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Doubling time

x′ = rx

See Figures 1, 2 and 3.
Notice that the doubling time, T , doubles when the rate, r, halves, and

halves when the rate doubles. This is because

T =
ln 2
r

.

Carrying capacity

x′ = rx(1− x

K
)

On a scale that is small relative to the carrying capacity, the logistic differential
equation looks very like the exponential. See Figure 4. As the scale increases, we
begin to see a falloff from exponential growth. For example, in Figure 5, where
the scale on the vertical axis is 1000, which is 1/10th of the carrying capacity,
the doubling times are no longer all the same, it takes slightly longer for larger
populations to double. Figure 6 shows the effect of the carrying capacity.

Exponential growth with harvesting

x′ = rx− h

Notice that in Figure 7, initial populations above 1000 grow, and ones below
1000 die out. We say that the harvesting rate of 100 is the critical harvesting
rate for an initial population of 1000. In general, given a starting population of
x0, the critical harvesting rate is

hcr =
x0

r
,

because the constant function x = x0 is the solution to

x′ = rx− hcr, x(0) = x0.
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x´ = r*x,       r=0.1
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Figure 1: Doubling time is about 7 when r = 0.1
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x´ = r*x,       r=0.2
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Figure 2: Doubling time is about 3.5 when r = 0.2
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x´ = r*x,       r=0.05
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Figure 3: Doubling time is about 14 when r = 0.05
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x

x´ = r*x*(1-x/K),       r=0.1,       K=10000
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Figure 4: Logistic curves on a small scale
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x

x´ = r*x*(1-x/K),       r=0.1,       K=10000
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Figure 5: Logistic curves on a larger scale
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x

x´ = r*x*(1-x/K),       r=0.1,       K=10000
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Figure 6: Logistic growth showing the carrying capacity
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x

x´ = r*x - h,       r=0.1,       h=100
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Figure 7: Exponential growth with harvesting at a rate of 100 per year

8


