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1. Introduction

The goal of this paper is to initiate a study of the connection between the nontempered Gan–

Gross–Prasad (GGP) conjecture and the Tate conjecture for some product of Shimura varieties. It

is largely inspired by a question raised in [RSZ20, Remark 6.16] which asks for the nonvanishing

properties of the cohomology class of the diagonal cycles of product of Shimura varieties. The main

input is a recent result of Boisseau, Lu and the author [BLX], which confirms the Fourier–Jacobi

case of (tempered) GGP conjecture for unitary group. We do not pursue the maximal generality,

but only put ourselves in the context where ideas are the most transparent and are not buried in

the messy calculations. Extensions to more general situations will be considered in subsequence

work.

Generally speaking the philosophy behind this work can be summarized as “the functoriality

produces Tate cycles, and period integrals can be used to detect whether these Tate cycles come from

some obvious algebraic cycles”. The pioneering work of Harder, Langlands and Rapoport [HLR86]

is the first in this direction. Other more recent works in this direction include the work of Ichino–

Prasanna [IP23], Lemma [Lem20], Sweeting [Swe] and others. These works deal with groups of

small ranks. We attempt to work with unitary groups of arbitrary size in this paper.
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1.1. Statement of the main theorem. Let F be a totally real number field of degree d (assume

d > 1 for simplicity) and E/F a CM extension. Fix an embedding ι : E → C. We Let A = AF and

AE be the ring of adeles of F and E respectively, Af ,AE,f the rings of finite adeles respectively, and
F∞ = ⊗v|∞Fv, E∞ = ⊗v|∞Ev. Let η = ηE/F the quadratic character of E×\A×

E associated to the

extension E/F . Fix an additive character ψ = ⊗ψv of F\A such that ψv(x) = e−2π
√
−1x if v | ∞.

Let n = 2r be an even integer. Write L for the one-dimensional hermitian space E with the

hermitian form given by the norm. Let W be a hermitian space over E of dimension n + 1, and

assume that the signatures of W at the archimedean places are

(n, 1)× (n+ 1, 0)d−1.

The archimedean place where the W is isotropic is ι. Let V =W + L. Then the signature of V is

(n+ 1, 1)× (n+ 2, 0)d−1.

Put G = U(V ) and H = U(W ), which are algebraic groups over F .

Let

DV = {negative lines in V }, DW = {negative lines in W}

be hermitian symmetric domains. Fix open compact subgroups KG,f and KH,f of G(Af) and H(Af).

Then we have the Shimura varieties

X = G(F )\(DV ×G(Af)/KG,f), Y = H(F )\(DW ×H(Af)/KH,f).

They are projective varieties over E (considered as subfields of C via ι) of dimension n and n+ 1

respectively. We always assume that KH,f and KG,f are sufficiently small, and the image of former

in G(Af) is contained in the later, so we obtain a morphism Y → X, and hence a morphism

Y → X × Y . We are mainly interested in the cycle class of Y in the cohomology of X × Y .

Let W ′ be the split skew-hermitian space over E of dimension 2r, and H ′ = U(W ′) the corre-

sponding unitary grouop. Denote by 1 the trivial character of A×
E/E

×. Fix a character µ = ⊗µv
of A×

E/E
× such that µ|A×

F
= η and that µv(z) = z/

√
zz if v | ∞. We will consider theta lifts from

H ′ to G and from H to H ′. For H ′ ×G, we use the trivial character to split the metaplectic cover.

For H ′×H we use the character µ to split the metaplectic cover. We refer the readers to Section 2

for more details.

The following is the main theorem of this paper, and will be proved in Subsection 5.3.

Theorem 1.1. Let π′, σ′ be irreducible cuspidal tempered automorphic representations of H ′(A)
such that π′∞ and σ′∞ are discrete series representations. Assume that π is the theta lift of π′ and

σ∨ is the theta lift of σ′∨ (the notation −∨ stands for the contragradient), and assume that π and

σ are cohomological (with respect to the trivial representation). Then the cycle class of Y in

Hn+1,n+1(X × Y )[(π∨f )
KG,f ⊗ (σ∨f )

KH,f ]
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is not trivial if and only if HomH(Af)(πf ⊗ σf ,C) ̸= 0 and

L(s, π ⊗ σ)

L(s+ 1
2 , π,Ad)L(s+

1
2 , σ,Ad)

∣∣∣
s= 1

2

̸= 0.

Remark 1.2. We will show in Lemma 4.3 that

HomH∞(π∞ ⊗̂σ∞,C) ̸= 0.

Remark 1.3. By [GGP20, Theorem 9.7], the L-function

L(s, π ⊗ σ)

L(s+ 1
2 , π,Ad)L(s+

1
2 , σ,Ad)

is holomorphic at s = 1
2 , and its value at s = 1

2 differs from L(12 , π
′⊗σ′⊗µ−1) by a nonzero factor.

So we may replace this condition on the L-functions by L(12 , π
′ ⊗ σ′ ⊗ µ−1) ̸= 0.

1.2. What do Arthur, Kottwitz and Tate say? We now examine the theorem in view of

Kottwitz conjecture and Tate conjecture.

We will also make use of Arthur’s conjecture on endoscopic classifications of automorphic forms

on unitary groups, and in particular Arthur’s multiplicity formulae. They are established for unitary

groups that are either quasi-split or of (rational) rank at most one, cf. [CZ,Mok15]. All groups we

consider in this paper satisfy these conditions.

We follow the convention that a (global) A-parameter (for unitary groups) is a formal sum⊕
d

Πd ⊗ SymdC2,

where Πd is an irreducible cuspidal automorphic representation of GLnd
(AE) (for some positive

integer nd) which is conjugate selfdual of sign (−1)nd−1, and SymdC2 is the d + 1 dimensional

irreducible representation of SL2(C). The A-parameters of π and σ are

(1.1) Π = Π′
⊕

(1⊗Sym1C2), Σ = µ−1Σ′
⊕

1

respectively, where Π′ and Σ′ stand for the A-parameter of π and σ respectively (which are auto-

morphic representation of GLn(AE)), and 1 stands for the trivial representation of GL1(AE).
We note that σ∞ is a discrete series representation, so it contributes only to the middle cohomol-

ogy. Moreover Arthur’s multiplicity formula implies that σ∞ is the only irreducible representation

of H∞ which makes σf ⊗ σ∞ automorphic. Computation of the cohomology of σ∨∞ gives that

H∗(Y )[(σ∨f )
KH,f ] = Hr,r(Y )[(σ∨f )

KH,f ] = (σ∨f )
KH,f ⊗Hr,r(h,KH∞ , σ

∨
∞).

The group KH∞ is a fixed maximal compact subgroup of H(F∞). The Lie algebra cohomology

Hr,r(h,KH∞ , σ
∨
∞) on the right hand side is one dimensional.

Choose a number field L over which (σ∨f )
KH,f is defined. Let HH,L be the Hecke algebra of

bi-KH,f -invariant functions valued in L. Fix a prime l and a place λ of L over l. Let E be the

algebraic closure of E. Then H2r(YE , Lλ)[(σ
∨
f )
KH,f ] admits an action of HH,L × ΓE . The Shimura
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varieties X and Y have canonical models over E, which we denote again by X and Y (in this

subsection only). The conjecture of Kottwitz, cf. [Kot90, Section 10], implies that as a module over

HH,L × ΓE , we have

H2r(YE , Lλ)[(σ
∨
f )
KH,f ] = (σ∨f )

KH,f ⊠ Lλ(−r)

where Lλ(−r) stands for the Tate twist.

Similar considerations applies to π (we may need to enlarge L suitably). Let HG,L be the Hecke

algebra of bi-KG,f invariant functions valued in L. Then as representations of HG,L × ΓE we have

H2(r+1)(XE , Lλ)[(π
∨
f )
KG,f ] = (π∨f )

KG,f ⊠ Lλ(−r − 1).

It follows that as representations of (HG,L ×HH,L)× ΓE , we have

H2(n+1)(XE × YE , Lλ(n+ 1))[(π∨f )
KG,f ⊗ (σ∨f )

KH,f ] = ((π∨f )
KG,f ⊗ (σ∨f )

KH,f )⊗ 1

where 1 stands for the trivial representation of ΓE .

Tate conjecture then predicts that the space H2(n+1)(XE×YE , Lλ(n+1))[(π∨f )
KG,f ⊗ (σ∨f )

KH,f ] is

generated by the cohomology class of an algebraic cycle. An obvious candidate is of course the cycle

class of Y . Theorem 1.1 indeed says that this obvious candidate generates the space if and only if

the conditions in the theorem holds. In particular our main theorem confirms Tate conjecture in

the current context when those conditions hold.

1.3. What do Gan, Gross and Prasad say? We now explain the strategy of the proof of

Theorem 1.1, and connect it to the nontempered GGP conjecture. Assume that the cycle class of

Y in Hn+1,n+1(X ×Y )[(π∨f )
KG,f ⊗ (σ∨f )

KH,f ] is not trivial, and we want to prove the central L-value

is not zero. By Poincare duality, the cycle class of Y being nontrivial means that we can construct

an (n, n)-form α on X × Y such that ∫
Y
α ̸= 0.

Note that by our assumption Hn,n(X × Y )[π
KG,f

f ⊗ σ
KH,f

f ] = Hr,r(X)[π
KG,f

f ] ⊗ Hr,r(Y )[σ
KH,f

f ]. We

construct an (r, r)-form on X via Kudla–Millson’s theta series valued in differential forms. Indeed

one can show that all elements in Hr,r(X)[πf ] are of this form. We pick any differential form in

Hr,r(Y )[σf ]. The resulting integral, after some preliminary reduction steps, reduces to

(1.2)

∫
[H]

θf
′

ϕn+1
(h)φ(h)dh,

where φ ∈ σ, f ′ ∈ π′ are automorphic forms on [H] and [H ′] respectively, ϕn+1 ∈ S(V (A)r) is

a Schwartz function, and θf
′

ϕn+1
stands for the theta lift. Our assumption implies that θf

′

ϕn+1
is

a nontempered (cuspidal) automorphic form on [G], and the integral (1.2) is precisely the one

appearing in the global nontempered GGP conjecture, cf. [GGP20, Section 9]. Though we do not

state it explicitly as a theorem, computing this integral indeed proves a case of the nontempered

GGP conjecture.
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The integral (1.2) is computed using the seesaw method, and is reduced to the Fourier–Jacobi

period integral for π′⊗σ′. Its connection to the central L-functions is the content of the (tempered)

GGP conjecture for H ′ ×H ′, and this conjecture is recently proved in [BLX]. This establishes the

forward implication. The backward implication can be proved by reversing this argument.

