
Linear Systems

Last time we saw that the solutions a homogeneous system of linear equation
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satisfy the principle of superposition, because the operations of differentiation
and multiplication by a matrix are both linear operations on the vector space
of pairs of differentiable functions. Now consider the system(
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Here are two solution pairs:(
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We now have two solutions(
x1
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)
and
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)
with initial values
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Find solutions satisfying the following sets of initial conditions:

1. (x(0), y(0)) = (1, 0)

2. x(0) = 0, y(0) = 1

3. x(0) = 3, y(0) = −2

So we want to find C1 and C2 so that[
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2C1 + C2 = 1
C1 − 2C2 = 0

C1 = 2/5, C2 = 1/5

So the answer to (1) is
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So the answer to (2) is
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If we want a solution of the form
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satisfying x(0) = x0 and y(0) = y0, then we need to solve the linear equation
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We can satisfy any initial conditions because the initial conditions of our two

original solutions are linearly independent. On the other hand, once we have
found a solution satisfying a given set of initial conditions, we know it is the only
one. So linear combinations of our two solutions form the general solution.

How do we come up with solutions?
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