Since F (x, y) = (x, f(x, y)), the inverse function is of the form

F−1(x, v) = (x, h(x, v)),

for each (x, v) ∈W ′, where h :W ′ →W is differentiable. From here it follows that

(x, v) = F (x, h(x, v)) = (x, f(x, h(x, v))),

so that
f(x, h(x, v)) = v.
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Thus, f(x, h(x, 0)) = 0, and therefore we can take

y = g(x) := h(x, 0).

3.6 Higher order derivatives

If a function f : U → R is differentiable, it induces functions in U given by the partial derivatives ∂xif(x).
These functions can themselves be differentiable (in which case all of their partial derivatives exist) or at least
have some partial derivatives well defined. If the partial derivatives of ∂xif exist, they are called second-order
partial derivatives of f and are denoted by

∂xixjf(x) = ∂xj(∂xif)(x).

In what follows, we will try to make the (already cumbersome) notation a little simpler by supressing the x
in the notation for partial derivatives, so that

∂if(x) := ∂xif(x) and ∂ijf(x) := ∂xixjf(x).

Similarly, higher-order partial derivatives of order k are denoted by

∂i1i2...ikf(x) = ∂ik(· · · ∂i2(∂i1f) · · · )(x).

In general, Dijf(x) 6= Djif(x), for instance in the case of the function f : R2 → R given by

f(x, y) =

{
xy(x2−y2)
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0),

you will show as an excercise that∂12f(0, 0) 6= ∂21f(0, 0).

In the previous example, ∂12f and ∂21f are not continuous at (0, 0). However, as the following theorem
shows, continuity is enough to guarantee that the “mixed” derivatives are equal. This result has a long and
interesting story (including a failed proof attempt by Euler himself), and is often referred to as eitherClairut’s
theorem (although his proof was reportedly flawed) or Young’s theorem.

Theorem 3.12 (Symmetry of mixed partial derivatives). If ∂ijf and ∂jif exist in a neighborhood U of x0
and are continuous at x0, then

∂ijf(x0) = ∂jif(x0).

Proof. We first consider the special case where U ⊂ R2 and i = 1, j = 2. In the general case, we define a
function of two vriables in a suitable neighborhood of (x0) in R2 by freezing all the remaining components
of x0 with indices different from i and j, and apply the result for R2. Namely, let φ be defined by

φ(u, v) = f(x10, . . . , u
i-th
, . . . , v

j-th
, . . . , xn0 ),

and observe that
∂ijf(x0) = ∂12φ(x

i
0, x

j
0) and ∂jif(x0) = ∂21φ(x

i
0, x

j
0).

The fully general theorem then follows from the case of functions of two variables applied to φ.
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Therefore, we will focus on the two dimensional case. Let r > 0 be such that Br(x0) ⊂ U and define
F : B0

r (0) → R by
F (x) := f(x0 + x).

Then,

∂1F (0) = ∂1f(x0), ∂2F (0) = ∂2f(x0),

∂12F (0) = ∂12f(x0), ∂21F (0) = ∂21f(x0).

If we define G : B0
r (0) → R by G(x, y) = F (y, x), and x, y ∈ B0

r (0) we have

D1G(x, y) = lim
h→0

G(x+ h, y)−G(x, y)

h
= lim

h→0

F (y, x+ h)− F (y, x)

h
= ∂2F (y, x), (3.18)

as well as

∂12G(x, y) = lim
h→0

∂1G(x, y + h)− ∂1G(x, y)

h
=︸︷︷︸

By (3.18)

lim
h→0

∂2F (y + h, x)− ∂2F (y, x)

h
= ∂21F (y, x).

We want to prove that
D12G(0) = D12F (0).

We will procced by contradiction and, without loss of generality, assume that

∂12G(0) < ∂12F (0).

Since both derivatives are continuous at 0 ∈ R2, there exists a rectangle

R := [−ε, ε]× [−ε, ε] ⊂ B0
r (0)

such that
0 < ∂12F (x)− ∂12G(x) for all x ∈ R.

Then, for all (x, y) ∈ [−ε, ε]× [−ε, ε], we have

0 < ∂2(∂1(F −G))(x, y)

This implies that, freezing the first argument, the function y 7→ ∂1(F − G)(x, y) is strictly increasing in
[−ε, ε] for each x ∈ [−ε, ε]. In particular,

0 < ∂1(F −G)(x, ε)− ∂1(F −G)(x,−ε)

= ∂1

(
(F −G)(x, ε)− (F −G)(x,−ε)

)
. (3.19)

Thus, if we define the function H : [−ε, ε] → R by

H(t) := (F −G)(t, ε)− (F −G)(t,−ε),

the inequality (3.19) states that H ′(t) > 0 in [−ε, ε], so that H is strictly increasing in [−ε, ε]. Therefore,
evaluating at the endpoints of the interval we must have

H(−ε) < H(ε). (3.20)

48



Chapter 3: Differentiability 3.7 Taylor approximation

However, computing the value of both sides of the inequality above, and recalling that G(x, y) = F (y, x),
we see that

H(ε) =F (ε, ε)−G(ε, ε)− F (ε,−ε) +G(ε,−ε),
=F (ε, ε)− F (ε, ε)− F (ε,−ε) + F (−ε, ε),
=F (−ε, ε)− F (ε,−ε)

and

H(−ε) =F (−ε, ε)−G(−ε, ε)− F (−ε,−ε) +G(−ε,−ε)
=F (−ε, ε)− F (ε,−ε)− F (−ε,−ε) + F (−ε,−ε)
=F (−ε, ε)− F (ε,−ε).

which implies H(ε) = H(−ε), contradicting (3.20).

Definition 3.7. We say that f : U → R is of class Ck, for k = 1, 2, . . . , and we write f ∈ Ck(U), if the
partial derivatives of order k

∂i1i2...ikf(x)

exist for each x ∈ U and are continuous. We say that f is of class C0, or simply of class C, and write f ∈ C0(U)
(or f ∈ C(U), respectively), if f is continuous.

We say that f is of class C∞, and denote it as f ∈ C∞(U), if all partial derivatives of any order exist. That is,
f ∈ Ck(U) for all k ≥ 1. Typically the term smooth function is used when referring to a C∞ function.

Theorem 3.12 can be extended to higher-order derivatives.

Corollary 3.13. If f ∈ Ck(U) and σ : {1, . . . , k} → {1, . . . , k} is a permutation, then

∂i1i2...ikf(x) = ∂iσ(1)iσ(2)...iσ(k)
f(x)

for all x ∈ U and any k-multi-index (i1, i2, . . . , ik).

3.7 Taylor approximation

By definition, a differentiable function can be well approximated locally by a linear function. When deriva-
tives of higher order are available, the linear approximation can be improved by introducing a polynomial
of higher order. Approximations of this sort are at the heart of many algorithms in both pure and applied
mathematics and being able to determine when such an approximation is available and also to estimate the
error associated is very relevant. We will start with a version of Taylor’s theorem for real-valued functions
of a single variable and will then use this result to extend the approximation to functiosn from Rn to R.

Theorem 3.14 (Taylor’s theorem). Let f : R → R be a function such that every derivative f (k)(x0) of order
1 ≤ k ≤ n exists at a point x0 ∈ R. Define

ak :=
f (k)(x0)

k!
and Pn,x0(x) :=

n∑
k=0

ak(x− x0)
k.

The polynomial Pn,x0 is known as Taylor’s polynomial of f around x0 and satisfies the following properties
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1. P (k)
n,x0(x0) = f (k)(x0) for every 1 ≤ k ≤ n.

2. f(x)− Pn,x0(x) = o
(
(x− x0)

n
)
.

In addition, if every derivative of order 1 ≤ k ≤ n+ 1 exists on an interval [x0, x], then

3. f(x)− Pn,x0(x) =
f (n+1)(t)

(n+ 1)!
(x− x0)

n+1 for some t ∈ (x0, x).

Proof. We start by computing the k-th derivative of Taylor’s polynomial, and observing that the first k − 1
terms of the sum (being all polynomials of degree strictly less than k) will yield 0 after k successive differen-
tiations, therefore for any x,

P (k)
n,x0

(x) =

n∑
i=k

ai · (i) · (i− 1) · · · (i− k)(x− x0)
i−k =

n∑
i=k

ai
i!

(i− k)!
(x− x0)

i−k. (3.21)

Substituting x = x0 in the expression above sees all but the very first term in the sum vanishing (since the
term with i = k is a constant), leading to

P (k)
n,x0

(x0) = ai · i! =
f (k)(x0)

i!
i! = f (k)(x0), (3.22)

which proves point 1.

For the second point, we must show that

lim
x→x0

f(x)− Pn,x0(x)

(x− x0)n
= lim

x→x0

f(x)−
∑n

k=0 ak(x− x0)
k

(x− x0)n

= lim
x→x0

f(x)−
∑n−1

k=0 ak(x− x0)
k

(x− x0)n
− fn(x0)

n!

= 0.

To avoid very long expressions, we will define

Q(x) :=
n−1∑
k=0

ak(x− x0)
k and G(x) := (x− x0)

n.

With this notation, our goal can be restated as proving that

lim
x→x0

f(x)−Q(x)

G(x)
=
fn(x0)

n!
.

Since all three functions f , Q, and G are continuous, and Q(x0) = a0 = f(x0) , while G(x0) = 0, it follows
that

lim
x→x0

f(x)−Q(x)

G(x)
is indeterminate of the form

0

0
,

therefore we will use L’Hôpital’s rule to compute the limit. However, sinceQ consists of the first n− 1 terms
of the Taylor polynomial of f at the point x0, the discussion right before equation (3.22) implies that

Q(k)(x0) = f (k)(x0) for all k ≤ n− 1,
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which in turn implies that

lim
x→x0

f (k)(x0)−Q(k)(x0) = 0 for all k ≤ n− 1.

At the same time

Gk(x) =
n!

(n− k)!
(x− x0)

n−k =⇒ lim
x→x0

Gk(x) = 0 for all k ≤ n− 2.

Hence, for all 0 ≤ k ≤ n− 2 the limits

lim
x→x0

f (k)(x)−Q(k)(x)

G(k)(x)

are all also indeterminate of the from 0/0. Yet, for k = n− 1 we have

G(n−1)(x) = n!(x− x0) and Q(n−1)(x) = an−1(n− 1)! =
f (n−1)(x0)

(n− 1)!
(n− 1)! = f (n−1)(x0).

Therefore

lim
x→x0

f(x)−Q(x)

G(x)
= lim

x→x0

f (n−1)(x)−Q(n−1)(x)

G(n−1)(x)

= lim
x→x0

f (n−1)(x)− f (n−1)(x0)

n!(x− x0)

=
f (n)(x0)

n!
,

where in the final step we used the fact that f has n derivatives at x0. This proves point 2.

Finally, the statement for point 3 gives us the additional assumptions of f being n + 1 times differentiable
on an interval [x0, x]. These assumptions will allow us to pertub the point around which the polynomial is
constructed. Since now the hypotheses required for points 1 and 2 are valid for any t ∈ [x0, x], we construct
the Taylor polynomial of f for an arbitrary t ∈ [x0, x] and define the discrepancy between the function f and
its Taylor polynomial at t when evaluated at any point x ∈ [x0, x] by

Rn(x, t) := f(x)− Pn,t(x).