The idea of the proof as outlined above is very simple, and is carried out in Section 5. Originally

my goal was to write to a short note elaborating the above arguments. However we need to deal with

various technical issues, which makes this paper much longer than what I expected. These issues

are taken care of in Sections 2–4. We review theta lifts and doubling zeta integrals in Section 2

and 3 respectively, and establish necessary representation-theoretic results in Section 4. Most of

these materials are either well understood or expected by the experts. Experienced readers are

recommended to skip these sections on their first reading.

1.4. Notation and Convention. Throughout this paper, E/F will stand for either a CM field

extension as above, or its completion at a place. In the later case F is either a nonarchimedean

local field of characteristic zero, or F = R. In either case we write |·| for the absolute value on F

or A, and put |z|E = |NE/F z| where z ∈ AE or E.

Assume F is a number field. For all objects which are products of objects over all places in

a suitable sense, e.g. automorphic representations, characters, L-functions, adelic groups etc., we

write A = ⊗vAv, Af = ⊗v∤∞Av and A∞ = ⊗v|∞Av.

Assume that F is a local field of characteristic zero and V a finite dimensional vector space

over F . We denote by S(V ) the space of Schwartz functions on V . If F = R these are the usual

Schwartz functions on V . If F is nonarchimedean these are locally constant functions on V with

compact support.

Let G be an algebraic group over F . If F is a number field we put [G] = G(F )\G(A), and if

v is a place we write Gv = G(Fv). If F is a local field of characteristic zero, we simply write G

for its group of F -points G(F ). When F is a nonarchimedean local field of characteristic zero, a

representation of G means a smooth representation. When F = R, a representation of G means a

smooth Frechet representation of moderate growth.

If F = R and G an algebraic group over F , we often use the lower case gothic letter g to denote

its Lie algebra. Let K be a maximal compact subgroup of G. We also work with (g,K)-modules.

A Harish-Chandra module is an admissible (g,K)-module of finite length. The notation extends

to the case when F is a number field, in which case g stands for the Lie algebra of G∞.

We almost work exclusively with unitarizable representations in this manuscript. Whenever we

have a unitarizable representation we denote by ⟨−,−⟩ a fixed (hermitian) inner product on it. The

convention is that it is linear in the first variable and anti-linear in the second variable.

1.5. Acknowledgement. This work grows out of various chats with Wei Zhang, and I thank him

sincerely for his constant and generous sharing of his insight into the subject. I am also very
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grateful to Yihang Zhu for clarifying many of my confusions on Kottwitz’s conjecture. This work

is partially supported by the NSF grant DMS #2154352.

2. Weil representations and Theta lifts

We fix some notation and conventions on Weil representations and theta lifts in this section. We

do not pursue generality of the setup but only work with what we need.

2.1. Weil representations. Let us first consider the local situation. We fix a place v of F and

suppress from all notation. Then F stands for a local field of characteristic zero. Recall that we

fixed a nontrivial additive character ψ of F . If F = R, then our ψ agrees with the choices made

in [Pau98,Pau00]. It also agrees with the choice made in [Ato20], cf. [Ato20, p. 32].

Let r be an integer andW ′ be a split skew-hermitian space of dimension 2r. Let V be a hermitian

space of dimension n. We fix a character χ : E× → C× such that χ|F× = ηn and use χ to split the

metaplectic cover over U(W ′)×U(V ), cf. [Kud94]. There is a Weil representation of U(W ′)×U(V )

which is realized on S(V r). The explicit formulae for the Weil representation can be found in many

references, e.g. loc. cit.. This realization of the what is usually referred to as the Schrodinger

model in the literature. We denote the Weil representation often by ωV . Other relevant data are

omitted from the notation as they are all fixed throughout our discussions.

2.2. The Fock model. We now assume that F = R. We recall some basics about the Fock

models for the (infinitesimal) Weil representation of U(W ′) × U(V ). Many calculations later in

this paper will be done in this model. A rather detailed description of the Fock model is given

in [FH21, Appendix]. We just summarize what we need.

Assume that the signature of V is (p, q), and p + q = n. We choose basis w1, . . . , w2r of W ′

and v1, . . . , vn of V , such that the skew-hermitian form and the hermitian form respectively are

represented by the matrices (√
−11r

−
√
−11r

)
,

(
1p

−1q

)
Let W ′

C =W ′ ⊗R C, and W = V ⊗C W
′
C. Define elements in W ′

C

w′
i = wi ⊗ 1 +

√
−1wi ⊗

√
−1, w′′

i = wi ⊗ 1−
√
−1wi ⊗

√
−1, 1 ≤ i ≤ r,

and (note the sign change)

w′
i = wi ⊗ 1−

√
−1wi ⊗

√
−1, w′′

i = wi ⊗ 1 +
√
−1wi ⊗

√
−1, r + 1 ≤ i ≤ 2r.

Let W′′ be the subspace of W spanned by

va ⊗ w′′
j , 1 ≤ a ≤ p, 1 ≤ j ≤ 2r

and

va ⊗ w′
j , p+ 1 ≤ a ≤ n, 1 ≤ j ≤ 2r.
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The Fock model of the (infinitesimal) Weil representation, is the space of polynomials in W′′, on

which the Lie algebra u(W ′)C×u(V )C acts. We denote by Z = (zaj)1≤a≤n,1≤j≤2r the n×2r matrix

of variables and make the partition

Z =

(
Z++ Z+−

Z−+ Z−−

)
where Z++ is of size p× r. The action of u(W ′)C× u(V )C is given by some explicit formulae which

are documented in [FH21, Lemma B.1, B.2].

We denote by K ≃ U(p)×U(q) and K ′ ≃ U(r)×U(r) maximal compact subgroups of U(V ) and

U(W ′) respectively. The action of k′C × kC exponentiates to an action of K̃ ′ ×K where K̃ ′ stands

for a double covers of K ′. The Fock model is a representation of

(u(W ′)C, K̃ ′)× (u(V )C,K).

Note that there is no cover ofK because of our particular situation thatW ′ is a split skew-hermitian

space of dimension 2r. The double cover of K ′ can be described as follows. Let ν be an integer

with the same parity as p− q, then a det
ν
2 -cover of U(W ′) stands for

Ũ(W ′) = {(g, z) ∈ U(W ′)× C× | (det g)ν = z2},

and K̃ ′ stands for the subgroup where g ∈ K ′. There is a genuine character

det
ν
2 : Ũ(W ′) → C×, det

ν
2 (g, z) = z.

Different choices of ν give isomorphic groups. If p− q (hence ν) is even, then Ũ(W ′) is isomorphic

to U(W ′)× {±1}.
The action of K̃ ′ is given by

((k′1, k
′
2), ϵ) · p(Z) = ϵ−1(det k′1)

p−q+ν
2 (det k′2)

− p−q−ν
2 p

(
Z++k′1 Z+−k′2

Z−+k′1 Z−−k′2

)
.

Note that the derivative of this action is independent of the choice ν (the formulae given in [FH21,

Lemma B.2]). The action of K is

(k1, k2) · p(Z) = p

(
k−1
1 Z++ k1

−1
Z+−

k2
−1
Z−+ k−1

2 Z−−

)
.

Note that there is no cover over K because of our particular situation that W ′ is split of dimension

2r.

We have a natural homomorphism

U(W ′)×U(V ) → Sp(4rn).

Let χ : C× → C× be the character given by χ(z) =
(
z/

√
zz
)ν
. One the one hand, this character

gives rise to a splitting

αχ : U(W ′) → Mp(4rn)
7



where Mp(4rn) is the C1-metaplectic covering of Sp(4rn). On the other hand, we have a homo-

morphism

α̃W ′ : Ũ(W ′) → S̃p(4rn) → Mp(4rn),

where the image of Ũ(W ′) in S̃p(4rn) is the inverse image of U(W ′) in S̃p(4rn) and S̃p(4rn) →
Mp(4rn) is the natural map. Let Ω be the oscillator representation of Mp(4rn). By [Ato20,

Proposition 3.2] we have

Ω ◦ α̃W ′ = (Ω ◦ αχ)⊗ det−
ν
2 .

So once we choose the character χ and hence the splitting, the group K ′ acts by

(k′1, k
′
2) · p(Z) = (det k′1)

p−q+ν
2 (det k′2)

− p−q−ν
2 p

(
Z++k′1 Z+−k′2

Z−+k′1 Z−−k′2

)
.

For the rest of this paper, by the Weil representation ωV (or its Fock model), we always mean the

representation of the unitary group (or the relevant (g,K) module) via the splitting given by a

fixed character µ, not the double cover.

We now come to the (probably) more familiar Schrodinger model S(V r) of the Weil represen-

tation. The coordinates on V r are given by a matrix X = (xi,a), 1 ≤ i ≤ n and 1 ≤ a ≤ r. The

Gaussian function on V r is

φ0(X) = e−πTr
t
XX .

Let S(V r)† ⊂ S(V r) be the subspace consisting of functions of the form

p(X,X)φ0(X),

where p is a polynomial function. The K action is given simply by

k · (pφ0)(X) = p(k−1X, k−1X)φ0(X).

The K ′ action is given by

(k′1, k
′
2) · (pφ0)(X) = (det k′1)

p−q+ν
2 (det k′2)

− p−q−ν
2 p(Xk′1, Xk

′
2)φ0(X).

There is an intertwining map between the Fock model and the Schrodinger model. Then there

is an isomorphism β : S(V r)† → P, which sends φ0 to 1, and satisfies the following relations.

To simplify notation, we write ∂a,j for derivative with respect to xa,j and ∂a,j for derivative with

respect to xa,j .

(2.1)

β(xa,j −
1

π
∂a,j)β

−1 = −
√
−1√
2π
za,j , 1 ≤ a ≤ p, 1 ≤ j ≤ r

β(xa,j −
1

π
∂a,j)β

−1 = −
√
−1√
2π
za,j , 1 ≤ a ≤ p, r + 1 ≤ j ≤ 2r

β(xa,j −
1

π
∂a,j)β

−1 =

√
−1√
2π
za,j , p+ 1 ≤ a ≤ n, 1 ≤ j ≤ r

β(xa,j −
1

π
∂a,j)β

−1 =

√
−1√
2π
za,j , p+ 1 ≤ a ≤ n, r + 1 ≤ j ≤ 2r
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The Fock model of the dual of ω∨
V , is given by the same space C[Z], with the same partition,

and the character µ−1 is used to split the metaplectic cover. With this choice, the actions differ

from ωV by several signs, and in particular the group K ′ acts on 1 by the character

(k′1, k
′
2) 7→ (det k′1)

− p−q+ν
2 (det k′2)

p−q−ν
2 .

