Linear Systems

Last time we saw that the solutions a homogeneous system of linear equation
Homogeneous linear systems

(m’)_(a(t) b(t))(x)
y' c(t) d(t) y
satisfy the principle of superposition, because the operations of differentiation

and multiplication by a matrix are both linear operations on the vector space
of pairs of differentiable functions. Now consider the system

(v)-(3 %))

Here are two solution pairs:
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We now have two solutions

( 1 > and < T2 > with initial values < 2 ) and < 1 )
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Find solutions satisfying the following sets of initial conditions:
2. 2(0)=0,y(0)=1
3. (0) =3, y(0) = -2

So we want to find C7 and Cy so that

(o) e ()]

L)



(i)l s)=(o)

Ci—20; = 0

C,=2/5,Cy =1/5

So the answer to (1) is
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So the answer to (2) is
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If we want a solution of the form
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satisfying x(0) = z¢ and y(0) = yo, then we need to solve the linear equation
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We can satisfy any initial conditions because the initial conditions of our two
original solutions are linearly independent. On the other hand, once we have
found a solution satisfying a given set of initial conditions, we know it is the only
one. So linear combinations of our two solutions form the general solution.

How do we come up with solutions?
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