We will refer to this difference as the remainder . With this notation, and writing Pn,t(x) explicitly we have

f(x) = f(t) + f ′(t)(x− t) +
f

′′
(t)

2
(x− t)2 + . . .+

f (n)(t)

n!
(x− t)n +Rn(x, t).

Differentiating both sides with respect to t yiels

0 = f ′(t)− f ′(t) + f
′′
(t)(x− t)− f

′′
(t)

2
2(x− t) +

f
′′′
(t)

2
(x− t)2 − . . .+

f (n+1)(t)

n!
(x− t)n +R′

n(x, t),

which, due to the telescopic cancellation, leads to

R′
n(x, t) = −f

(n+1)(t)

n!
(x− t)n. (3.23)
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We now observe that both Rn(x, t) and g(x, t) := (x − t)n+1, as functions of t are continuous and differ-
entiable over [x0, x], so we take apply the generalized mean value theorem (Theorem A.6 in the appendices)
over the interval [x0, x] to this pair of functions to obtain the existence of a point t ∈ (x0, x) such that

Rn(x, x0)−R(x, x)

g(x, x0)− g(x, x)
=
R′

n(x, t)

g′(x, t)
=

−f (n+1)(t)
n! (x− t)n

−(n+ 1)(x− t)n
=
fn+1(t)

(n+ 1)!
.

Observing that R(x, x) = 0 = g(x, x), the expression above leads to

Rn(x, x0) =
fn+1(t)

(n+ 1)!
(x− x0)

n+1.

A few remarks are in order:

• Taylor’s polynomial is in fact the only polynomial of degree n that satisfies property 1.

• Property 2 is the basis for polynomial approximation of nonlinear functions: whenever a function has
derivatives of very high order, the error made when replacing it for its associated Taylor polynomial
decays very rapidly as the evaluation point approaches x0.

• Note that the hypotheses for point 3 are much stronger: the previous two points require n derivatives
at the single point x0, while point 3 requires n+ 1 derivatives on a neighborhood of x0.

• The difference f(x) − Pn,x0(x) is called the remainder, and there are several different representations
for it. The one given in point 3 is known as Lagrange’s form of the remainder.

• If f ∈ C∞, we can compute as many terms as we like, and the series thus obtained is called the Taylor
series around x0. If this series converges to f(x), i.e., if Rk(x) → 0 around x0, then we say that f is
real analytic at x0.

Not every C∞ function is analytic. If a function is of class C∞, it is not necessarily analytic. In fact, it is
possible that the expansion converges to a limit different from f(x), as shown by the following example.

Consider the function f : R → R given by

f(x) =

{
e−1/x2

, x 6= 0,

0, x = 0.

It is not that hard to prove that f is of class C∞, but f (k)(0) = 0 for all k. Thus, the Taylor expansion of
f around 0 is identically 0, but clearly f(x) 6= 0 for all x 6= 0. This shows that its Taylor series does not
converge to f(x) for any point x 6= 0.

We can now address the multi-variable version of Taylor’s theorem.

Theorem 3.15 (Multivariable Taylor’s theorem). Let U ⊂ Rn be open, x0 ∈ U , ε > 0 be such that
Bε(x0) ⊂ U , and let the function f : U → R be of class Ck(U). Then, for x ∈ Bε(x0), there exists y along the
line segment connecting x0 and x such that

f(x) = f(x0) +
n∑

i=1

∂if(x0)(x
i − xi0) +

1

2

n∑
j=1

n∑
i=1

∂ijf(x0)(x
i − xi0)(x

j − xj0) + . . .

. . . +
1

(k − 1)!

n∑
i1,i2,...,ik=1

∂i1i2...ik−1
f(x0)

k−1∏
l=1

(xil − xil0 ) + Rk(x, x0), (3.24)
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where the remainder is given by

Rk(x, x0) :=
1

k!

n∑
i1,i2,...,ik=1

∂i1i2...ikf(y)
k∏

l=1

(xil − xil0 ).

The polynomial in the right hand side of equation (3.24) is called the Taylor polynomial of f around x0.

Proof. We start by defining φ : [0, 1] → R as

φ(t) := f(x0 + t(x− x0)) = f(x10 + t(x1 − x10), . . . , x
n
0 + t(xn − xn0 )).

Then φ(0) = f(x0) and φ(1) = f(x). Moreover, since f ∈ Ck(U), we have φ ∈ Ck((0, 1)). Therefore,
building a Taylor polynomial forφ around 0 and evaluating it at 1 is equivalent to building a Taylor polynomial
for f around x0 and evaluating it at x.

By the chain rule,

φ(k)(t) =
n∑

i1,i2,...,ik=1

∂i1i2...ikf(x0 + t(x− x0))
k∏

l=1

(xil − xil0 ). (3.25)

By Taylor’s theorem, there exists c ∈ (0, 1) such that

φ(1) = φ(0) + φ′(0) + · · ·+ φ(k−1)(0)

(k − 1)!
+Rk, (3.26)

where

Rk = Rk(1, 0) =
φ(k)(c)

k!
.

The result follows from (3.26) by simply substituting φ(1) = f(x), φ(0) = f(x0) and φk(0) in terms of f as
given by (3.25).

Just like in the one dimensional case, if the hypothesis of f ∈ Ck(U) is relaxed into f having k derivatives at
the point x0, only the explicit expression for the remainder is lost. The polynomial and its first k derivatives
will still coincide with the function and its first k derivatives at the point x0, and the difference f(x)− P (x)
will still behave as o(|x− x0|n).

Similarly, the requirement of the evaluation point being contained in a ball that is completely contained in U
is only needed for the explicit expression of the remainder. If the domain U is not convex, then the point y
in the expression of the remainder (located along the segment connecting x0 to x) may fall outside of U (see
Figure 1.3). Since U is the domain of differentiability of f and the expression requires the k+1 derivative, the
explicit form is lost in this case. This is the reason why the multivariable Taylor’s theorem is sometimes stated
with the hypothesis of U being convex instead of the requirement of x belonging to a ball contained in U .
However, even when the domain is non convex or x is not inside of such a ball, as long as the expansion and
evaluation points x0, x lie withinU , the error in the polynomial approximationwill remain o(|x−x0|n).

The theorem can also be extended in a very similar way to functions from Rn to Rm. The idea is to ap-
ply the result above to each component of f . Notation is absolutely nightmarish, but the concepts remain
identical.

The first three terms in the Taylor polynomial (which are the most commonly used) are often denoted using
the slightly different (and perhaps more familiar) notation

f(x) = f(x0) +∇f(x0)>(x− x0) +
1

2
(x− x0)

>Hf(x0)(x− x0) + . . .+Rk(x, x0),
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where the matrix of second partial derivatives

Hf(x0) =


∂11f(x0) ∂12f(x0) · · · ∂1nf(x0)
∂21f(x0) ∂22f(x0) · · · ∂2nf(x0)

... . . . . . . ...
∂n1f(x0) ∂n2f(x0) · · · ∂nnf(x0)

 (3.27)

is known as theHessian. It is in fact the matrix representation of the derivative of the derivative of f , so that
Hf(x0)= D(Df)(x0) and is sometimes also denoted by∇2f(x0), especially in the mathematical literature—
in physics and engineering the symbol ∇2 is reserved for a different second order differential operator: the
Laplacian.

3.8 Exercises

1. Prove proposition 3.1.

2. Prove Proposition 3.3.

3. Let U ⊂ Rn be open and let f, g : U → R be such that f is continuous at x0 ∈ U , g is differentiable at
x0, and g(x0) = 0. Show that fg is differentiable at x0.

4. Compute the derivative and the Jacobian of each of the following functions using the chain rule:

a) (x, y) 7→ (x2 − y2, 2xy), at each point (x0, y0) ∈ R2;

b) (x, y) 7→ (sin
(
x2 + xy + y2

)
, exy), at each point (x0, y0) ∈ R2.

5. Repeat the previous exercise using partial derivatives.

6. If we extend the definition of directional derivatives to vectors u, v that are not necessarily unitary,
prove that if f is differentiable at x0 and t ∈ R it holds

(a) Dtuf(x0) = tDuf(x0),

(b) Du+vf(x0) = Duf(x0) +Dvf(x0).

7. We say that f : Rn → R is homogeneous of degree α if f(tx) = tαf(x), for x ∈ Rn, t > 0.

If f is also differentiable, show Euler’s formula

n∑
i=1

xiDif(x) = αf(x).

8. If f : Rn → R is differentiable and f(0) = 0, prove that there exist functions gi : Rn → R such that

f(x) =
n∑

i=1

xigi(x).

9. Prove Proposition 3.5.

10. Prove Proposition 3.6.

11. Let f : Rn → Rn be a linear function that is invertible. Prove that the inverse function f−1 is also
linear.
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12. We will prove the version of the contraction mapping theorem stated in Theorem 3.9. Let 0 < c < 1
and f : Rn → Rn be a function such that

|f(x)− f(y)| < c|x− y| and ∀x, y ∈ X.

(a) Pick an arbitrary x1 ∈ Rn and define a sequence {xk} ⊂ Rn iteratively by

xk+1 = f(xk).

Prove that this sequence converges to some x∗ ∈ Rn.

(b) Prove that f(x∗) = x∗. (The point x∗ is known as a fixed point of f )

(c) Prove that the fixed point is unique.

13. We recall the simplified version of the inverse function theorem proven in the notes (Theorem 3.10):

Let U ⊂ Rn be open and x0 ∈ U . If the function f : U → Rm is differentiable on U , continuously
differentiable at x0 ∈ Rn, and such that the following hypotheses are satisfied

(i) x0 = 0,

(ii) f(x0) = 0,

(iii) Df(x0) = I (the identity function).

Then there exist open sets V ⊂ Rn and W ⊂ Rm such that x0 ∈ V , f(x0) ∈ W and f : V → W is
invertible. Moreover, the inverse function f−1 : W → V is differentiable onW and Df−1(y) = I for all
y ∈W .

In this problem we will use the result above to prove the general version of the theorem.

(a) Use the simplified result above, to prove that the hypothesis (i) can be dropped; i.e. the point x0
can be arbitrary. Do that by defining g(x) := f(x + x0) and applying to this function. Verify
carefully that the hypothesis of are verified for g.

(b) Use the more general result proven in the previous step, to show that the hypothesis (ii) can
be dropped; i.e. the value f(x0) can be arbitrary. Do that by defining g(x) := f(x) − f(x0),
verifying that the hypotheses of the previous case are verified and then applying the result from
the previous step.

(c) Use the result from the previous step to show that the hypothesis (iii) can be replaced by “Df(x0)
is invertible”. Do that by defining a function g(x) := [Df(x0)]

−1 ◦ f(x), and applying the result
from the previous step. Prove that in this case the expression for the derivative of the inverse
must be changed to

Df−1(f(x0)) = [Df(x0)]
−1.