In terms of the isomorphism (2.1), the right hand sides of the first two relations have the plus

sign, while the last two have the minus sign. Let us note that the complex conjugation ϕ 7→ ϕ

is a anti-C-linear automorphism on S(V r) (hence S(V r)†) that identifies ω∨
V with ωV . Under the

isomorphism β, it has the effect of swapping za,j and −za,j+r, i.e. if 1 ≤ j ≤ r, then

β(za,j) = −β(za,j+r), β(za,j+r) = −β(za,j).

So we may define za,j = −za,j+r and za,j+r = −za,j+r if 1 ≤ j ≤ r. The map zj,a 7→ zj,a then gives

an identification of ω∨
V with ωV for the Fock models. This notation is more intuitive and convenient

for use: after all za,j and za,j+r (when 1 ≤ a ≤ p) stand for the differential operators

√
−2π(xa,j −

1

π
∂a,j),

√
−2π(xa,j −

1

π
∂a,j).

2.3. Theta lifts. We start from the local situation, so we assume that F is a local field of char-

acteristic zero. Let π′ be an irreducible representation of U(W ′). We let ΘV (π
′) be the maximal

U(W ′)-invariant quotient of ω⊗π∨ (Hausdorff quotient if F = R). This is a finite length representa-

tion of U(W ′), and is called the full or big theta lift of π′ to U(V ). Its maximal semisimple quotient

θV (π) is irreducible, and is called the theta lift of π (from U(W ′) to U(V )), cf. [How89a,GT16].

The space W ′ will be always fixed throughout this paper. We will drop the subscript V when it is

clear from the context. Of course the roles of V and W ′ can be switched, and we have the theta

lifts from U(V ) to U(W ′). We still use the notation ΘV and θV to denote this theta lifts.

In many questions, we often need to know if Θ(π) is irreducible. This question is not completely

settled at the moment. We only have some partial information.

Lemma 2.1. We have the following assertions.

(1) If F is nonarchimedean, n− 2r = 0,±1, and π is an irreducible tempered representation of

U(V ). Then Θ(π) is irreducible.

(2) If F = R and at least one of U(V ) and U(W ′) is compact. Let π be an irreducible repre-

sentation of either U(V ) or U(W ′). Then Θ(π) is irreducible.

(3) If F = R, n = 2r + 2, π′ is a discrete series representation of U(W ′), and the signature of

V is (n− 1, 1), then Θ(π′) is irreducible.

In the last assertion we consider theta lifts from U(W ′) to U(V ), just to make the notation

consistent with what we need later.

Proof. The first assertion is [GI14, Appendix C]. Note that the “odd residue characteristic” as-

sumption in [GI14] is only included there for the validity of Howe’s duality conjecture, which is
9



completely established now. The second assertion is due to Howe [How89b]. The last assertion

requires a little more explanation and relies on the theory of doubling zeta integral which we recall

in the next section. The proof of this last assertion will be given in the appendix. □

We now consider global Weil representations and theta series. Assume that F is a number field.

By taking tensor products of Weil representations of U(W ′)(Fv)×U(V )(Fv) at all places, we obtain

a Weil representation ω = ⊗ωv of U(V )(A) × U(V ′)(A), realized on S(V (A)r). Let ϕ ∈ S(V (A)r)
we define the theta function on U(W ′)(A)×U(V )(A) by

θ(h′, g, ϕ) =
∑

x∈V (F )r

ω(h′, g)ϕ(x).

Let π′ be an irreducible cuspidal automorphic representation of U(W ′)(A). Its global theta lift

to U(V )(A) is the automorphic representation of U(V )(A) generated by the functions of the form

θf
′

ϕ (g) =

∫
[U(W ′)]

f ′(h′)θ(h′, g, ϕ)dh′, f ′ ∈ π′, ϕ ∈ S(V (A)r).

We denote it by θ(π′).

Lemma 2.2. If θ(π′) consists of square integrable automorphic forms, e.g. cuspidal automorphic

forms, then it is irreducible and

θ(π′) = ⊗vθ(π
′
v).

Proof. This is a consequence of the Howe duality, cf. [KR94, Corollary 7.1.3]. □

3. Doublinig zeta integrals

3.1. The setup. Assume first that F is a number field. We keep the notation from the previous

section. In particular W ′ is a split skew-hermitian space of dimension 2r and V is a hermitian

space of dimension n. To simplify notation we put H ′ = U(W ′) and G = U(V ). Let −W ′ be the

skew-hermitian space with the vector space W ′ and skew-hermitian form −1 times that of W ′, and

W ′□ =W ′ + (−W ′) the “doubled” space. Put H ′□ = U(W ′□) and we have an embedding

(3.1) i : H ′ ×H ′ → H ′□.

Here we identify U(−W ′) with H ′ via the identity map (they are physically the same subgroup of

GL(W ′)).

Let W ′△ = {(x, x) | x ∈W ′} be the diagonal subspace of W ′□, and P ′ =M ′N ′ be the parabolic

subgroup of H ′□ stabilizing this subspace. Recall that we have fixed a character µ. Let I(s, µ)

be the degenerate principal series representation of H ′□(A). More precisely, choose a basis such

that the skew-hermitian form of H ′□ is given by

(
12r

−12r

)
, and P ′ consists of (blocked) upper

triangular matrices. The space of I(s, µ) consists of functions on H ′□(A) with the property that

Fs

((
a ∗

t
a−1

)
g

)
= µ(det a)|det a|s+rE Fs(g),

(
a ∗

t
a−1

)
∈ P ′(AE),
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and the group H ′□ acts by right translation. Put s0 = n−2r
2 . Let ω□ be the Weil representation

for H ′□(A) × G(A) (recall that the character µ is used to split the metaplectic cover), and ϕ□ ∈
S(V 2r(A)) be a Schwartz function. Then

h′□ 7→ Fϕ□

s0 (h′□) = ω□(h′)ϕ□(0)

defines a section of I(s0, µ), which we call the Siegel–Weil section. It defines a H ′□×G-equivariant
map

S(V 2r(A)) → I(s0, µ)

where G acts on the target trivially.

Restricting ω□ to the group H ′ ×H ′ via the embedding (3.1) we have an isomorphism

(3.2) ωV ⊗ ωV µ→ ω□|H′×H′ , ϕ1 ⊗ ϕ2 7→ (ϕ1 ⊗ ϕ2)
†.

The group G acts on the left hand side diagonally. In terms of the Schrodinger model, this is given

by a partial Fourier transform, and has the property that

ω□(i(h′, 1))(ϕ1 ⊗ ϕ2)
†(0) = ⟨ωV (h′)ϕ1, ϕ2⟩,

where ⟨−,−⟩ stands for the L2-inner product on S(V r(A)).
Let Fs be a section of I(s, µ), and E(h′□,Fs) the usual Siegel Eisenstein series. Let π′ be

an irreducible cuspidal automorphic representation of H ′(A), and f ′1, f
′
2 ∈ π′. The doubling zeta

integral is defined to be

Z(f ′1, f
′
2,Fs) =

∫
H′(A)×H′(A)

f ′1(h
′
1)f

′
2(h

′
2)E(i(h′1, h

′
2),Fs)dh′1dh′2.

When f ′1 = ⊗f ′1,v, f ′2 = ⊗f ′2,v and Fs = ⊗Fv,s, we have

Z(f ′1, f
′
2,Fs = L(s, π × µ)

∏
Z♮v(f

′
1,v, f

′
2,v,Fv,s),

where Z♮v(f ′1,v, f
′
2,v,Fv,s) = dv(s)L(s, πv ⊗ µv)

−1Zv(f
′
1,v, f

′
2,v,Fv,s), where dv is a product of abelian

local L-factors that satisfies dv(s0) ̸= 0, and Zv(f
′
1,v, f

′
2,v,Fs) is the local doubling zeta integral

given by ∫
H′

v

⟨π′v(h′)f ′1,v, f ′2,v⟩Fv,s(i(h, 1))dh.

We are particularly interested in the case where Fv,s is a Siegel–Weil section at s = s0. Let

ϕ1 = ⊗ϕ1,v, ϕ2 = ⊗ϕ2,v ∈ S(V r(A)) be Schwartz functions, then the local zeta integral equals

Zv(f
′
1,v, f

′
2,v,F

(ϕ1,v⊗ϕ2,v)†
v,s0 ) =

∫
H′

v

⟨π′v(h′)f ′1,v, f ′2,v⟩⟨ωV (h
′)ϕ1,v, ϕ2,v⟩dh′,

whenever the integral is convergent. This is the case when π′v is square-integrable and s0 ≥ −1
2 ,

i.e. n ≥ 2r − 1, cf. [LR05, Lemma 2.1].

We denote this last integral also by Zv(f
′
1,v, f

′
2,v, ϕ1,v, ϕ2,v). It is not identically zero when

θV (πv) ̸= 0, at least when πv is tempered and n ≥ 2r, cf. [GQT14, Proposition 11.5] (v nonar-

chimedean) and [Ich22, Proposition 7.1] (v archimedean).
11



The following lemma will be useful later.

Lemma 3.1. Assume that v is archimedean, n ≥ 2r, πv is tempered, and θV (πv) ̸= 0. Fix an

H ′
v×Gv-equivariant linear map p : π′∨v ⊗ωV,v → θV (π

′
v). Then there is an inner product on θV (π

′
v)

such that

Zv(f
′
1,v, f

′
2,v, ϕ1,v, ϕ2,v) =

〈
p(f ′1,v ⊗ ϕ1,v), p(f ′2,v ⊗ ϕ2,v)

〉
.

Proof. Note that this defines a H ′
v ×H ′

v-invariant linear form linear form

Zv : π′v ⊗ π′v ⊗ ωV,v ⊗ ωV,v → C.

Therefore it factor through ΘV (π
′
v) ⊗ ΘV (π′v) and gives a nonzero hermitian form on ΘV (π

′
v).

Moreover it is semi-positive definite, cf. [He03], and hence defines an inner product on ΘV ′,V (π
′)/K

where K is the kernel of the hermitian form. Therefore ΘV (π
′)/K must be semisimple, and thus

coincides with the θV (π
′). □

Remark 3.2. The lemma should hold when v is nonarchimedean. I however am not able to find a

reference which proves the semipositivity of Zv.

3.2. Some calculations at the archimedean places. We study the doubling zeta integrals at

the archimedean places. Results in this subsection should be well-known to the experts. For the

lack of suitable references, we provide some details.

In this subsection, we fix an archimedean place v, and suppress it from all notation. In other

words, we assume F = R.
Recall that we have the groupH ′ = U(W ′), its Weil representation ωV and ω∨

V , and the “doubled”

group H ′□, and its Weil representation ω□. We have maximal compact subgroups K ′ ≃ U(r)×U(r)

of H ′ and K ′□ ≃ U(2r)×U(2r) of H ′□ respectively. Let us begin by examine the isomorphism

(3.3) ωV ⊗ ωV µ→ ω□|H′×H′ .

