Definition A subset $S \subset \mathbb{R}$ is **compact** if whenever it is contained in the union of a family \mathcal{F} of open sets, then it is contained in the union of some finite number of the sets in \mathcal{F} .

What does this mean? What would it mean for a set S to not be compact?

To show S is not compact, you would have show that there exists a family of open sets \mathcal{F} , whose union contains S, but S is not contained in the union of any finite number of the sets from \mathcal{F} . Let S = (0, 1]. I claim that S is not compact.

Let \mathcal{F} be the family $A_n = (1/n, 2)$. Then

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} (1/n, 2) \supset (0, 1]$$

because for every $x \in (0, 1]$, we can find an n such that 1/n < x, and so $x \in (1/n, 2)$. We want to show that S is not contained in any finite subcover. Assume that S is contained

$$S \subset \bigcup_{k \in I} A_k, \quad I \text{ a finite subset of } \mathbb{N}$$

Let N be the largest integer in I. Then A_N contains all the other A_k 's for $k \in I$. Choose $x \in (0, 1]$ so that x < 1/N. Then $x \in S$, but $x \notin A_N$, so $x \notin A_k$ for any $k \in I$. So we have just proved that (0, 1] is not a compact set.

What about S = [0, 1]? Do the sets A_n cover this set? No, because $0 \in [0, 1]$ but not in any of the A_n .

What if we add one more set to the family in order to cover 0? For example, we could take the union of ${\cal F}$ and

 $\{(-0.000000001, 0.000000001)\}.$

Is there a finite subcover? Yes: we can cover (0, 1] with

(-0.000000001, 0.000000001)

and (1/N, 2) where $N > 10^{10}$. In fact we shall see later that [0, 1] is compact.

A final example: $S = [0, \infty)$. This is not compact because the cover $\{(-1, n) : n \in \mathbb{N}\}$ has no finite subscover.