14. Let U ⊂ Rn be an open set and let f : U → Rn be injective and continuously differentiable such that
detDf(x) 6= 0 for all x ∈ U .

(a) Show that f(U) is open and that f−1 : f(U) → U is differentiable.

(b) Show that f(V ) is open for every open V ⊂ U .

15. (a) Let f : R2 → R be continuously differentiable. Show that f is not injective. (Hint: Consider the
function g(x, y) = (f(x, y), y).)

(b) Generalize this result to continuously differentiable functions f : Rn → Rm, withm < n.
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16. (a) Show that if f : R → R satisfies f ′(x) 6= 0 for all x ∈ R, then f is injective.

(b) However, show that the function f : R2 → R2 given by

f(x, y) = (ex cos y, ex sin y)

satisfies det f ′(x, y) 6= 0 for all (x, y) ∈ R2, but is not injective.

17. Let f : Rn → Rn be continuously differentiable such that there exists c > 0 such that

|f(x)− f(y)| ≥ c|x− y|

for all x, y ∈ Rn. Show that:

(a) f is injective;

(b) det f ′(x) 6= 0 for all x ∈ Rn; and

(c) f(Rn) = Rn. (Hint: consider the function g(x) = |y − f(x)|2).

18. Use the implicit function theorem 3.11 to prove the inverse function theorem.

19. Consider the function f : R2 → R given by

f(x, y) :=


xy(x2−y2)
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

(a) Prove that its first order partial derivatives are given by

∂xf(x, y) =


x4y+4x2y3−y5

(x2+y2)2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0),

∂yf(x, y) =


x5−4x3y2−xy4

(x2+y2)2
, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

You will have to use the limit definition for the values at the origin.

(b) Prove that ∂x,yf(x, y) = ∂yxf(x, y) for all (x, y) 6= (0, 0), but ∂x,yf(0, 0) 6= ∂yxf(0, 0).

You will have to use the limit definition for the values at the origin.

20. Let f : R → R be given by

f(x) =

{
e−1/x2

, x 6= 0,

0, x = 0.

Show by induction that, for x 6= 0 and k = 1, 2, . . . ,

f (k)(x) =
Pk(x)

Qk(x)
e−1/x2

,

where Pk and Qk are polynomials. Conclude that f ∈ C∞ and that f (k)(0) = 0 for all k.

21. Use the previous exercise to find a function F : R → R, F ∈ C∞, such that F (x) = 0 for x ≤ 0 and
F (x) > 0 for x > 0.
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22. Find a function G : R → R such that G(x) > 0 for x ∈ (−1, 1) and G(x) = 0 for |x| ≥ 1.

23. Newton’s method.
Let U ⊂ Rn be open, x∗ ∈ U and Bq(x∗) ⊂ U . Let f : U → Rm be twice continuously differentiable
on U and such that Df(x) is invertible for all x ∈ U . Let y∗ := f(x∗) and define a function N :
Bq(x∗) → Rn by

N(x) := x+ [Jf(x)]−1 (y∗ − f(x)) .

(a) Show that there exists 0 < ε and 0 < C <∞ such that for all 0 ≤ r < ε,

|x− x∗| ≤ r =⇒ |N(x)− x∗| < Cr2.

(b) Show that if
|x1 − x∗| < min{ε, 1

2C },

then the sequence xn+1 := N(xn) converges very rapidly to x∗.

The function N(x) is sometimes referred to as a Newton update and is used iteratively to obtain a
solution to the equation f(x) = y∗ (whose solution is x∗). Part (a) asks you to prove that if a point x
is close enough to the solution x∗, then the point N(x) obtained when feeding x to the Newton update
will bemuch closer to the solution x∗—recall that if r < 1 then r2 << 1. Part (b) shows that if the initial
guess x1 is close enough to the solution, then the approximatiosn obtained by appliyingN(·) iteratively
will not only converge to the solution, but will in fact do so very quickly. The ball centered at x∗ and
with radius equal to min{ε, 1

2C } is often called the basin of convergence of the method.

When it works (i.e. when the hypothesis of the theorem are satisfied), Newton’s method is essentially
unbeatable as a tool for finding roots of nonlinear equations. However, the hypothesis of the theorem
are quite restrictive: the function must have two continuous derivatives, the Jacobian must be invertible
and the initial guess must be already quite close to the solution (this last point is often overlooked
when singing the praises of the method). There are other algorithms for root finding that are much less
restrictive, at the cost of a slower rate of convergence. There is no free lunch.

As an example of the efficiency of Newton’s method when the function f is nice enough:

(c) Show that if f is linear, Newton’s method will converge to the solution of the equation f(x) = y∗
after a single iteration regardless of the initial guess.
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4.1 A refresher of proven results

Wewill now focus on the extreme values of real-valued functions of several variables of the form f : Rn → R.
This function is often referred to as the objective function. We start by recalling the Definition 3.4 on local
extrema

Definition (Extrema). Let A be a set in Rn and x0 ∈ A. We say that f : A → R has a minimum at x0
if

f(x0) ≤ f(x) for all x ∈ A.

We say that f has a local minimum at x0 if there exists a ball Bε(x0) ⊂ U such that

f(x0) ≤ f(x) for all x ∈ Bε(x0) ∩A.

Similarly, we say that f has a maximum at x0 if

f(x0) ≥ f(x) for all x ∈ A,

and we say that f has local maximum at x0 if there exists a ball Bε(x0) ⊂ U such that

f(x0) ≥ f(x) for all x ∈ Bε(x0) ∩A.

Since every subset A ⊂ Rn can be decomposed (see Proposition B.6) as

A = ∂A ∪A◦

where the boundary ∂A is closed and the interior A◦ is open, and ∂A ∩ A◦ = ∅, we can focus our efforts
separately on the cases where the extrema belong to the interior andwhen they belong to the boundary.

Regarding the case when the extrema belong to the open interior, in Proposition 3.5 we have also proven
that:

Proposition: If f : U → R has a local minimum or maximum at x0 and its partial derivatives exist, then
∂xif(x0) = 0, for i = 1, . . . , n.

So that, if the extrema of a differentiable function belong to the interior of a set, they must necessarily be
critical points of the function. We would like to have also a sufficiency condition for a point to be an exremum
of a function.
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4.2 Second derivative criterion

Lets consider a function f : U ⊂ Rn → R belonging to the class C2(U). By Taylor’s Theorem 3.14, for any
x, x0 ∈ U we can write

f(x)− f(x0) = ∇f(x0) · (x− x0) +
1
2(x− x0)

>Hf(x0)(x− x0) + o
(
|x− x0|2

)
,

where the matrix Hf(x0) is the Hessian matrix defined in (3.27). If the point x0 is a critical point of f then,
from 3.5, the expression above simplifies into

f(x)− f(x0) =
1
2(x− x0)

>Hf(x0)(x− x0) + o
(
|x− x0|2

)
.

This equality makes it evident that the interplay between the Hessian and the remainder of the Taylor poly-
nomial will determine the sign of the difference f(x)− f(x0). Thus, the Hessian must contains information
regarding whether x0 is a local extremum. We will now explore its properties.

Definition 4.1. A function F : U ⊂ Rn → R is said to be a quadratic form if there exists a matrix
A ∈ Rn×n such that

F (x) = x>Ax for all x ∈ Rn.

In addition, we say that F is positive semi-definite , postive definite , negative semi-definite , or negative
definite if the matrix associated to F is either (See Definition C.1 in the appendix).

Quadratic forms receive their name because they are in fact second degree polynomials in the components
of their arguments. Some of their properties are summarized in the following proposition. Property 4 will be
of particular relevance when developing a multi-variable analogoue to the second derivative criterion.

Proposition 4.1. Let FA : Rn → R be the quadratic function

FA(x) := x>Ax for all x ∈ Rn.

Then

1. FA is continuous at every x0 ∈ Rn.

2. If B := 1
2

(
A+A>), then FA(x) = FB(x) for all x ∈ Rn.

3. The matrix B defined above, is the only symmetric matrix satisfying point 2.

4. If FA is positive definite (resp. negative definite), then there exists a constant m > 0 (resp. M > 0) such
that

FA(x) ≥ m|x|2 (resp. FA(x) ≤M |x|2) for all x ∈ Rn. (4.1)

Proof. The proof of the first three points is left as an exercise, For the fourth point we will prove only the case
of a postive definite quadratic form, as the negative definite case follows an analogous argument.

We first observe that if x = 0 then the inequality FA(x) ≥ m|x| = m · 0 = 0 holds trivially for any positive
m. Hence, we will assume that x 6= 0 and will consider the unit vector x̂ = x/|x|. The unit spherical shell

Sn−1 := {x ∈ Rn : |x| = 1}

is both bounded and closed, and thus is compact by Theorem 1.3. This in turn implies, by the extreme value
theorem and the continuity of FA, proven in point 1, that there exists a minimum valuem > 0 such that

FA(x̂) = x̂>Ax̂ ≥ m for all x̂ ∈ Sn−1.
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The fact that the minumum value is strictly positive for x 6= 0 follows from the postive deininitenness of A.
Keeping this observation in mind, we take compute

m ≤ FA(x̂) = x̂>Ax̂ =

(
x>

|x|

)
A

(
x

|x|

)
=

1

|x|2
FA(x),

from which the desired inequality 4.1 follows.

We can now use the Hessian to determine whether a critical point is a local extremum.

Theorem 4.1. Let U ⊂ Rn be open and f : U → R be of class C2(U). If x0 ∈ U is a critical point of f such
that Hf(x0) is positive definite (resp. negative definite), then x0 is a local minimum of f .

Proof. We will prove only the case where the Hessian Hf(x0) is postive definite, as the argument for the
negative definite case is completely analoglous. We go back to the second order Taylor expansion of f around
the critical point x0

f(x)− f(x0) =
1
2(x− x0)

>Hf(x0)(x− x0) + o
(
|x− x0|2

)
,

and recall that the fact that the remainder is little oh of |x− x0|2 implies that there exists δ > 0 such that, if
|x− x0| < δ, then ∣∣o(|x− x0|2)

∣∣ < 1
2m|x− x0|, (4.2)

wherem > 0 is the constant such that x>Hf(x0)x > m|x|2 guaranteed by the positive definitenness of the
Hessian and Proposition 4.1. We then pick x such that |x− x0| < δ and compute

f(x)− f(x0) =
1
2(x− x0)

>Hf(x0)(x− x0) + o
(
|x− x0|2

)
≥ 1

2m|x− x0|2 + o
(
|x− x0|2

)
By (4.1)

≥ 1
2m|x− x0|2 −

∣∣o (|x− x0|2
)∣∣

> 1
2m|x− x0|2 − 1

2m|x− x0|2 By (4.2)

> 0.

Proving that x0 is a local minimum in the ball Bδ(x0).

The converse of this proposition is not true (i.e. a C2 function may have a local extremum at a point where
the Hessian quadratic form vanishes) as is exemplified by the function

f : R2 → R given by f(x, y) = x4 + y4.