In terms of the Schrodinger model, this is given by a partial Fourier transform as in (3.2). In terms

of the Fock model, this is just the “concatenation” of the polynomials. More precisely, as explained

in Subsection 2.2, the Fock model for ωV is denoted by P = C[Z] and the for ω∨
V is denoted by

P∨ = C[W ], where Z and W are n× 2r matrices of variables. Both Z and W take the partition

Z =

(
Z++ Z+−

Z−+ Z−−

)
, W =

(
W++ W+−

W−+ W−−

)
.

Then the Fock model P□ of ω□ is given by C[U ] where U is an n× 4r matrices, and

U =

(
U++ U+−

U−+ U−−

)
=

(
Z++ W+− Z+− W++

Z−+ W−− Z−− W−+

)
,

and U++ = (Z++,W+−), U+− = (Z+−,W++), U−+ = (Z−+,W−−) and U−− = (Z−−,W−+). If

p(Z) and q(W ) are polynomials in P and P∨ respectively, then p(Z)q(W ) is the element in P□

under the isomorphism (3.3).
12



Let F◦
s be the classical section I(s, µ), i.e.

F◦
s (h) = (deth)

n+ν
2 det(C

√
−1 +D)−n|det(C

√
−1 +D)|−s+

n−2r
2

C , h =

(
A B

C D

)
.

If V is anisotropic and ϕ□ = 1 ∈ P□, i.e. ϕ□ is the standard Gaussian in the Schrodinger model

S(V n), then the Siegel–Weil section Fϕ□
s equals a nonzero constant multiple of the classical section.

Let I(s, µ)K′□ be the subspace of K ′□-finite vectors. By [Lee94, Lemma 2.5], as representations

of K ′□ we have

I(s, µ)K′□ ≃
⊕
ρ

ρ⊠ ρ∨µ.

where ρ ranges over all irreducible representations of U(2r). Then the classical section F◦
s lies in

the direct summand det
n+ν
2 ⊠det−

n−ν
2 , i.e. ρ = det

n+ν
2 .

In what follows, we calculate in the Fock model P. Recall that there is an isomorphism β :

S(V r)† → P. To simplify notation, we suppress β from all notation. This means that an element

z ∈ P is viewed as a Schwartz function in S(V r) via the isomorphism β.

Lemma 3.3. Assume that n = 2r + 1, ν = 1 and V is of signature (2r, 1). Assume that σ′ is a

discrete series representation of lowest K ′-type τ ′ = detr+1⊠det−r. Let P0 ⊂ P be the subspace

generated by the polynomials of the form

detZ++
I detZ+−

J , I, J ⊂ {1, . . . , 2r}, #I = #J = r.

Then the doubling zeta integral is nonzero when restricted to P0 ⊗ P∨
0 ⊗ τ ′∨ ⊗ τ ′.

Proof. Consider the element ϕ□ ∈ P□ given by

ϕ□ = detU++ detU+− ∈ P□.

Recall that U++ = (Z++,W+−) and U+− = (Z+−,W++). So Laplace expansion of determinants

tells us that

ϕ□ =
∑
I,J

(−1)∥I∥+∥J∥ detZ++
I detW+−

Ic detZ+−
J detW++

Jc

where I, J are order r subsets of {1, · · · , 2r}, Ic, Jc stand for their complements respectively, and

∥I∥, ∥J∥ are the sums of elements in I and J respectively. So if h′ ∈ H ′, then

(3.4) Fϕ□

s0 (ι(h′, 1)) =
∑
I,J

(−1)∥I∥+∥J∥⟨ω(h′) detZ++
I detZ+−

J ,detW++
Jc detW+−

Ic ⟩.

Note that detZ++
I detZ+−

J and detW++
Jc detW+−

Ic belong to P0. To see that Fϕ□
s0 is not a zero

section, we compute Fϕ□
s0 (1), which equals∑
I,J

(−1)∥I∥+∥J∥⟨detZ++
I detZ+−

J , detW++
Jc detW+−

Ic ⟩.

13



In the pairing, detZ++
I pairs with detW++

Jc , and detZ+−
J with detW+−

Ic . It follows that the terms

with I ̸= Jc are all zero. So the sum simplifies to

(−1)1+···+2r
∑
I

⟨detZ++
I detZ+−

Ic , detW++
I detW+−

Ic ⟩,

which is a sum of finitely many positive real numbers (up to the sign in the front), and hence

nonzero.

By its very construction, K ′ acts on ϕ□ by the character detr+1⊠det−r. So Fϕ□
s0 is a nonzero

multiple of the classical section. It is well-known that Z(f ′, f ′,F◦
s0) ̸= 0, cf. [Gar08]. By (3.4),

Fϕ□
s0 (ι(h′, 1)) is a (sum of) matrix coefficient(s) in P0. The lemma follows. □

We will need a similar result when n = 2r + 2.

Lemma 3.4. Assume that n = 2r + 2, ν = 0 and V is of signature (2r + 1, 1). Let U+±
i be the

matrix U+± withe i-th row removed. Put

ϕ□ =

2r+1∑
i=1

detU++
i detU+−

i .

Then Fϕ□
s0 is a nonzero multiple of the classical section. In particular, if σ′ is a discrete series

representation of lowest K ′-type τ ′ = detr+1⊠det−r−1, and f ′ ∈ σ′ in the lowest K ′-type, then

Z(f ′, f ′,Fϕ□

s0 ) ̸= 0.

Proof. The proof is very similar to Lemma 3.3. In fact by analyzing the action of K ′□ action, we

see that Fϕ□
s0 is a constant multiple of the classical section, and we only need to check that Fϕ□

s0 is

nonzero. For this we just need to compute ϕ□(0). The same computation as the previous lemma

show that for any fixed i, the value of detU++
i detU+−

i at 0 equals

(−1)1+···+2r
∑
I

⟨detZ++
I detZ+−

Ic , detW++
I detW+−

Ic ⟩,

where I ranges over all order r subset of {1, . . . , i−1, î, i+1, . . . , 2r+1}, i.e. the set with i removed.

It follows that it is (−1)1+···+2r times a positive number. The sign (−1)1+···+2r is independent of i,

so the sum over i is again nonzero.

The nonvanishing of the doubling zeta integral again follows from [Gar08]. □

4. Multiplicities

We come back to the setup of Theorem 1.1 in the Introduction. Recall that we have the split

skew-hermitian space W ′ of dimension n = 2r, and hermitian space W and V of signature (n, 1)

and (n+ 1, 1) respectively. We have the unitary groups H ′ = U(W ′), H = U(W ) and G = U(V ).

The goal of this section is to study the representation theory behind Theorem 1.1. We fix a place

v of F and work with objects over Fv. The goal is to study the space

HomHv(πv ⊗̂σv,C).
14



This is the main subject of the local (nontempered) GGP conjecture. We prove various results in

this direction.

We will drop the subscript v, so F stands for a local field of characteristic zero, G = Gv is a

unitary group over F , etc.

We will be working with various theta lifts at the same time and we fix the following characters

to split the metaplectic covers. We have fixed a character µ of E×, which is given by µ(z) = z/
√
zz

if F = R.

• For H ′ ×G, we use the trivial character 1. The Weil representation is denoted by ωV . The

theta lifts in both directions are denoted by θV .

• For H ′ ×H, we use the character µ. The Weil representation is denoted by ωW . The theta

lifts in both directions are denoted by θW .

• For H ′×U(L), we use the character µ. Here L = E stands for the one dimension hermitian

space with the hermitian form given by the norm. The Weil representation is denoted by

ωL.

With these choices of the characters, we can check by the explicit formulae for the Weil repre-

sentation that

(4.1) ωV |H′×(H×U(L)) ≃ ωW ⊗̂ωL,

where H ′ acts on the two factors on the right diagonally.

4.1. Multiplicities at the nonarchimedean places. We assume in this subsection that F is

nonarchimedean.

Recall that π′ and σ′ are irreducible tempered representations of H ′. We also have irreducible

representations π = θV (π
′) of G and σ = θV (σ

′∨)∨. Note that they are all unitary (or more precisely

unitarizable) representations.

Lemma 4.1. If HomH(π ⊗ σ,C) ̸= 0, then HomH′(π′ ⊗ σ′ ⊗ ωL,C) ̸= 0.

Proof. Since HomH(π ⊗ σ,C) ̸= 0, and ΘW ′,V (π
′) maps surjectively onto π, we conclude that

HomH(ΘV (π
′)⊗ σ,C) ̸= 0,

which is equivalent to

HomH×H′(ωV ⊗ π′∨ ⊗ σ,C) ̸= 0.

By (4.1), this is equivalent to

HomH′(π′∨ ⊗ΘW (σ∨)⊗ ωL,C) ̸= 0.

By Lemma 2.1, we know that ΘW (σ∨) is irreducible and hence is isomorphic to σ∨. This proves

the lemma. □
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Remark 4.2. In theory we can run the argument backwards and prove that the nonvanishing of the

two Hom spaces are equivalent. We however are not able to do this because we do not yet know if

ΘV (π
′) is irreducible.

4.2. Cohomological representations. In this subsection and the next, we work at the place

v = ι. We write U(p, q) for a unitary group of signature (p, q), which is a subgroup of GLp+q(C)
consisting of matrices satisfying

tg

(
1p

−1q

)
g =

(
1p

−1q

)
.

We take the diagonal compact Cartan subgroup. We take the maximal compact subgroup to be the

diagonal U(p)×U(q). The complexified Lie algebra of U(p, q) is naturally identified with glp+q(C).
The infinitesimal character of a representation is identified with a sequence of p+ q numbers up to

permutation.

Irreducible representations of a compact group is parametrized by their highest weights. A

Harish-Chandra parameter of a discrete series representation of U(p, q) is a strictly decreasing

sequence of integers (if p+q is odd) or half integers (if p+q is even), together with a labeling of p of

them the + sign, and q of them the − sign. A Harish-Chandra parater is equivalently two sequences

of strictly decreasing integers or half-integers (a1, . . . , ap; b1, . . . , bq), with the understanding that

ai’s are labelled + while bi’s are labelled −.

We choose bases of V , W , and W ′ such that U(V ), U(W ) and U(W ′) are identified as group of

matrices preserving the hermitian or skew-hermitian form given respectively by(
1n+1

−1

)
,

(
1n

−1

)
,

(√
−11r

−
√
−11r

)
.

So G = U(n + 1, 1), H = U(n, 1) and H ′ = U(r, r). Recall that we have the discrete series

representations π′ and σ′ of H ′, and π = θV (π
′) of G and σ = θV (σ

′∨)∨. The representations

π and σ are assumed to be cohomological (with respect to the trivial representation). We now

describe these representations more explicitly. All the descriptions below follow from Li’s explicit

description of theta lifts of cohomological representations, cf. [Li90].