Thismeans that at a local minimum (resp. maximmum) the Hessian of a C2 function is not necessarily positive
definite (resp. negative definite), however, as we will now prove at a local extremum the Hessian must be sign
semi-definite.

Theorem 4.2. If U ⊂ Rn is open, f : U → R is of class C2(U) and f has a local minimum (resp. maximum)
at a point x0 ∈ U , then the Hessian Hf(x0) is positive semi-definite (resp. negative semi-definite).
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Proof. We will only provide the full details for the case where x0 is a local minimizer, as the argument for a
local maximizer is completely analogous. Since x0 is a local minimizer, there exists som ε > 0 such that for
every x ∈ Bε(x0) we have

f(x0) ≤ f(x).

Let x̂ be a unit vector; we define the function φ : (−ε, ε) → R as

φ(t) := f(x0 + tx̂).

A simple application of the chain rule shows that

φ′(t) = ∇f(x0 + tx̂) · x̂ and φ
′′
(t) = x̂>Hf(x0 + tx̂) x̂.

On the other hand, from the definition of φ and the fact that if t ∈ (−ε, ε) then x0 + x̂ ∈ Bε(x0) it follows
that

φ(t) = f(x0 + tx̂) ≥ f(x0) = φ(0)

and therefore φ has a local minimum at t = 0. We know from analysis of a single variable that, if a function
f : R → R has a local minumum at a point x0 and it is twice continuously differentiable at x0, then f

′′
(x0) ≥

0. Therefore, since φ has a local minimum at 0 it follows that

0 ≤ φ
′′
(0) = x̂>Hf(x0) x̂ =⇒ 0 ≤ x>Hf(x0)x ∀x = |x|x̂ ∈ Rn.

This proves that the Hessian at x0 is positive semi-definite.

4.3 Equality constraints and level sets

Often we are interested in finding the extreme values of a function f : U ⊂ Rn → R restricted to a subset
of its domain. For instance, we may want the sum of the arguments to be a given constant value c, or we
may want the argument to have a prescribed Euclidean norm c, etc. The additional conditions imposed on
the arguments are referred to as constraints and can often be expressed as an equation of the form

g(x) = 0,

where the function g : Rn → R expresses the condition that needs to be satisfied by the arguments. For
instance

g(x) := c−
n∑

i=1

xi , or g(x) := c2 −
n∑

i=1

x2i

in the case of a constant sum or a constant Euclidean norm, respectively. It is possible to have more complex
constraints (for instance expressed as inequalities or inclusions) but we will focus here only on the simple
case of equality constraints.

For a function g : Rn → R, the set of all points in the domain that get mapped by g to a given, fixed value c
is denoted by

Lc(g) := {x ∈ Rn : g(x) = c}

and is called the c -level set of g. Note that this is simply the inverse image of c under g; i.e.

Lc(g) = g−1({c}).
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Thenotation {c} has been used above to emphasize that, in the definition of a level set, the value c is considered
as a set. Note that, even if the level set Lc(g) always exists, it may be empty or may be a set of disconnected
points. For instance, if g(x, y) = (sinx) (sin y) then

L2(g) =∅

and

L1(g) =
{
(x, y) ∈ R2 : x = 1

2(4n+ 1)π and y = 1
2(4m+ 1)π for n,m ∈ Z

}
.

With this consideration, we see that the problem of finding the extreme points of f subject to the constraint
g, is equivalent to finding the extreme points of f over the zero-level set of g.

An effective an elegant way to deal with these constrained optimization problem is themethod of Lagrange
multipliers. Before dealing with it riguorously, we will start by introducing the method intuitively and
discussing the ideas behind it.

4.4 Lagrange multipliers: an informal analytic motivation

We will start with an informal, non riguorous motivation of the method. We are interested in locating the
extreme values (maximum/minimum) of a function f : U ⊂ Rn → R of class C1(U) subject to c < n equality
constraints encoded by c equations of the form

g1(x) = 0 , g2(x) = 0 , . . . , gc(x) = 0,

where very one of the constraining functions gi : Rn → R is of lcass C1(U). Using our previous knowledge
about the extrema of differentiable functions (in particular Proposition 3.5), we would be tempted to look for
the points satisfying the conditions

∇f(x, y) = 0 and g1(x) = 0 , g2(x) = 0 , . . . , gc(x) = 0.

However, the vanishing gradient condition on the left is equivalent to n equations (one for each component
of the gradient) which, together with the c conditions imposed by the constraints, add up to a total of n + c
equations. Our unknowns, on the other hand, are the n coordinates of a possible extremum of the problem.
Therefore, this approachwould lead to an overdetermined system. Moreover, the vanishing gradient condition
stemming from Proposition 3.5 reflects the geometric fact thatwhen allowed to take values over its entire
domain of definition U a differentiable function f turns around on every direction at a local extremum
and thus all of its partial derivatives must vanish. However, when dealing with constrained problems, the
constraints reduce the accessible regions of the domain from U to the set

U ∩ S where S := ∩ c
i=1L0(gi),

and there is no reason to expect that the unconstrained extrema (where the gradient must vanish) will belong
to this region. Put informally into words: the gradient ∇f knowns only about the geometry of the function
f but does not contain information about the constraints.

The discussion above suggests considering an extended function that will be privy to the geometric properties
of both the objective funcion and the contraints. One natural choice is to define a function F : U ⊂ Rn → R
as

F (x) := f(x)−
c∑

i=1

gi(x).
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This function certainly includes the information from f and all the constraints gi. Moreover, if x∗ ∈ Rn is a
point satifying the constraints, we see that

F (x∗) = f(x∗)−
c∑

i=1

gi(x
∗) = f(x∗),

so that F (x) = f(x) for all x ∈ U ∩ S and therefore if F attains an extremum on the region U ∩ S so will f .
We would then be tempted again to make use of Proposition 3.5 and search for the points satifying

∇F (x, y) = ∇f(x)−
c∑

i=1

∇gi(x) = 0 and g1(x) = 0 , g2(x) = 0 , . . . , gc(x) = 0.

Now at least the vanishing gradient condition∇F (x) = 0 includes geometric information from f and all con-
straints. However once again we would be facinf an overdertermined system, with n equations coming from
the vanishing gradient condition, c additional equations coming from the constraints, and only n unknowns:
one for each coordinate of the extremum.

The previous attempt seems to be geared in the right direction, as the vanishing grdient condition now includes
all the relevant anlytic information, and the only problem seems to be that we have too few unknowns,
so we try a naïve approach: how about we add just enough additional unknowns to solve the problem of
overdetermination? We then define the function L(x, λ) : U × V ⊂ Rn × Rc → R by

L(x, λ) := f(x)−
c∑

i=1

λigi(x), (4.3)

where the numbers λ1, . . . , λc are c unknowns to be determined alongwith then coordinates of the extremum
point x∗. Just as before, if x∗ ∈ U∩S, so that the constraints are all statisfied, we have thatL(x∗, λ) := f(x∗)
and thus constrained extrema of f will also be constrained extrema ofL. Moreover, considering the quantities
λ1, . . . , λc as additional variables, the vanishing gradient condition applied to L yields:

∂xjL(x, λ) = ∂xjf(x)−
c∑

i=1

λi∂xjgi(x) = 0 ∀ 1 ≤ i ≤ c, and ∂λj
L(x, λ) = gj(x) = 0.

These conditions can be written more succintly in the form

∇f(x) =
c∑

i=1

λi∇gi(x) and g1(x) = 0 , g2(x) = 0 , . . . , gc(x) = 0. (4.4)

The first vector equation on the left contains n scalar equations, whiule the constraint equation on the right
contribute with c additional conditions for a total of n + c equations. However, the adition of the new
λ1, . . . , λc unknowns to the original n unknowns from the coordinates of the optimizer means that we now
have also n+ c unknowns and the system us neither over nor under determined.

The method of Lagrange multipliers, says that if the system of equations (4.4) has one or more solutions,
then the local extrema of the constrained problem will be amongst them. Thus, the algorithmic process it
so compute the gradients necessary to set up the system (4.4), and then proceeding to solve it. The func-
tion L(x, λ) defined in (4.3) is known as the Lagrangian while each of the λi’s is known as a Lagrange
multiplier . The system of equations (4.4) is often referred to as the first order constrained optimality
condition.

Before proceeding to prove under what conditons this process will indeed produce a local extremum to the
constrained problem, we will further motivate the validity of the algorithm by lookig at it from a geometric
perspective.
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Chapter 4: Maxima and minima 4.5 A geometric interlude

4.5 A geometric interlude

We say that a set Γ ⊂ Rn is a parametrizable curve if there exists a function γ : R → Rn and an interval
I ⊂ R such that

γ (I) = Γ.

Conversely, if the equality above is satisfied, we say that the function γ is a parametric curve or a parametriza-
tion of the curve Γ. If the parametric curve γ : R → Rn is differentiable at a point t0, then the vector
γ ′(t0) ∈ Rn will be tangent to the curve at the point γ(t0). The vector γ ′ is often referred to as the velocity
of the parametrization.

It is important to remark that parametrizations of a curve are not unique. For instance, the functions γ1, γ2, γ3 :
[0, 1) → R2 given by

γ1(t) := (cos(2πt), sin(2πt)) , γ2(t) := (sin(2πt), cos(2πt)) and γ3(t) :=
(
sin
(
2πt2

)
, cos

(
2πt2

))
are all parametrizations of the unit circle. However, even though they all describe the same geometric object,
they differ—amongst other things—in their velocities.

Since the straight line that locally resembles a differentiable curve the most at any given point is the one
whose slope is given by the derivative of the curve at that point, the velocity vector enables us to generalize
the notion of orthogonality to curves.

Definition 4.2 (Orthogonality to a curve). Let n ∈ Rn be a non-zero vector and γ : I ⊂ R → Rn be a
parametric curve such that γ ′(t0) 6= 0. We say that the vector n is orthogonal to γ at the point γ(t0) if

γ ′(t0) · n = 0.

The condition of γ ′(t0) 6= 0 is simply a technical requirement. Since all vectors are orthogonal to the zero
vector, attempting to define geometric orthogonality in terms of the inner product with zero is a little futile.
The fact that the velocity vector vanishes may not be a problem of the curve itself, but rather of our choice
of parametrization. If a curve Γ (as a geometric object) is not discontinuous or have a corner at a point, it is
always possible to define a tangent vector there. However, our choice of parametrization γ (as an analytic
object, i.e. a function) might be poor in the sense that its velocity vector may vanish at a location where
the associated geometric object Γ has a perfectly valid tangent. For instance, as depicted schematically in
Figure 4.1, the parametrization γ3 of the unit circle presented above has vanishing velocity vector for t = 0.
However, the circle has a perfectly valid tangent line at the point γ3(0) = (1, 0), we simply need to take a
better parametrization, such as γ1 or γ2, of the circle to define a tangent at the point (1, 0).

Definition 4.3 (Orthogonality between curves). Let γ1, γ2 : I ⊂ R → Rn be parametric curves. We say
that γ1, γ2 are orthogonal at a point p ∈ Rn if:

1. γ1(t1) = p for some t1 ∈ I and γ2(t2) = p for some t2 ∈ I .

2. γ ′
1(t1) 6= 0 and γ ′

2(t2) 6= 0 .

3. γ ′
1(t1) · γ ′

2(t2) = 0.

In words, we say that two curves are orthogonal to each other at a point if they intersect at that point (this
is the essence of point 1) and their tangent vectors are orthogonal at the intersection (this is the essence of
point 3). jst as in the previous definition, point 2 is a purely technical requirement that forces us to choose
good parametrizations for both curves.
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x

y

Γ

γ(t) = (cos(2πt), sin(2πt))

γ ′

x

y

Γ

γ(t) = (sin(2πt), cos(2πt))

γ ′

x

y

Γ

γ(t)=
(
sin

(
2πt2

)
,cos

(
2πt2

))
Figure 4.1: Three different parametrizations of the unit circle, denoted by Γ; the point P = (0, 1) is marked by a red circle
and the velocity vector γ′ given by each parametrization is represented by a red arrow. At the point P , the velocity vector
for the parametrizations in the left and center panels points left and right respectively. However, for the parametrization on
the right panel, the velocity vector at P vanishes.

We can now prove an interesting geometric connection between the gradient of a function and its level sets.

Proposition 4.2. Let f : U ⊂ Rn → R be of class C1(U) and consider that the level set Lc(f) admits a
parametrization γ : I ⊂ R → Rn. If we let x0 = γ(t0) and the parametrization γ is differentiable at a point t0
with γ ′(t0) 6= 0, then ∇f(x0) is orthogonal to the level set Lc(f) at the point x0.

Proof. Since γ is a parametrization of the c-level set of f , it follows that

(f ◦ γ)(t) = c ∀ t ∈ I.

Therefore, an application of the chain rule at t0 yields

0 = D(f ◦ γ)(t0) = ∇f(γ(t0)) · γ ′(t0) = ∇f(x0) · γ ′(t0).

It then follows from the definition 4.2 that the gradient ∇f(x0) is orthogonal to the level set Lc(f) = γ at
the point x0.

4.6 Lagrange multipliers: An informal geometric motivation

(To be completed)

4.7 Proof of the Lagrange multipliers theorem

(To be completed)
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Integration

5.1 The Riemann integral in Rn

LetR = [a1, b1]×· · ·× [an, bn] ⊂ Rn be a closed rectangle. We refer to each of the one-dimensional intervals
in the Cartesian product as a component interval and in particular to [ai, bi] as the i-th component interval.
The volume of R, denoted v(R), is defined as

v(R) = (b1 − a1)(b2 − a2) . . . (bn − an).

To define a partition of a rectangle R, we will appeal to the definition of a partition of an interval. We take a
partition Pi for each of the component intervals of R, and say that P is a partition of R if P is the set of all
rectangles of the form

Q = [y1, z1]× [y2, z2]× · · · × [yn, zn],

where yi, zi ∈ Pi are consecutive points in the partitionPi of the i-th component interval ofR. Each rectangle
Q ∈ P is called a subrectangle of R. We will denote P in the form

P = (P1, P2, . . . , Pn),

where each Pi is a partition of [ai, bi].

It is a simple exercise to see that if P is a partition of the closed rectangle R, then∑
Q∈P

v(Q) = v(R).

Let f : R → R be bounded, where R ⊂ Rn is a closed rectangle, and let P be a partition of R. Analogously
to the one-dimensional case, the lower sum of f with respect to P is given by

L(f, P ) =
∑
Q∈P

mQ(f) · v(Q),

wheremQ(f) := inf{f(x) : x ∈ Q}. Similarly, the upper sum of f with respect to P is given by

U(f, P ) =
∑
Q∈P

MQ(f) · v(Q),

whereMQ(f) = sup{f(x) : x ∈ Q}.
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It is clear that from their definition as infima and suprema that for every partition P of R, we have

L(f, P ) ≤ U(f, P ).

A similar inequality holds for any two partitions P and T . However, to prove it, we need to introduce the
concept of refinement.

Definition 5.1 (Refinement). Let T and P be partitions of a closed rectangle R ⊂ Rn. We say that T =
(T1, T2, . . . , Tn) is a refinement of P if Pi ⊂ Ti for each i. That is, each rectangle in T is a subrectangle of
some rectangle in P .

Proposition 5.1. If T is a refinement of P , then

L(f, P ) ≤ L(f, T ) and U(f, T ) ≤ U(f, P ).

Proof. If Q ∈ T , there exists a rectangle S ∈ P such that T ⊂ S. Then we have

mQ(f) ≥ mS(f) and MQ(f) ≤MS(f).

Furthermore, each S ∈ P is subdivided into rectangles Q1, Q2, . . . , Qk ∈ T , and

v(S) = v(Q1) + v(Q2) + · · ·+ v(Qk).

Then

mS(f)v(S) = mS(f)

k∑
j=1

v(Qj) =

k∑
j=1

mS(f)v(Qj) ≤
k∑

j=1

mQj(f)v(Qj),

so that L(f, P ) ≤ L(f, T ).

Similarly,

MS(f)v(S) =

k∑
j=1

MS(f)v(Qj) ≥
k∑

j=1

MQj(f)v(Qj),

so U(f, P ) ≥ U(f, T ).

Corollary 5.1. If P and T are partitions of R, then

L(f, P ) ≤ U(f,Q).

Proof. Let R be the common partition

R = (P1 ∪Q1, P2 ∪Q2, . . . , Pn ∪Qn).

Then R is a refinement of both P and Q, and by the previous proposition,

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).

Since for any bounded function f : R→ R and for any partition P of R it holds that

−∞ < inf
x∈R

f(x) · v(R) ≤ L(f, P ) and U(f, P ) ≤ sup
x∈R

f(x) · v(R) <∞.
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We see that the set of al possible lower sums is bounded from below, while the set of all possible upper sums
is bounded from above. This fact enables us to define the lower integral of f as∫

R
f = sup{L(f, P ) : P is a partition of R},

and the upper integral of f as ∫
R
f = inf{U(f, P ) : P is a partition of R}.

Whenever the integration domain R is clear from the context, it is common practice to drop it from the
notation and simply use the symbols∫

for the lower integral and
∫

for the upper integrals.

From the definition it is clear that for any bounded f∫
f ≤

∫
f.

Definition 5.2 (Riemann integrability). We say that the bounded function f : R → R is Riemann-
integrable if ∫

f =

∫
f.

The common value of the upper and lower integrals is called the integral of f and is denoted by∫
f.

or by ∫
R
f,

whenever the domain of integration needs to be specified explicitly.

Proposition 5.2 (Constant functions are Riemann-integrable). Let f : R→ R be given by f(x) = c for
some c ∈ R. Then f is Riemann-integrable.

Proof. If P is a partition of R and S ∈ P , then

mS(f) =MS(f) = c,

so that
L(f, P ) = U(f, P ) = c · v(R).

Clearly, L(f) = U(f), and thus ∫
f = c · v(R).
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Sometimes it is not easy to verify the equality between the upper and lower integrals of a function. The
following theorem provides an alternative characterization of whether a function is Riemann0integrable that
can be easier to verify. The proof of this fact will be left as an exercise.

Theorem 5.2. Let f : R → R be bounded. Then f is Riemann-integrable if and only if for every ε > 0, there
exists a partition P such that

U(f, P )− L(f, P ) < ε.

The following proposition summarizes the basic properties of the Riemann integral.

Proposition 5.3. Let f, g : R→ R be Riemann-integrable. Then:

1. f + g is Riemann-integrable and ∫
(f + g) =

∫
f +

∫
g;

2. if f ≤ g, then ∫
f ≤

∫
g;

3. |f | is Riemann-integrable and ∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f |.

Proof. 1. Let P be a partition of R and S ∈ P . Then

mS(f) +mS(g) ≤ mS(f + g) and MS(f) +MS(g) ≥MS(f + g).

This implies that

L(f, P ) + L(g, P ) ≤ L(f + g, P ) and U(f, P ) + U(g, P ) ≥ U(f + g, P ).

Given ε > 0, Theorem 5.8 implies that there exists a partition P such that

U(f, P )− L(f, P ) <
ε

2
and U(g, P )− L(g, P ) <

ε

2
.

Then

U(f + g, P )− L(f + g, P ) ≤U(f, P ) + U(g, P )− (L(f, P ) + L(g, P ))

= (U(f, P )− L(f, P )) + (U(g, P )− L(g, P ))

<
ε

2
+
ε

2
= ε,

and f + g is Riemann-integrable. Now, if P is a partition of R,∫
(f + g) = L(f + g) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P ),

so that ∫
(f + g) ≥ L(f) + L(g) =

∫
f +

∫
g.
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Similarly, ∫
(f + g) ≤

∫
f +

∫
g,

and therefore ∫
(f + g) =

∫
f +

∫
g.

2. The proof of this property will be left as an exercise.

3. Let P be a partition of R and S ∈ P . If x, y ∈ S, the reverse triangle inequality implies that

| |f(x)| − |f(y)| | ≤ |f(x)− f(y)|.

ThenMS(|f |)−mS(|f |) ≤MS(f)−mS(f), and this implies that

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P ).

So, given ε > 0, if P is such that U(f, P )− L(f, P ) < ε, then

U(|f |, P )− L(|f |, P ) < ε,

and |f | is Riemann-integrable. The inequality follows from property 2 and the fact that

−|f | ≤ f ≤ |f |.

5.2 Sets of measure zero

Definition 5.3. Let A ⊂ Rn. We say that A is of measure zero if for every ε > 0 there exist rectangles
R1, R2, . . . such that

A ⊂
⋃
i

Ri and
∑
i

v(Ri) < ε.

In addition, if the family of rectangles Ri is finite for every ε, we say that A has content zero.

Proposition 5.4. Any finite set {x1, . . . , xk} ⊂ Rn is of measure zero.

Proof. Notice that if p = (p1, p2, . . . , pn) is a point in Rn, then the set

S := [p1, p1]× . . .× [pn, pn] = {p}

is indeed a closed rectangle. Then, given ε > 0, for each xi we can take a rectangle Ri, with xi ∈ Ri, such
that v(Ri) < ε/k and

{x1, . . . , xk} ⊂
k⋃

i=1

Ri and
k∑

i=1

v(Ri) <

k∑
i=1

ε

k
= ε.
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Proposition 5.5. Let A1, A2, · · · ⊂ Rn be sets of measure zero. Then the countable union
∞⋃
i=1

Ai

is of measure zero.

Proof. Let ε > 0. Since everyAi has measure zero, for any δi > 0 it is possible to choose a family of rectangle
{Rij}∞j=1 such that

Ai ⊂
∞⋃
j=1

Rij and
∞∑
j=1

v(Rij) < δi. (5.1)

If we then take the union over i of these rectangle it follows that
∞⋃
i=1

Ai ⊂
∞⋃
i=1

∞⋃
j=1

Rij .