We consider π and π′ first. Since π is cohomological with respect to the trivial representation,

its infinitesimal character is the same as that of the trivial representations. Li’s description gives

the following result. The representation π′ is a discrete series representation of H ′ whose Harish-

Chandra parameter is given by (
n+ 1

2
, . . . ,

3

2
;−3

2
, . . . ,−n+ 1

2

)
.

The representation π can be described using cohomological induction. Let q = l+u be the parabolic

subalgebra of gln+2(C) given by the coroot(
n+ 1

2
, . . . ,

3

2
, 0,−3

2
, . . . ,−n+ 1

2
, 0

)
.

16



Then we have π = Aq = Aq(0). The lowest K-type of π′ and π are given respectively by

(r + 1, . . . , r + 1)× (−(r + 1), . . . ,−(r + 1)) , (1, . . . , 1︸ ︷︷ ︸
r

, 0,−1, . . . ,−1︸ ︷︷ ︸
r

)× (0).

They correspond in the joint harmonics (we will not use this fact though).

Now we consider σ and σ′. In this case Li’s description gives the following. The representation

σ′ is discrete series representations of H ′ given by the Harish-Chandra parameter(
n+ 1

2
, . . . ,

3

2
;−1

2
, . . . ,−n− 1

2

)
.

The representation σ is an irreducible discrete series representation of H given by the Harish-

Chandra parameter

(r, r − 1, . . . , 1,−1,−2, . . . ,−r; 0),

Their lowest K-types are given respectively by

(r + 1, . . . , r + 1)× (−r, . . . ,−r) , (1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
r

)× (0).

They correspond in the joint harmonics (again we will not use this fact).

4.3. Multiplicities in cohomological packets. We consider a cohomological Arthur parameter ⊕
−(n+1)≤i≤n+1, odd

i ̸=±1

µi

⊕(
1⊗C2

)
.

Its corresponding A-packet is constructed by Adams and Johnson [AJ87]. The representations in

this packet are given as follows.

• π = Aq as in the previous subsection. This representation gives the corresponding L-packet

within the A-packet.

• An extra n discrete series representations. In terms of their lowest K-type, they are of the

form

(1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
n+1−a

)× (n+ 1− 2a)

where a = 0, 1, . . . , r− 1, r+2, . . . , n+1. In terms of Harish-Chandra parameters, they are

of the form (
r +

1

2
, r − 1

2
, . . . ,

1

2
,−1

2
, . . . ,−r − 1

2

)
,

where one of them is labelled − and the rest are +. The − is not labelled on either 1
2 or

−1
2 .
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The (tempered) A-packet of H in which σ lies consists of n + 1 discrete series representations.

The Harish-Chandra parameters of these representations are of the form

(r, r − 1, . . . , 1, 0,−1, . . . ,−(r − 1),−r),

where one of them is labelled − and the others are labelled +. The representation σ is the one

with the − sign on 0.

Lemma 4.3. Let π1 and σ1 be in the above packets for G and H respectively. Then

HomH(π1 ⊗̂σ1,C) ̸= 0

if and only if π1 = π and σ1 = σ.

Proof. By (tempered) local GGP conjecture for Bessel models, cf. [He17, Xue23], we know that

HomH(π1 ⊗̂σ1,C) = 0 if π1 ̸= π. It remains only to prove that

HomH(π ⊗̂σ1,C) ̸= 0

if and only if σ1 = σ.

By Lemma 2.1, we have ΘV (π
′) is irreducible and hence isomorphic to π. Therefore as in the

proof of Lemma 4.1 we have

(4.2) HomH(π ⊗̂σ1,C) ̸= 0

is equivalent to

(4.3) HomH′(π′∨ ⊗̂ΘW (σ∨1 ) ⊗̂ωL,C) ̸= 0.

This in particular implies that ΘW (σ∨1 ) ̸= 0 when (4.2) holds. But according to Li’s explicit

description of theta lifts for discrete series representations, ΘW (σ∨1 ) ̸= 0 only when σ1 = σ. This

shows that

HomH(π ⊗̂σ1,C) = 0

if σ1 ̸= σ.

Finally if σ1 = σ, then the (tempered) local GGP for Fourier–Jacobi models [Xue24] implies that

HomH′(π′ ⊗ σ′ ⊗ ωL,C) ̸= 0.

Since ΘW (σ∨) maps surjectively onto σ′∨ = θW (σ∨), we conclude that (4.3) holds (with σ1 replaced

by σ). Therefore (4.2) holds when σ1 = σ. This proves the lemma. □
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5. Periods

We prove the main theorem in this section. The idea is very simple and has been outlined

in Subsection 1.3. We first review Kudla–Millson forms, and then construct a differential form

α ∈ Hn,n(X)[πf ⊗ σf ] using it. Then we compute the integral
∫
Y α by the seesaw diagram and

reduce it to the (tempered) global GGP conjecture for Fourier–Jacobi periods on H ′ ×H ′ which is

recently established in [BLX].

Throughout this section, F is a number field. We again need to work with various theta lifts at

the same time. Recall that we have fixed a character µ of E×\A×
E whose archimedean components

are of the form z 7→ z/
√
zz. The notation and the choices of the characters to split the metaplectic

covers are the same as in Section 3.

Recall also that we use gothic letters to denote the Lie algebras of the corresponding groups, e.g.

if G is an algebraic group over F , we denote by g the Lie algebra of G∞ and gC its complexification.

If v is an archimedean place, then gv and gv,C stand for the corresponding objects for Gv.

5.1. Kudla–Millson forms. By our assumption, we have

G∞ = U(n+ 1, 1)×U(n+ 2)d−1.

The notation from Subsection 4.2 applies toG∞. In particular we choose coordinates t(x1, . . . , xn+2)

on Vv for each v | ∞ such that the matrix representing the hermitian form on Vι is

(
1n

−1

)
and

on other Vv’s are the identity matrix. The coordinates of V r
v is denoted by a (n+2)× r matrix X.

We do not try to distinguish the coordinates at different places by adding more subscripts, as this

will be clear from the context. We take the (diagonal) maximal compact subgroup

KG,∞ = (U(n+ 1)×U(1))×U(n+ 2)d−1,

and we have the Cartan decomposition g = pG + kG. Note that pG = pG,ι as Gv is compact if

v ̸= ι. We have pG,C = p+G+ p−G where p±G are identified with the holomorphic and antiholomorphic

tangent spaces of the symmetric domain DV . The tangent spaces p±G is identified with the space

spanned by t(x1, · · · , xn+1) (resp. (x1, · · · , xn+1)). Let ξi (resp. ξi) be the linear form which

sends t(x1, · · · , xn+1) to xi (resp. (x1, · · · , xn+1) to xi). They give bases of p±,∨G . Put ∧r,rp∨G =

∧rp+,∨G ⊗ ∧rp−,∨G .

For each place v | ∞, recall that we have the Schrodinger model S(V r
v ) and the Fock model Pv

of the Weil representation ωV . We also have the subspace S(V r
v )

† ⊂ S(V r
v ) and an isomorphism

βv : S(V r
v )

† → Pv.
We do most of the calculations below in terms of the Fock model Pv. Recall from Subsection 2.2

that Pv = C[Z] where Z is a (n+ 2)× n matrix of variables, and has the partition

Z =

(
Z++ Z+−

Z−+ Z−−

)
,
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where Z++ is of size (n + 1) × r. To simplify notation, we identify S(V r
v )

† with Pv via β, and

suppress the isomorphism β from all notation, i.e. when we say z ∈ C[Z] is a Schwartz function, it

really means the Schwartz function β−1(z) ∈ S(V r
v )

†.

Kudla and Millson constructed an explicit differential form on DV valued in S(V r
ι ). Following

Kulda and Millson [KM86], we consider a form

(5.1)
∑
I,J

detZ++
I detZ+−

J (ξI ∧ ξJ) ∈
(
S(V r

ι )
† ⊗ ∧r,rp∨G

)KG,ι

where I and J are order r subsets of {1, · · · , n + 1}, and Z++
I stands for the submatrix of Z++

which keeps only the i-th rows when i ∈ I, and ξI = ∧i∈Iξi. Similar for Z+−
J and ξJ .

Take Φ = ⊗Φv ∈ S(V r(A))⊗ ∧r,rp∨G, and assume that Φι is the Schwartz form (5.1) and

Φv = e−πTr
t
XX ∈ S(V r

v )
†

is the Gaussian function for any infinite place v ̸= ι. Define a theta form

Θ(h′, g,Φ) =
∑

x∈V r(F )

(ωV (h
′, g)Φ)(x) ∈ A(H ′)⊗ (A(G)⊗ ∧r,rp∨G)KG,ι .

Here A(H ′) and A(G) stand for the spaces of automorphic forms on H ′(A) and G(A) respectively.
Let f ′ = ⊗f ′v ∈ π′, where f ′v is a nonzero vector in the lowest KH′,v-type of π′v (which is one

dimensional) if v | ∞. Let

Θf ′

Φ (g) =

∫
[H′]

f ′(h′)Θ(h′, g,Φ)dh′ ∈ (π ⊗ ∧r,rp∨G)KG,ι .

Then Θf ′

Φ defines a class in Hr,r(X)[πf ].

Lemma 5.1. As f ′ and Φ vary (with f ′∞ and Φ∞ fixed as above), the elements Θf ′

Φ ’s generate

Hr,r(X)[πf ] = πf ⊗Hr,r(gC,KG,∞, π∞).

Proof. This is probably well-known to the experts. For the convenience of the reader, we provide

a brief explanation.

Since the group G is anisotropic (we use the assumption d > 1 here), Lemma 2.2 applies.

Moreover πι is the representation Aq described in Subsection 4.2, and πv is the trivial representation

if v | ∞ and v ̸= ι. By [VZ84, Theorem 3.3], the cohomology group Hr,r(gC,KG,∞, π∞) is one

dimensional, so the right hand side is an irreducible G(Af)-module. Therefore we just need to

know that Θf ′

Φ is not identically zero.

The nonvanishing of Θf ′

Φ follows from a “geometric” version of the Rallis inner product formula,

cf. [Li, Theorem 3.7.1], which in turn is a direct consequence of a “geometric” Siegel–Weil formula,

or sometimes referred to as a volume formula, cf. [Li, Theorem 3.6.1] and [Dun, Section 2.2] for an

exposition of the proof. To show that Θf ′

Φ is nonzero, we compute∫
X
Θf ′

Φ ∧Θf ′

Φ ∧ c1(L)
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where c1(L) =
∑

1≤i≤n+1 ξi ∧ ξi ∈ H1,1(X) stands for the first Chern class of the Hodge bundle on

X. By the definition of Θf ′

Φ , this reduces to the integral

(5.2)

∫
[H′]2

f ′(h′1)f
′(h′2)

(∫
X
Θ(h′1, 1,Φ) ∧Θ(h′2, 1,Φ) ∧ c1(L)

)
dh′1dh

′
2.