The sum of the volumes of all of the rectangles will then be given by the series
∞∑
i=1

∞∑
j=1

v(Rij) <

∞∑
i=1

δi,

where the inequality comes from (5.1). We see then that it is enough to choose

δi <
ε

2i

to obtain
∞∑
i=1

∞∑
j=1

v(Rij) <
∞∑
i=1

ε

2i
< ε

Since all volumes v(Rij) are non negative, the series independent of the order of summation because it con-
verges absolutely.

Corollary 5.3. All countable sets are of measure zero.

5.3 Riemann integrability and continuity

In this section we will classify Riemann-integrable functions according to their points of continuity. We begin
by introducing the concept of oscillation of a function at a point.

Definition 5.4 (Oscillation). Let f : A ⊂ Rn → R be bounded and x0 ∈ A. Given δ > 0, we will denote
the supremum and infimum of the f in a neighborhood of size δ of x0 respectively by

M(f, x0, δ) := sup{f(x) : x ∈ A ∩Bδ(x0)}, m(f, x0, δ) := inf{f(x) : x ∈ A ∩Bδ(x0)}.

The quantitiesM(f, x0, δ) andm(f, x0, δ) exist due to the boundedness of f . Note that if 0 < η ≤ δ,

M(f, x0, η) ≤M(f, x0, δ) and m(f, x0, η) ≥ m(f, x0, δ). (5.1)

The oscillation of f at x0 is given by

O(f, x0) = lim
δ→0

(M(f, x0, δ)−m(f, x0, δ)) .
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The fact that the limit in the definition ofO(f, x0) exists is due to themonotonicity of the differenceM(f, x0, δ)−
m(f, x0, δ) as a function of δ. Thus, the limit is simply the infimum of all differences for δ > 0. The proof of
this fact will be left as an exercise.

The oscillation of a function is a measure of howmuch a function jumps at a point. Since continuous functions
do not have sudden jumps, the following proposition—whose proof will be left as a n exercise—should not
come as a surprise.

Proposition 5.6. LetR ⊂ Rn be a closed rectangle, x0 ∈ R, and f : R→ R be bounded. Then, f is continuous
at x0 if and only if O(f, x0) = 0.

The relationship between the oscillation of a function and the upper and lower sums of the function with
respect to a partition is given by the following proposition.

Proposition 5.7. Let R ⊂ Rn be a closed rectangle and f : R→ R a bounded function such that O(f, x) < ε
for all x ∈ R. Then there exists a partition P of R such that

U(f, P )− L(f, P ) < v(R)ε.

Proof. For each x ∈ R, we take an open rectangle Rx such that x ∈ Rx and

MRx
(f)−mRx

(f) < ε,

whereRx is the closure of the rectangleRx. Such a rectangle exists becauseO(f, x) < ε. Then the collection
{Rx}x∈R is an open cover for R, and since R is compact, there exist Rx1, . . . , Rxk

such that

R ⊂ Rx1 ∪ · · · ∪Rxk
.

Let P be the partition induced by all the endpoints of the component intervals of all the rectangles Rxi . This
partition is such that if S is a subrectagle of P , then S ⊂ Rxi for some i and thus

MS(f)−mS(f) ≤MRxi
(f)−mRxi

(f) < ε.

Multiplying by the volume of the corresponding rectangle and adding over P and taking the supremum over
all partitions it follows that

U(f, P )− L(f, P ) < ε
∑
S∈P

v(S) = εv(R).

As an immediate result, we can prove the fact that continuous functions are Riemann-integrable.

Corollary 5.4. If f : R→ R is continuous, then it is Riemann-integrable.

Proof. By Proposition 5.6, the oscillallation of f satisfies

O(f, x) = 0 for every x ∈ R.

Therefore we can apply Proposition 5.7 for any ε > 0 and use the ε-principle (Theorem A.1) to conclude that

U(f, P )− L(f, P ) = 0
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If a function f is not continuous everywhere, then its oscillation will be positive at its points of discontinuity.
Hence, Proposition 5.7 suggests that its integrability will depend on whether we can cover those points with
rectangles of arbitrarily small volume. We will spend the reminder of the section proving that this is the case.

The following characterization of the set of discontinuities of a fucntion will be useful. Let f : R → R be
bounded and let

F := {x ∈ R : f is not continuous at x}.
For ε > 0, define Fε as

Fε := {x ∈ R|O(f, x) ≥ ε}
By Proposition 5.6 and the fact that the oscillation of a function is always non-negative, the set of disconti-
nuities F can be characterized as

F =
∞⋃
k=1

F1/k.

To prove the main result of this section we will need to use the following lemma.

Lemma 5.1. Let f : R → R be bounded and such that Fε can be covered by open rectangles R1, . . . , Rk

satisfying
k∑

i=1

v(Ri) < δ,

for some δ > 0. Then, ifM := supR |f |, there exists a partition P such that

U(f, P )− L(f, P ) < v(R)ε+ 2Mδ.

Proof. As in the proof of Proposition 5.7, we can find a partition P such that, for every subrectangle S ∈ P ,
if S ∩ Fε = ∅, then

MS(f)−mS(f) < ε.

Thus, if we define

P ′ := {S ∈ P : S ∩ Fε = ∅}, and P ′′ = {S ∈ P : S ∩ Fε 6= ∅},

and write P = P ′ ∪ P ′′, it follows that

U(f, P )− L(f, P ) =
∑
S∈P ′

(MS(f)−mS(f))v(S) +
∑
S∈P ′′

(MS(f)−mS(f))v(S)

<ε
∑
S∈P ′

v(S) + 2M
∑
S∈P ′′

v(S)

≤ εv(R) + 2M
k∑

i=1

v(Ri)

<εv(R) + 2Mδ.

We are now in position to state the main result of this section. There will be only one step in the proof that
will be stated without proof.
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Theorem 5.5. Let f : R→ R be bounded and let

F = {x ∈ R : f is not continuous at x}.

Then f is Riemann-integrable if and only if F is of measure zero.

Proof. For ε > 0, define Fε as
Fε := {x ∈ R|O(f, x) ≥ ε}

and note that, by Proposition 5.6 and the fact that the oscillation of a function is always non-negative, the set
of discontinuities F can be characterized as

F =
∞⋃
k=1

F1/k.

⇒ Suppose first that f is Riemann-integrable. We will show that each F1/k is of measure zero and the
result will follow from Proposition 5.5 .

Let ε > 0, and let P be a partition such that

U(f, P )− L(f, P ) <
ε

k
.

Let P ′ = {S ∈ P : S ∩ F1/k 6= ∅}, i.e. the collection of subrectangles where the oscillation of the function
exceeds 1/k. Then

F1/k ⊂
⋃

S∈P ′

S,

and for each subrectangle S ∈ P ′ it holdsMS(f)−mS(f) ≥ 1
k . Thus,∑

S∈P ′

1

k
v(S) ≤

∑
S∈P ′

(MS(f)−mS(f))v(S) ≤ U(f, P )− L(f, P ) <
ε

k
.

Therefore ∑
S∈P ′

v(S) < ε.

Since ε is arbitrary, F1/k is of content zero, and therefore F is of measure zero.

⇐ Now suppose that F is of measure zero. Given ε > 0, define

ε̄ :=
ε

2v(R)
.

We claim that the set
Fε̄ := {x ∈ R|O(f, x) ≥ ε̄}

is of content zero. Clearly, since Fε̄ ⊂ R, it is bounded. If one can prove that the set is also closed, it would
follow that the set can be covered by finitely many rectangles whose colome can be shown to be arbitrarily
small. We won’t prove the claims in the previous sentence, as the results are quite technical.

LetM = supR |f |, and let R1, . . . , Rk be closed rectangles such that

Fε̄ ⊂
k⋃
i=i

Ri and
k∑

i=1

v(Ri) <
ε

4M
.
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By Lemma 5.1, there exists a partition P such that

U(f, P )− L(f, P ) < ε̄v(R) + 2M · ε

4M
=
ε

2
+
ε

2
= ε.

Since ε is arbitrary, f is Riemann-integrable.

The theorem above offers a powerful criterion for verifying whether a function is Riemann-integrable. For
example, the following corollary establishes that the product of Riemann-integrable functions is Riemann-
integrable.

Corollary 5.6. Let f, g : R→ R be Riemann-integrable. Then fg is Riemann-integrable.

Proof. Let

F := {x ∈ R : f is discontinuous at x}, and G := {x ∈ R : g is discontinuous at x}.

Since the product of continuous functions is continuous, if

H := {x ∈ R : fg is discontinuous at x},

then H ⊂ F ∪ G. If f and g are Riemann-integrable, then F and G are of measure zero. Therefore, H is of
measure zero and fg is Riemann-integrable.
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Appendix A

Useful facts from analysis in one variable

We present, without proof, some important facts from real analysis of a single variable.

Theorem A.1 (The ε-principle [5]). Consider a real number 0 ≤ x such that 0 ≤ x < ε for all ε > 0. Then
x = 0.

Proof. We will proceed by contradiction and assume that there exists a real number x 6= 0 and such that
0 ≤ x < ε for all ε > 0. This would imply that 1 < ε/x for all ε > 0. Therefore, letting ε = x it must hold
that 1 < ε/x = x/x = 1, which is a contradiction. Therefore x = 0.

Definition A.1. Let E ⊂ R be a non empty set. A number x ∈ R is called:

• An upper bound of E if x ≥ e for all e ∈ E.

• A lower bound of E if x ≤ e for all e ∈ E.

A set is said to be bounded from above if it has at least one upper bound, bounded from below if it has at
least one lower bound and simply bounded if it has both upper and lower bounds.

The axiom of the infimum/supremum. The following properties will be taken as an axiom of the real
number system:

• If E ⊂ R is non empty and bounded from above, then there exists S ∈ R such that if U is an upper
bound of E, then S ≤ U . This number is called the supremum or the least upper bound of E, and is
denoted as sup(E).

• If E ⊂ R is non empty and bounded from below, then there exists I ∈ R such that if L is a lower
bound of E, then I ≥ L. This number is called the infimum or the greatest lower bound of E, and is
denoted as inf(E).

An alternate characterization of the infimum and supremum that is particularly useful to build convergent
sequences is given in the following Theorem.

Theorem A.2. Let E ⊂ R be a non empty set.
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R

[a1, b1]
[a2, b2]
[a3, b3]

...
...

[an, bn] ...
...

xa1 b1a2 b2a3 b3an· · · bn · · ·

Figure A.1: Nested interval theorem: The uncountable intesection of closed nested intervals whose length decreases to zero
contains a single point.

1. If E is bounded from above and is S an upper bound of E. Then S = sup(E) if and only if for all ε > 0
there exists e ∈ E such that S − ε < e.

2. If E is bounded from below and I is a lower bound of E. Then I = inf(E) if and only if for all ε > 0 there
exists e ∈ E such that I + ε > e.

The supremum and infimum have several important properties associated with the sum and multiplication of
sets.

Lemma A.1. If A ⊂ R is non-empty and bounded and c ∈ R, then

1. If c > 0 then
i) inf(cA) = c inf(A) and ii) sup(cA) = c sup(A).

2. If c < 0 then
iii) inf(cA) = c sup(A) and iv) sup(cA) = c inf(A).

The existence of the supremum and infimum can be used to show the completeness of R i.e., the fact that
every Cauchy sequence in R converges. The proof of tht fact starts from the assumption that the infimum
and supremum exist, and one then proves the three follwoing results in succession.

Theorem A.3 (Nested interval theorem). Let In := [an, bn] be a family of closed and nested intervals

I1 ⊃ I2 ⊃ . . . ⊃ In ⊃ In+1 ⊃ . . .

such that |In| := |bn−an| → 0 as n→ ∞. Then, the intersection ∩∞
n=1In contains exactly one point (See Figure

A.1).

Theorem A.4 (Bolzano-Weierstrass theorem). Let {xn} ⊂ R be a bounded sequence. Then there exists a
subsequence {xnk

} ⊂ {xn} that converges to a point x ∈ R.

Theorem A.5 (Completenness of the real line). Let {an}∞n=1 ⊂ R be a Cauchy sequence. Then, there exists
a ∈ R such that

a = lim
n→∞

an.

In words: every Cauchy sequence of real numbers is convergent.
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Lemma A.2 (Fundamental lemma of differentiation). Let f : R → R be differentiable at a point x0. Then,
there exists a real-valued function η, defined in an interval around zero such that η is continuous at zero and

η(0) = 0, (A.1a)
f(x) = f(x0) + (x− x0)(f

′(x0) + η(x− x0)). (A.1b)

Proof. We will simply define a function that satifies these two properties by construction, and will then show
that it is indeed continuous at zero. Define

η(h) :=

{
f(x0+h)−f(x0)

h − f ′(x0) if h 6= 0

0 if h = 0.
(A.2)

Letting h = x − x0 in the definition above, it is easy to see that properties (A.1a) and (A.1b) are satisfied by
construction, while from the definition of η and the fact that f is differentiable at x0 we have

lim
h→0

η(h) = lim
h→0

(
f(x0 + h)− f(x0)

h
− f ′(x0)

)
= f ′(x0)− f ′(x0) = 0 ,

and thus η is continuous at 0 as desired.

Remark A.1. The value of the function η can be interpreted as a measure of how far from the derivative the
Newton quotient is as h approaches zero. Clearly, if the function is differentiable, the “distance” must decrease
smoothly as h→ 0 and should vanish on the limit. This is the intuitive interpretation of (A.1a) and the continuity
of η at zero. Moreover, (A.1b) states that, if a function is differentiable at a point x0, one can approximate it in
the vicinity of x0 by the straight line going through the point (x0, f(x0)) and with slope given by f ′(x0) as

f(x) ≈ f(x0) + (x− x0)f
′(x0)

incurring an error that vanishes faster than the distance between the evaluation point x and the approximation
point x0, as measured by the magnitude of the term (x−x0)η(x−x0). Due to this geometric interpretation, the
lemma is also known as the linear approximation lemma.

The following result is sometimes called the generalized mean value theorem and some other times the
Cauchy’s mean value theorem.

Theorem A.6 (Generalized mean value theorem). If the functions f, g : R → R are both continuous over
the interval [a, b] and differentiable over (a, b), then there exists a point c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

Proof. Since both f and g are continuous over the interval [a, b] and differentiable over (a, b), the function
h : R → R defined as

h(x) := (g(b)− g(a))f(x)− (f(b)− f(a))g(x)

is also continuous over [a, b] and differentiable over (a, b). Moreover, simple algebraic manimpulations show
that

h(a) = (g(b)− g(a))f(a)− (f(b)− f(a))g(a)

= g(b)f(a)− g(a)f(b)

= g(b)f(a)− g(b)f(b) + f(b)g(b)− g(a)f(b)

= (g(b)− g(a))f(b)− (f(b)− f(a))g(b)

=h(b).
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We can therefore apply Rolle’s theorem to obtain a point c ∈ (a, b) such that

0 = h′(c) = (g(b)− g(a))f ′(c)− (f(b)− f(a))g′(c),

from which the theorem follows.
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Essential point-set topology

The topology of a space allows us to study basic concepts of analysis, such as convergence and compactness.
In this section, we will introduce the basic topological properties of the Euclidean space.

Definition B.1. We say that U ⊂ Rn is an open set if, for every x ∈ U , there exists ε > 0 such that
Bε(x) ⊂ U .

Example B.1. The sets ∅ and Rn are open. The case of Rn is clear; however, the fact that ∅ is open follows
from a technical convention in formal logic: in a conditional statement of the form A ⇒ B, when the hy-
pothesis A is false, then the conclusion B is considered to be true. Therefore, “x ∈ ∅” is false for any x, the
statement “If x ∈ ∅, then there exists ε > 0 such that Bε(x) ⊂ ∅,” is true.

Example B.2. An open ball is an open set (See Figure B.1). To show this, consider the ball:

Br(x) = {y ∈ Rn : |x− y| < r},

and let y ∈ Br(x). Let δ = r−|x−y|
2 and z ∈ Bδ(y). Then, by the triangle inequality:

|z − x| ≤ |z − y|+ |y − x| ≤ δ + |x− y| = 1

2
r +

1

2
|x− y| < r,

so z ∈ Br(x), and therefore Bδ(y) ⊂ Br(x).

Example B.3. An open rectangle

R = (a1, b1)× (a2, b2)× · · · × (an, bn),

is an open set. Let x ∈ R, and let ε be the smallest one-dimensional distance between the components of x
and the endpoints of their respective intervals; i.e.

ε :=
1

2
min{x1 − a1, b1 − x1, . . . , xn − an, bn − xn}.

With this choice for ε it follows that Bε(x) ⊂ R.
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Br(x)

r

x

y Bδ(y)
δ

δ < r − |x− y|

R
x

Bε(x)

ε

x1

x2

a2

b2

a1 b1

ε < min{|xi − ai|, |xi − bi|} ∀ 1 ≤ i ≤ n

Figure B.1: Open balls and open rectangles in Rn are open sets.

The previous example allows us to conclude the following proposition, which provides an equivalent defini-
tion of an open set that can be useful when working on the Cartesian setting.

Proposition B.1. U ⊂ Rn is open if and only if, for every x ∈ U , there exists an open rectangle R such that
x ∈ R and R ⊂ U .

Proof. Let U be open and x ∈ U . Then there exists ε > 0 such that Bε(x) ⊂ U . Let

R =

(
x1 −

ε√
n
, x1 +

ε√
n

)
×
(
x2 −

ε√
n
, x2 +

ε√
n

)
× · · · ×

(
xn − ε√

n
, xn +

ε√
n

)
.

Then x ∈ R and R ⊂ Bε(x) ⊂ U .

Now suppose that for every x ∈ U , we can find an open rectangle R = (a1, b1) × (a2, b2) × · · · × (an, bn)
such that x ∈ R and R ⊂ U . Let

ε =
1

2
min{x1 − a1, b1 − x1, . . . , xn − an, bn − xn}.

Then Bε(x) ⊂ R ⊂ U , and therefore U is open. �

If x ∈ Rn, a neighborhood of x is an open set U ⊂ Rn that contains x, i.e., x ∈ U .

Definition B.2 (accumulation point). Let A ⊂ Rn and x ∈ Rn. We say that x is an accumulation point of
A if, for every r > 0, the set of Br(x) ∩A is infinite1.

Analogous to the definition of an open set, we can show that x is an accumulation point of A if and only if,
for every open rectangle R such that x ∈ R, R ∩ A is infinite. In general, x is an accumulation point of A if
every neighborhood of x contains an infinite number of points in A.

If the setA has any accumulation points, thenA, by the previous definition, is infinite. Additionally, if x is an
accumulation point of A, it does not necessarily follow that x ∈ A. However, if x is an accumulation point
of A and x /∈ A, then we can “approach” x arbitrarily closely from A; that is, for every r > 0, there exists
y ∈ A such that |x− y| < r.

Proposition B.2. Let A ⊂ Rn and x ∈ Rn. x is an accumulation point of A if and only if, for every r > 0,

Br(x) ∩ (A \ {x}) 6= ∅.
1The expression “the set A is infinite” should be understood as “the cardinality of A is infinite”
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That is, x is an accumulation point of A if and only if every ball around x contains points of A distinct from x.

Clearly, if x is an accumulation point of A, Br(x) ∩ (A \ {x}) 6= ∅ because Br(x) ∩A is infinite.

To show the converse, suppose x is not an accumulation point of A. Then there exists r > 0 such that
Br(x) ∩ A is finite. If Br(x) ∩ A is equal to {x} or empty, then Br(x) ∩ (A \ {x}) = ∅. Suppose instead
that:

Br(x) ∩A = {x1, . . . , xk} 6= {x},

and let δ = 1
2 min{|xi − x| : xi 6= x}. Then Bδ(x) ∩ (A \ {x}) = ∅. � Of course, this proposition can also

be equivalently stated using open rectangles.

Definition B.3 (Closed set). We say that A ⊂ Rn is closed if it contains all its accumulation points.

This definition suggests that a closed set does not have ”nearby external points,” hence the name ”closed.” In
particular, if A is closed and x /∈ A, by Proposition 1.16 there exists r > 0 such that Br(x) ∩ A contains at
most x. Since x /∈ A, Br(x) ∩A is empty.

Example B.4. The sets ∅ and Rn are closed. It is clear that Rn contains all its accumulation points because
it contains all its points, while ∅ has no accumulation points.

Example B.5. Like the empty set, any set without accumulation points is closed. This includes finite sets
and the lattice:

Zn = {(k1, k2, . . . , kn) : ki ∈ Z}.

Example B.6. A closed rectangle R = [a1, b1]× [a2, b2]× · · · × [an, bn] is a closed set. If x /∈ R, then some
coordinate xi /∈ [ai, bi], meaning xi < ai or xi > bi. If we define:

ε =
1

2
max{ai − xi, xi − bi},

then ε > 0 andBε(x)∩R = ∅, so x is not an accumulation point ofR. Thus, R contains all its accumulation
points and is closed.

Now let us examine the relationship between closed and open sets.

Proposition B.3. A ⊂ Rn is closed if and only if Rn \A is open2.

Proof. ⇒ Suppose A is closed and x ∈ Rn \ A. Since x /∈ A, x is not an accumulation point of A, so there
exists ε > 0 such that Bε(x) ∩A = ∅. That is, Bε(x) ⊂ Rn \A. Hence, Rn \A is open.

⇐ Now suppose Rn \A is open and x /∈ A. Then x ∈ Rn \A. Since Rn \A is open, there exists ε > 0 such
that Bε(x) ⊂ Rn \ A. Thus, Bε(x) ∩ A = ∅, meaning x is not an accumulation point of A. Therefore, A is
closed.

2This proposition allows us to define a closed set equivalently as the complement of an open set, without reference to accumulation
points. Conversely, it also provides an alternative: we can first define closed sets through their accumulation points and then define
an open set as the complement of a closed set. Either approach is valid for defining the topology onRn, and both are used in different
analysis texts depending on the author’s preference.

82



Chapter B: Essential point-set topology

A xa2

a1

ac1

ac2

Figure B.2: Every neighborhood around aboundary point x ∈ ∂A contiains points from the set A (other than itself) and
from its complement Ac.