We now follow the notation of Section 3. Note that the notation is slightly different, where n

there is actually n + 2 here, and p, q there are n + 1 and 1 respectively here. We consider the

Weil representation ω□ of H ′□(A) × G(A), which is realized on C[U ]. Since Φι ∧ Φι equals the

Kudla–Millson form for the group H ′□
ι ×Gι, cf. [KM86, Section 6, (6.3)], we know that

Θ(h′1, 1,Φ) ∧Θ(h′2, 1,Φ) = Θ((h′1, h
′
2), 1,Φ

□)

where

Φ□ = ⊗Φ□
v ∈ (S(V n(A))† ⊗ ∧n,np∨G)KG,ι

is given as follows. For v ∤ ∞, Φ□
v = (Φv ⊗ Φv)

† ∈ S(V n
v ). For v | ∞ but v ̸= ι, Φ□

v is the standard

Gaussian in S(V n
ι ). For v = ι, Φ□

ι ∈ (S(V n
ι )

† ⊗ ∧n,np∨G)KG,ι is the Kudla–Millson form, given by∑
1≤i,j≤n+1

detU++
i detU+−

j ξi ∧ ξj

where U+±
i is the matrix U+± with i-th row removed (recall that U+± is a (n + 1) × n matrix),

and ξi = ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξn+1.

The Siegel–Weil formula explained in [Dun, Section 2.2] implies that the inner integral (5.2)

equals (up to some nonzero constant depending on the measures)

n+1∑
i=1

E
(
ι(h′1, h

′
2),F

Φ□
i

s0

)
where Φ□

i = ⊗Φi,v is the Schwartz function in S(V n(A))† given by Φ□
v if v ̸= ι, and by Φ□

i,ι =

detU++
i detU+−

i if v = ι.

The integral (5.2) then reduces to a doubling zeta integral

n+1∑
i=1

Z(f ′, f ′,FΦ□
i

s0 ).

It equals L(32 , π
′) (which is nonzero) times the product of local doubling zeta integrals. If v ∤ ∞, the

local doubling zeta integral is given by Z(f ′v, f
′
v,Φv,Φv) which is not identically zero by [GQT14,

Proposition 11.5]. If v | ∞ and v ̸= ι, the local doubling zeta integral equals

Z(f ′v, f
′
v,F◦

v,s0),

where F◦
v,s0 stands for the classical section. If v = ι, the local doubling zeta integral equals

n+1∑
i=1

Z(f ′ι , f
′
ι ,F

Φ□
i,ι

s0 ),

which is nonzero by Lemma 3.4. □
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5.2. Construction of differential forms. We now work on Y . The notation we fixed on G also

applies to H. We choose the coordinates on Vι such thatWι consists of vectors
t(x1, · · · , xn+2) with

xr+1 = 0. We have the Cartan decomposition h = pH+kH and p±H is identified with holomorphic and

anti-holomorphic tangent space of DW . We construct a cohomology class in Hr,r(hC,KH,∞, σ∞).

First if v ̸= ι, then σv is the trivial representation and we take φv = 1 ∈ σv. Now consider the place

ι. Let τ be the lowest KH,ι-type of σι, its highest weight being (1, · · · , 1,−1, · · · ,−1)× (0). Then

τ∨ appears in ∧r,rp∨H with multiplicity one, and this copy of τ∨ is generated by ξ1∧ · · ·∧ ξr ∧ ξr+2∧
· · · ∧ ξn+1. Fix a basis of vα of τ , a dual basis v∨α of τ∨. Let ξα be the elements corresponding to

v∨α ∈ τ∨ viewed as elements in ∧r,rp∨H . Put

(5.3) φ
ι
=
∑
α

vα ⊗ ξα ∈ (σι ⊗ ∧r,rp∨H)KH,ι .

Take a Ψv ∈ σv for each v ∤ ∞, Ψι = φ
ι
as above and Ψv = 1 ∈ σv for all v | ∞ and v ̸= ι. Put

Ψ = ⊗vΨv ∈ (σ ⊗ ∧r,rp∨H)KH,∞ = Hr,r(Y )[σf ].

Put

Ω = Θf ′

Φ ∧Ψ ∈ Hn,n(X × Y )[πf ⊗ σf ].

Our goal is to compute ∫
Y
Ω,

which will yield a proof of Theorem 1.1. The next lemma relates this integral to a period integral

of automorphic forms. Let us introduce more notation before stating it. Recall that we have the

Fock model P = C[Z] of ωVι at the place ι. The Fock model at of ωWι is nothing but that of ωVι

with the (r+1)-th row removed. Let P0 ⊂ P be the subspace spanned by polynomials of the form

detZ++
I detZ+−

J where I and J are order r subset of {1, . . . , r, r+2, . . . , n+1}. This subspace, as
a representation of KH,ι, is isomorphic to ∧r,rpH . Let us note that detZ++

I detZ+−
J and ξI ∧ ξJ

form dual basis in P0 and ∧r,rp∨H . The representation τ∨ (which is isomorphic to τ) is contained

in this P0 with multiplicity one, cf. [PRRV67, Corollary 1 to Theorem 2.1] or [Sun17, Lemma 2.13]

(not original but maybe easier to find reference). Let P00 be the subspace of P0 isomorphic to τ∨.

So the basis v∨α gives an basis in P00, which we still denote by v∨α .

Lemma 5.2. Assume that for any v ∤ ∞, the function Φv ∈ S(V r
v ) takes the form ΦW,v ⊗ ΦL,v

where ΦW,v ∈ S(W r
v ) and ΦL,v ∈ S(Lrv), cf. the decomposition (4.1). Then∫

Y
Ω =

∑
α

∫
[H]

θf
′

ϕW,α⊗ϕL(h)φα(h)dh.

Here on the right hand side

• the sum ranges over the basis vα;

• ϕW,α = (⊗v ̸=ιϕW,v)⊗ϕW,α, where ϕW,v = ΦW,v if v ̸= ι and ϕW,α ∈ S(W r
ι )

† is the Schwartz

function corresponding to the element v∨α in the Fock model of ωWι;
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• ϕL = ⊗vϕL,v, ϕL,v = ΦL,v if v ∤ ∞ and ϕv ∈ S(Lrv) is the Gaussian function, i.e. ϕv =

e−π
∑

a zn+1,azn+1,a, if v | ∞;

• φα = (⊗v ̸=ιφv)⊗ vα ∈ σ.

Proof. Fix any KH,ι-invariant pairing on ∧r,rp∨H . Up to some nonzero constant depending on the

measures and the choice of the inner product on ∧rp+H , we conclude that∫
Y
Ω =

∫
Y
(Θf ′

Φ )|Y ∧Ψ =

∫
[H]

⟨pr(Θf ′

Φ )(h),Ψ(h)⟩dh.

The notation pr(Θf ′

Φ (h)) means the following. First we have Θf ′

Φ ∈ π ⊗ ∧r,rp∨G. Note that pH is

naturally a subspace of pG given by xr+1 = 0, and hence there is a natural projection map p∨G → p∨H
which sends ξn+1 to 0. Then pr(Θf ′

Φ ) ∈ π ⊗ ∧r,rp∨H stands for the image of Θf ′

Φ under this map.

Let pr(Φι) be the image of Φι ∈ S(V r)†⊗∧r,rp∨G in S(V r)†⊗∧r,rp∨H under the natural projection

p∨G → p∨H . Then

(5.4) ⟨pr(Φι),Ψι⟩ =
∑
α

v∨α ⊗ vα ∈ S(V r
ι )

† ⊗ σι.

To see (5.4), we note that by the explicit form of Φι, we have

pr(Φι) =
∑
I,J

detZ++
I detZ+−

J (ξI ∧ ξJ) ∈ S(V r
ι )

† ⊗ ∧r,rp∨H ,

where I and J range over order r subsets of {1, · · · , r, r + 2, · · · , n+ 1}. Then

⟨pr(Φι),Ψι⟩ =
∑
I,J

∑
α

detZ++
I detZ+−

J ⊗ vα⟨ξI ∧ ξJ , ξα⟩.

We observe that ξI ’s are weight vectors in ∧rp+,∨H , and different I’s give different weights. Then

ξI ∧ ξJ where I and J are order r subsets of {1, · · · , r, r + 2, · · · , n + 1} form an orthogonal basis

of ∧r,rp∨H . The desired equality (5.4) follows.

It follows from (5.4) that

⟨pr(Θf ′

Φ )(h),Ψ(h)⟩ =
∑
α

θf
′

ϕW,α⊗ϕL(h)φα(h),

where the notation is explained in the lemma. This is what we want to prove. □

5.3. Proof of Theorem 1.1. We now put what we have together. First note that by [GGP20,

Theorem 9.7], the L-function
L(s, π ⊗ σ)

L(s+ 1
2 , π,Ad)L(s+

1
2 , σ,Ad)

is holomorphic at s = 1
2 , and its value at s = 1

2 differs from L(12 , π
′ ⊗ σ′ ⊗ µ−1) by a nonzero

constant. So we may replace this condition on the L-functions by L(12 , π
′ ⊗ σ′ ⊗ µ−1) ̸= 0.

Assume that the class of Y in Hn+1,n+1(X × Y )[π∨f ⊗ σ∨f ] is not zero. By Poincare duality, there

is a differential form α ∈ Hn,n(X × Y )[πf ⊗ σf ] such that∫
Y
α ̸= 0.
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By Matsushima’s formula, we have

Hn,n(X × Y )[πf ⊗ σf ] =
⊕

π1,∞,σ1,∞

(πf ⊗ σf)
KG,f×KH,f ⊗Hn,n(gC × hC,KG,∞ ×KH,∞, π1,∞ ⊗ σ1,∞),

where π1,∞ and σ1,∞ ranges over all irreducible representations of G∞ and H∞ such that πf ⊗
π1,∞ and σf ⊗ σ1,∞ are automorphic. Then π1,∞ and σ1,∞ lie in the local A-packets described in

Subsection 4.3. If v | ∞ and v ̸= ι, then πv and σv are trivial representations, as Gv and Hv are

compact. The Arthur’s multiplicity formula (for tempered packets, or packets of unitary groups

of rational rank at most one, cf. [Mok15,KMSW,CZ]) then implies that π1,ι = πι and σ1,ι = σι.

Therefore

α ∈ (πf ⊗ σf)
KG,f×KH,f ⊗ (Hr,r(gC,KG,∞, π∞)⊗Hr,r(hC,KH,∞, σ∞)) ,

Then
∫
Y α ̸= 0 implies that

HomH(Af)(πf ⊗ σf ,C) ̸= 0.

We also proved in Lemma 4.3 that

HomHι(πι ⊗̂σι,C) ̸= 0.

Of course if v | ∞ and v ̸= ι we have the same assertion, as πv and σv are trivial representations.

According to Lemma 5.1, the forms Θf ′

Φ generates πf ⊗ Hr,r(gC,KG,∞, π∞), so we can choose

f ′,Φ and Ψ as in the previous two subsections, such that

(5.5)

∫
Y
(Θf ′

Φ |Y ) ∧Ψ

is not identically zero. By Lemma 5.2 this equals∑
α

∫
[H]

θf
′

ϕW,α⊗ϕL(h)φα(h)dh,

where the notation on the right hand side is explained in Lemma 5.2. We now make use of the

seesaw diagram

U(W ′)×U(W ′) U(V )

U(W ′) U(W )×U(L)

and conclude that this integral equals∑
α

∫
[H′]

f ′(h′)θφα

ϕW,α
(h′)θL(h

′, ϕ1)dh
′.

By assumption θφα

ϕW,α
(h′) ∈ σ′∨. We now invoke the main theorem of [BLX], i.e. the (tempered)

GGP conjecture for Fourier–Jacobi periods on unitary groups, and conclude that

L(
1

2
, π′ ⊗ σ′ ⊗ µ−1) ̸= 0.

This shows one direction of implication.

To prove the other direction, we need some additional lemmas.
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Lemma 5.3. Let v be an infinite place of F . We have

HomH′(π′v ⊗̂σ′v ⊗̂ωL,v,C) ̸= 0,

and any nonzero l in this space does not vanishes when restricted to the lowest KH′,v-types.

Proof. The explicit descriptions of π′v and σ′v are given in Subsection 4.2. They are irreducible

discrete series representations who lowest KH′,v-types are detr+1⊠det−r−1 and detr+1⊠det−r

respectively. The nonvanishing of the Hom space follows from the local GGP conjecture for Fourier–

Jacobi models, cf. [Xue24].

To see that l does not vanish when restricted to the lowest KH′-types, we make use of the fact

that

l ⊗ l ∈ HomH′(π′ ⊗̂σ′ ⊗̂ωL,C)⊗HomH′(π′ ⊗̂σ′ ⊗̂ωL,C)

can be realized using integration of matrix coefficients, cf. [Xue24, Theorem 3.2]. This means that

to see that l is nonvanishing, we just need to show that∫
H′
⟨π′(h′)f ′, f ′⟩⟨σ′(h′)φ′, φ′⟩⟨ωL(h′)ϕL, ϕL⟩dh′ ̸= 0,

where f ′ ∈ π′ and φ′ ∈ σ′ are in the lowest KH′-type, and ϕL ∈ S(Lr) is the Gaussian function.

This follows directly from Sun’s positivity of matrix coefficients, cf. [Sun09, Theorem 1.5]. Indeed

using the the Cartan decomposition of H ′, we see that the above integral equals

(5.6)

∫
A+

µ(a)⟨π′(a)f ′, f ′⟩⟨σ′(a)φ′, φ′⟩⟨ωL(a)ϕL, ϕL⟩da,

where A+ stands for the subgroup of H ′ = U(r, r) given by

diag[a1, · · · , ar, a−1
1 , · · · , a−1

r ], a1, . . . , ar ∈ R>0,

and µ(a) is a positive function on A+. Sun’s result then implies that

⟨π′(a)f ′, f ′⟩ > 0, ⟨σ′(a)φ′, φ′⟩ > 0.

Direct computation also shows that

⟨ωL(a)ϕL, ϕL⟩ > 0.

As a result, the integral (5.6) is positive. □

Lemma 5.4. Fix a nonzero linear form p : P ⊗ σι → σ′∨ι . Then p restricts to a nonzero pairing

between P00 and τ . In particular, if we take the basis v∨α of P00 and the basis vα in τ , then∑
α

p(v∨α ⊗ vα) ̸= 0.
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Proof. Fix a nonzero map p′ : ωVι ⊗ σ′ι → σ∨ι . We first note that P0 ⊗ τ ′ maps into τ∨ under p′.

Indeed τ ′ is the only irreducible representation of KG,ι that P0 and σι shares. By lemma 3.1 and

Lemma 3.3, we know that the map p′ is nonzero when restricted to P0 ⊗ τ ′ι , and hence we have a

nonzero homomorphism

p′ : P0 ⊗ τ ′ → τ∨.

This implies that the natural homomorphism

ωV ⊗ σ′ι ⊗ σι → C

is nonzero when restricted to P0⊗ τ ′⊗ τ , which further implies that p is nonzero when restricted to

P0 ⊗ τ . But τ∨ appears with multiplicity one in P0, i.e. P00, so p restricts to a nontrivial pairing

between P00 and τ . □

We now prove the other direction of implication. Assume that L(12 , π
′ ⊗ σ′ ⊗ µ−1) ̸= 0 and

HomH(Af)(πf ⊗ σf ,C) ̸= 0. By Lemma 4.1, we know that

HomH(Af)(π
′
f ⊗ σ′f ⊗ ωL,f ,C) ̸= 0.

So we conclude that there is an f ′ ∈ π′ and φ′ ∈ σ′ and a ϕ1 ∈ S(L(A)r) such that∫
[H′]

f ′(h′)φ′(h′)θL(h
′, ϕ1)dh

′ ̸= 0.

By Lemma 5.3, f ′∞ and φ′
∞ can be taken in the lowest KH′,∞-type of π′∞ and σ′∞ respectively, and

ϕL,v ∈ S(V r
v )

† is the Gaussian function for each v | ∞. By Lemma 5.4, this implies that φ′ can be

taken to be of the form
∑

α θ
φα

ϕW,α
(h′) (the notation being as in Lemma 5.2). Now we can reverse

the previous seesaw argument and conclude that we can construct Θf ′

Φ and Ψ such that (5.5) is

nonzero. Thus the cycle class of Y in Hn+1,n+1(X × Y )[π∨f ⊗ σ∨f ] is not zero.

This completes the proof of Theorem 1.1.

Appendix A. Irreducibility of some full theta lifts

We prove the third assertion in Lemma 2.1 in this subsection. We indeed prove it a slightly

general form, i.e. We do not need to impose assumptions on the signature of W ′. This assumption

has been in place throughout this paper, but it is irrelevant to this lemma.

For the ease of the readers, we repeat the setup. We work with F = R. Let W ′ and V be skew-

hermitian space of dimension n′ and hermitian space of dimension n respectively. The signature

of V is (n − 1, 1). Put H ′ = U(W ′) and G = U(V ). Denote by ωV the Weil representation of

H ′ × G. This Weil representation depends on several choices of the characters, which we do not

mention here as they are not very relevant to our discussion. We just assume that we have fixed

these choices. Let π′ be an irreducible representation of H ′, and Θ(π′) be the maximal Hausdorff

H ′-invariant quotient of ω ⊗̂π′∨. Denote by θ(π′) the maximal semisimple quotient of Θ(π′), which

is irreducible.
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Lemma A.1. Assume π′ is an irreducible discrete series representation of H ′ and n = n′ + 2.

Then Θ(π′) is irreducible and hence equals θ(π′).

Proof. Fix an orthogonal decomposition V = V0 +L where L is a negative line and V0 is a positive

definite hermitian space of dimension n. Let K = U(V0). If ρ is an irreducible representation of K,

then the multiplicity of ρ in Θ(π′)|K is either zero or one, cf. [SZ12]. We will show that ρ has the

same multiplicity in Θ(π′)|K and θ(π′)|K , and thus proving Θ(π′) = θ(π′).

We denote by ωV0 and ωL the Weil representation of H ′ ×K and H ′ ×U(L) respectively. Again

there are several choice of the characters involved, but we fix one choice, such that we have

ωV |H′×(K×U(L)) ≃ ωV0 ⊗̂ωL.

The Weil representations ωV , ωV0 and ωL are realized on some Schwartz spaces SV , SV0 and SL
respectively such that we have SV = SV0 ⊗̂ SL. We denote by Θ0 the theta lifts between the groups

H ′ and K. Since K is compact, we know that Θ0(ρ) is irreducible (possibly zero) for all irreducible

representations ρ of K.

First we consider Θ(π′). Let

M(ρ) = dimHomK(Θ(π′)|K , ρ).

We make use of the following seesaw diagram

H ′ ×H ′ G

H ′ K ×U(L)

,

which gives

M(ρ) = dimHomH′(Θ0(ρ) ⊗̂π′∨ ⊗̂ωL,C).

The representation Θ0(ρ) is irreducible since K is compact.

Because Θ0(ρ) is irreducible, by [LS13] we have M(ρ) ≤ 1 and M(ρ) = 1 if and only if

HomH′(Θ0(ρ) ⊗̂π′∨ ⊗̂ωL,C) ̸= 0.

We now study the multiplicity of ρ in θ(π′) using the explicit intertwining map. Put π = θ(π′).

We need the theory of doubling zeta integrals which we recalled in Subsection 3.1. Consider the

integral ∫
U(W ′)

⟨π′(h′)φ′
1, φ

′
2⟩⟨ωV (h

′, g)ϕ1, ϕ2⟩dh′,

as a function of g ∈ U(V ). Here φ1, φ2 ∈ π′, and ϕ1, ϕ2 ∈ S(V r). By Lemma 3.1, it equals

⟨π(g)p(φ′
1 ⊗ ϕ), p(φ′

2 ⊗ ϕ2)⟩.

where p : π′∨ ⊗̂ωV → π is the canonical H ′-invariant map.

We come back to the study of the the multiplicity of ρ in π. Put

m(ρ) = dimHomK(π|K , ρ).
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As π is irreducible, we have m(ρ) ≤ 1 by [SZ12]. Since K is compact, we know that m(ρ) = 1 if

and only if ∫
K
⟨π(k)f, f⟩⟨ρ(k)v, v⟩dk

is not identically zero, where f ∈ π and v ∈ ρ. From the discussion above on the doubling zeta

integrals, we conclude that m(ρ) = 1 if and only if we can find φ ∈ π′ and ϕ ∈ SV such that∫
K

∫
H′

⟨π′(h′)φ′, φ′⟩⟨ωV (h′, k)ϕ, ϕ⟩⟨ρ(k)v, v⟩dh′dk ̸= 0.