Definition B.4 (Boundary of a set). Let A ⊂ Rn. The boundary of A, denoted ∂A, is the set of x ∈ Rn

such that, for every ε > 0:

Bε(x) ∩A 6= ∅ and Bε(x) ∩ (Rn \A) 6= ∅.

That is, a point x is a boundary point if every ball around x intersects both A and its complement Rn \ A
(Figure B.2). In this case we write x ∈ ∂A. Equivalently, x ∈ ∂A if and only if, for every open rectangle R
containing x:

R ∩A 6= ∅ and R ∩ (Rn \A) 6= ∅.

Note that if x ∈ ∂A, then x is an accumulation point of A or Rn \A. Moreover, if x is an accumulation point
of A and x /∈ A, then x ∈ ∂A (Exercise 12).

Additionally, we observe that ∂A = ∂(Rn \A).

Example B.7.
∂Rn = ∂∅ = ∅.

Example B.8. The boundary of a ball is the sphere that surrounds it. In fact:

∂Br(x) = ∂B◦
r (x) = Sr(x).

Moreover:
∂Sr(x) = Sr(x).

Example B.9. If R = (a1, b1)× · · · × (an, bn), then:

∂R = {a1} × [a2, b2]× · · · × [an, bn] ∪ {b1} × [a2, b2]× · · · × [an, bn] ∪ · · · ∪ [a1, b1]× · · · × {bn}.

That is, ∂R is the union of the ”faces” of R.

Example B.10. LetQ = [0, 1]∩Q and considerQ× [0, 1] ⊂ R2. If x ∈ [0, 1]× [0, 1] and x ∈ (a, b)× (c, d),
then there exists:

q ∈ (a, b) ∩ [0, 1] ∩Q,

so that (q, x2) ∈ Q× [0, 1]. Moreover, there exists:

α ∈ (a, b) ∩ [0, 1] \Q,

so that (α, x2) ∈ R2 \ (Q× [0, 1]). Therefore:

∂(Q× [0, 1]) = [0, 1]× [0, 1].
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Proposition B.4. Let A ⊂ Rn. The boundary of A is closed.

Proof. We will show that the complement of the boundary is an open set. From the definition B.4 of the
boundary we see that x ∈ (∂A)c if and only if there exists r0 > such that either of the following conditions
holds

Br0(x) ∩A = ∅ or Br0(x) ∩Ac = ∅.

In either case, we see that there is a ball around x that contains poins only of A or only of Ac. Thus neither
of the points of this ball belongs to ∂A and so Br0(x) ⊂ (∂A)c. This proves that (∂A)c is open and therefore
∂A is closed.

Definition B.5 (Closure of a set). Let A ⊂ Rn. The closure of A, denoted by A, is defined as the union of
A and its accumulation points.

Alternatively, the closure ofA is the union of itself with its boundary (Exercise 15). The following proposition
establishes some properties of the closure.

Proposition B.5. Let A ⊂ Rn.

1. A is closed.

2. If E is closed and A ⊂ E, then A ⊂ E.

3. If A ⊂ B, then A ⊂ B.

4. A = A.

Proof. 1. Let x be an accumulation point of A, and let R be a rectangle containing x. We want to show
that R ∩ A is infinite, such that x is an accumulation point of A and hence x ∈ A. Otherwise, since
R ∩ A is infinite, we can take y ∈ R ∩ (A \ A). But then y is an accumulation point of A, and since
y ∈ R, R ∩A is infinite, leading to a contradiction.

2. If x is an accumulation point of A and A ⊂ E, then x is an accumulation point of E. Since E is closed,
x ∈ E. Hence, A ⊂ E.

3. The proof is similar to (2) (Exercise 16).

4. By definition, A ⊂ A. Now, from (1) and (2), since A is closed:

A ⊂ A.

Part (2) of Proposition B.5 implies that the closure of the set A is the ”smallest” closed set that contains A.

Definition B.6. Let A ⊂ Rn. The interior of a set A is defined as:

int(A) = A◦ = {x ∈ A : there exists ε > 0 such that Bε(x) ⊂ A}.

The exterior of a set A is defined as the set:

ext(A) = {x ∈ Rn \A : there exists ε > 0 such that Bε(x) ∩A = ∅}.
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Similar to the closure, the interior ofA is now the ”largest” open set contained inA (Exercise 11). Additionally,
we note that:

ext(A) = int(Rn \A).
The following proposition follows easily from the definitions (Exercise 12).

Proposition B.6. Let A ⊂ Rn.

1. A◦ = A \ ∂A.

2. ext(A) = int(Rn \A).

Example B.11.
Q◦ = ∅ and Q = R.

Note that in this case, the interior is empty, even though the closure is ”large.”

B.1 Exercises

1. Show that U ⊂ Rn is open if and only if, for every x ∈ U , there exists ε > 0 such that:

Bε(x) ⊂ U.

In other words, open sets can be defined in terms of open balls.

2. Show that a half-space is open.

3. Show that if {Uα} is a collection of open sets in Rn, then the union:⋃
α

Uα

is an open set.

4. Show that if U1, U2, . . . , Uk are open sets in Rn, then the intersection:
k⋂

i=1

Ui

is an open set.

5. Show that x is an accumulation point of A if and only if, for every open rectangle R containing x,

R ∩ (A \ {x}) 6= ∅.

6. Show that, if x /∈ A, then x ∈ ∂A if and only if x is an accumulation point of A.

7. Show that if A is closed and x ∈ ∂A, then x ∈ A.

8. Show that, for any A ⊂ Rn,
∂A = A ∩ (Rn \A).

9. Show that:
A = A ∪ ∂A.

10. Prove the third part of Proposition 1.28.

11. Let A ⊂ Rn and U ⊂ A be open. Show that U ⊂ intA.

12. Prove Proposition B.6.

85



Appendix C

Elements of linear algebra

We say that vectors u1, u2, . . . , um ∈ Rn span Rn if for every x ∈ Rn, there exist scalars α1, . . . , αm ∈ R
such that:

x = α1u1 + α2u2 + · · ·+ αmum.

When the equality above is verified, we say thatx is a linear combination of the vectorsu1, u2, . . . , um.

We say that u1, u2, . . . , um are linearly independent if:

α1u1 + α2u2 + · · ·+ αmum = 0

implies that:
α1 = α2 = · · · = αm = 0.

We say that the set of vectors u1, u2, . . . , um is a basis of Rn if they span Rn and are linearly independent.
The proof of the following theorem can be found in any text on linear algebra

Theorem C.1. If the set {u1, u2, . . . , um} forms a basis of Rn, thenm = n.

If u1, u2, . . . , um form a basis of Rn, then for every x ∈ Rn, there exist unique scalars α1, α2, . . . , αn such
that:

x = α1u1 + α2u2 + · · ·+ αnun.

The canonical basis of Rn consists of the vectors e1, e2, . . . , en, where:

ei = (0, 0, . . . ,
i-th
1 , . . . , 0).

If x ∈ Rn,
x = (x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen.

We say that u1, u2, . . . , un form an orthonormal basis they are a basis and if the vectors are mutually
orthogonal and unitary, that is, |ui| = 1 for all i.

Proposition C.1. Let u1, u2, . . . , un be an orthonormal basis of Rn and x, y ∈ Rn. Then

1. x = (x · u1)u1 + · · ·+ (x · un)un.

2. |x| =
√∑

i(x · ui)2.

3. x · y =
∑n

i=1(x · ui)(y · ui).
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Proof. Since u1, u2, . . . , un is a basis of Rn, every x ∈ Rn can be expressed in the form

x = α1u1 + α2u2 + · · ·+ αnun.

Then:
x · ui = (α1u1 + α2u2 + · · ·+ αnun) · ui = αi(ui · ui) = αi,

where in the last two equalities we used the orthonormality of the set. This proves 1. Using the property 1,
we have:

|x|2 = x · x =

(
n∑

i=1

(x · ui)ui

)
·

(
n∑

i=1

(x · ui)ui

)
=

n∑
i,j=1

(x · ui)(x · uj)(ui · uj).

Since the set u1, u2, . . . , un is orthonormal it follows that:

|x|2 =
n∑

i=1

(x · ui)2,

and the second property follows readily. Similarly, to prove 3 we observe that

x · y =

(
n∑

i=1

(x · ui)ui

)
·

(
n∑

i=1

(y · ui)ui

)
=

n∑
i,j=1

(x · ui)(y · uj)(ui · uj) =
n∑

i=1

(x · ui)(y · ui),

where once again we used the orthonormality of the basis in the last step.

The space generated by the vectors v1, v2, . . . , vr is the subspace of Rn formed by all linear combinations of
v1, v2, . . . , vr, and we denote it by span{v1, v2, . . . , vr}. We will denote the orthogonal projection of x onto
the subspace V by ProjV x. This is the unique vector y ∈ V such that x− y is orthogonal to every vector in
V .

Proposition C.2. If V is the subspace of Rn generated by the orthonormal vectors v1, v2, . . . , vr, then:

ProjV x =

r∑
i=1

(x · vi)vi.

Proof. Since the set v1, v2, . . . , vr is orthonormal, by Proposition C.1 we have that if z ∈ V , then:

z =
r∑

i=1

(z · vi)vi.

Therefore, if y =
∑r

i=1(x · vi)vi, then y ∈ V and, for every z ∈ V :

(x− y) · z =

(
x−

r∑
i=1

(x · vi)vi

)
·

r∑
i=1

(z · vi)vi = x ·
r∑

i=1

(z · vi)vi −
r∑

i=1

(x · vi)(z · vi) = 0.

The following theorem guarantees that, given a space spanned by vectors v1, v2, . . . , vr, we can always choose
an orthonormal basis within it. Its proof is constructive, and the resulting algorithm is known as Gram-
Schmidt orthonormalization.
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Theorem C.2 (Gram-Schmidt orthonormalization). Let v1, v2, . . . , vr be linearly independent vectors in Rn.
Then there exist orthonormal vectors u1, u2, . . . , ur such that:

span{u1, u2, . . . , uk} = span{v1, v2, . . . , vk} for k = 1, . . . , r.

Proof. We take:
u1 :=

v1
|v1|

,

and notice that |u1| = 1. To construct u2, we recall that for any x ∈ Rn it holds that

x = projxu1u1 + (x− projxu1u1) = projxu1u1 + (projxu1u1)
>

and therefore we let:
w2 = v2 − (v2 · u1)u1.

We see that w2 is orthogonal to u1, so we take:

u2 =
w2

|w2|
.

Since u1 and u2 are linear combinations of v1 and v2:

span{u1, u2} ⊂ span{v1, v2}.

Similarly, v1 and v2 are linear combinations of u1 and u2, so:

span{v1, v2} ⊂ span{u1, u2}.

Definition C.1. A matrix A ∈ Rn×n is said to be positive semi-definite (resp. negative semi-definite) if

0 ≤ x>Ax (resp. x>Ax ≤ 0) for all x ∈ Rn.

In addition, if x>Ax = 0 if and only if x = 0, we say that A is positive definite (resp. negative definite).
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