Since SV = SV0 ⊗̂ SL, we can take ϕ ∈ SV to be of the form ϕ0 ⊗ ϕL, where ϕ0 ∈ SV0 and ϕL ∈ SL.
Since K is compact and π′ is a discrete series representation, we know that the double integral

is absolutely convergent, and hence we can change the order of integration, and conclude that∫
H′

⟨π′(h′)φ′, φ′∨⟩
(∫

K
⟨ωW (h′, k)ϕW , ϕW ⟩⟨ρ(k)v, v⟩dk

)
⟨ωL(h′)ϕL, ϕL⟩dh′ ̸= 0.

As in the case of π, the inner integral, as a function of h′ ∈ H ′, is a matrix coefficient of Θ0(ρ). In

conclusion, we have that m(ρ) = 1 if and only if Θ0(ρ) is nonzero (and irreducible because K is

compact), and we can f ′ ∈ Θ0(ρ) such that

(A.1)

∫
H′

⟨π′(h′)φ′, φ′⟩⟨θ(ρ)(h′)f ′, f ′⟩⟨ωL(h′)ϕL, ϕL⟩dh′ ̸= 0.

Let us note that Θ0(ρ) is a discrete series representation of H ′, and is in particular tempered.

That Θ0(ρ) is a discrete series representation is proved in the same way as [GI14, Proposition 16.1]

(only the nonarchimedean case is treated there, but the proof in the archimedean case goes exactly

the same). So by [Xue24, Theorem 3.2], we know that the integral (A.1) is not identically zero if

and only if HomH′(Θ0(ρ) ⊗̂π′∨ ⊗̂ωL,C) ̸= 0. So finally we conclude that both M(ρ) and m(ρ) are

either 0 or 1, and M(ρ) = 1 if and only if m(ρ) = 1. This implies that Θ(π′) = θ(π′) and proves

the lemma. □

Appendix B. Kottwitz’s conjecture

The goal of this appendix is to provide an explicit form of Kottwitz’s conjecture for unitary

Shimura varieties, in particular the Shimura varieties we encounter in this manuscript. The notation

is independent from the rest of the manuscript.

B.1. Shimura varieties. Let F be a degree d totally real field and E a CM extension. For

simplicity we will assume that d > 1. Let V be a hermitian space of dimension n over E, and the

signature of V ⊗ C is

(n− 1, 1)× (n, 0)d−1.

The unique archimedean place over which V is not anisotropic is denoted by ι. We choose an

orthonormal basis of V such that at the archimedean places the hermitian form of V is represented
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by the matrices (
1n−1

−1

)
, 1n, . . . , 1n.

Let G = U(V) be the corresponding unitary group, which is an algebraic group over F . Let T

be a diagonal torus in G. Let

h : ResC/RC× → G(R), z 7→

((
z/z1n−1

z/z1

)
, 1n, . . . , 1n

)
be the usual homomorphism defining unitary Shimura varieties. Associated to this is cocharacter

µh : C× → T (C), defined over the reflex field E, given by

z 7→

(
1n−1

z

)
.

Let D be the space of G(R) conjugacy classes of the homomorphisms ResC/RC× → G(R) containing
h, and K ⊂ G(Af) an open compact subgroup. Define

X = G(Q)\(D ×G(Af)/K)

to be the Shimura variety attached to G in the usual way. It has a canonical model over E, where

E is viewed as a subfield of C via the embedding ι.

Let π = πf ⊗ π∞ be an irreducible cuspidal automorphic representation of G(A), cohomological

with respect to the trivial representation, and πKf ̸= 0. Choose a large number field L over which

πKf as a module over the Hecke algebra HG,L is defined. Here HG,L stands for the convolution

algebra of bi-K-invariant functions on G(Af) valued in L. Let λ be a finite place of L. We consider

the cohomology

H∗(XE , Lλ) =
∑
i

(−1)iHi(XE , Lλ)

on which both Hecke algebra HG,L and the Galois group ΓE act. The conjecture of Kottwitz

describes the πf -isotypic component it. Kottwitz’s original statement of the conjecture is quite

involved. This is the goal of appendix is to make it explicit for the particular unitary Shimura

variety at hand.

B.2. Arthur’s conjecture. The description given in Kottwitz conjecture relies on Arthur’s (con-

jectural) endoscopic classification of automorphic representations of G(A). Significant progress has
been made towards Arthur’s conjecture for G, cf. [CZ, Mok15, KMSW], and it is reasonable to

expect this conjecture will be fully established in the near future. We review Arthur’s conjecture

in this subsection. For more details we refer the readers to [GGP20].

By an (elliptic) A-parameter ψ of G we mean a formal sum of form⊕
1≤i≤r

Πi ⊗ Symki−1C2,
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where Πi is an irreducible automorphic representation of GLni(AE), conjugate self-dual of signature
(−1)ki+n, and the (formal) direct summands are distinct. Define an elementary abelian group

Aψ = (Z/2Z)r, which comes with a natural basis a1, . . . , ar, and each ai correspond to the (formal)

direct summand Πi ⊗ Symki−1C2.

Let v be a place of F . Each Πi,v is an irreducible representation of GLni(Ev), and by the

local Langlands correspondence gives rise to an ni-dimensional representation ψi,v of WEv , again

conjugate self-dual of a suitable sign. Let

ψv =
⊕
1≤i≤r

ψi,v ⊗ Symki−1C2

be the representation of WEv × SL2(C). This is the local A-parameter at the place v. There

is a elementary abelian 2-group Aψv , which is a counterpart of the global component group Aψ.

Attached to this local A-parameter is a finite set of irreducible representations of G(Fv), which we

call a local A-packet and denote by Φψv , and a map

Φψv → Âψv = Hom(Aψv ,Z/2Z), πv 7→ ηπv .

While the set Φψv is canonical, the map ηv is not and it depends on the normalization of transfer

factors or alternatively some choice of the Whittaker data. For our purpose we do not need to

make this explicit.

There is a canonical homomorphism Aψ → Aψv , and hence a diagonal homomorphism

Aψ →
∏
v

Aψv .

Let π = ⊗vπv be an irreducible admissible representation of G(A), and πv ∈ Φψv . Then Arthur’s

conjecture, or more precisely Arthur’s multiplicity formula, claims that π is automorphic if and

only if the product character ∏
v

ηπv

is trivial when restricted to Aψ.

B.3. Adams–Johnson packets. At the archimedean place ι, the packet Φψι is constructed explic-

itly by Adam and Johnson using cohomological inductions, cf. [AJ87]. We review this construction

in this subsection.

Because of the assumption of being cohomological (with respect to the trivial representation),

the parameter ψι must be of the form⊕
1≤i≤r

⊕
1≤j≤ni

ξmij ⊗ Symki−1C2,

where mij ∈ Z and ξmij is the character of C× given by z 7→ (z/
√
zz)mij . The integers mij ’s are

distinct, and mij has the same parity with ki. We note that ξmi1 ⊕· · ·⊕ξmi,ni
is the local Langlands

parameter of Πι.
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The parameter ψι, or rather the sequence of integers

(B.1) (m11, . . . ,m11︸ ︷︷ ︸
k1

,m12, . . . ,m12︸ ︷︷ ︸
k1

, . . . ,m21, . . . ,m21︸ ︷︷ ︸
k2

, . . . ,mr,nr , . . . ,mr,nr︸ ︷︷ ︸
kr

)

defines a parabolic subgroup Q of GLn(C) with the Levi component L isomorphic to GLk1(C)n1 ×
· · · ×GLkr(C)nr . Note that Q is not necessarily defined over R while L is, and indeed L0 = Gι ∩L
is a real form.

Recall that Gι(C) is isomorphic to GLn(C) and Tι(C) is the diagonal torus. Let W (G,T ) ≃ Sn,

W (L, T ) ≃ (Sk1)
n1 ×· · ·×(Skr)

nr be the absolute Weyl groups, andWR(G,T ) ≃ Sn−1 the relative

Weyl group. The packet Φψι is in one-to-one correspondence with the double coset

W (L, T )\W (G,T )/WR(G,T ).

Let S be a set of representatives, and q be the Lie algebra of Q, which is a θ-stable parabolic of G.

Then the packet Φψι is indeed given by the cohomological inductions

Φψι = {Aw−1qw | w ∈ S}.

To each representation πι in Φψι , Kottwitz associated a character λπι of Aψι which we now

explain. The group Ĝ is isomorphic to GLn(C), and let T̂ be the diagonal torus. The parameter

ψι, or rather the sequence (B.1) defines a parabolic subgroup P̂ of Ĝ with the Levi component M̂ .

The local component group Aψι is defined to be the subgroup of order two elements in the center

of M̂ and is isomorphic to (Z/2Z)n1+···+nr . Then Aψι is viewed as a subgroup of T̂ . We identify

W (Ĝ, T̂ ) as W (G,T ) and view elements in S as elements in W (Ĝ, T̂ ).

Recall that from the definition of the Shimura variety, we have the cocharacter µh of T , or

equivalently a character of T̂ . This character is simply given by
t1

. . .

tn

 7→ tn.

Let πι = Aw−1qw be a representation in Φψι , then the character λπι is given by

s 7→ λπι(s) = µh(w
−1sw), s ∈ Aψι .

B.4. Kottwitz’s conjecture. Recall that we have the global component group Aψ ≃ (Z/2Z)r,
and an embedding Aψ → Aψι given by

(x1, x2, · · · , xr) 7→ (x1, . . . , x1︸ ︷︷ ︸
n1

, x2, . . . , x2︸ ︷︷ ︸
n2

, . . . , xr, . . . , xr︸ ︷︷ ︸
nr

).

Let χi be the character of the group Aψ given by (x1, x2, · · · , xr) → xi. Let ν be the restriction

of λπι to Aψ. Then there is a unique i0 ∈ {1, · · · , r} such that ν = χi0 (this makes use of the fact

that µh has that particularly simple form).
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The irreducible cuspidal automorphic representations Πi0 give rise to an ni0-dimensional irre-

ducible representations Vi0 of ΓE . After enlarging L suitably, we may assume that Vi0 comes from

a representation defined over L. After tensoring with Lλ we obtain a representation defined over

Lλ, which we still denote by Vi0 . Write Vi0(a) = Vi0 ⊗Lλ(a) where Lλ(a) stands for the Tate twist.
Kottwitz conjecture in this case states that

H∗(X,Lλ)[πf ] = ±πf ⊠

 ⊕
−(ki0−1)≤a≤ki0−1

a≡(ki0−1)mod2

Vi0(a− (n− 1))

 ,

as HG,L × ΓE modules.

Write the ΓE module in the above expression as V (ν). Fix an embedding Lλ → C. The space

V (ν)⊗Lλ
C, as a vector space, is isomorphic to⊕

π′
∞

H∗(g∞,K∞, π
′
∞)

where π′∞ ranges over all elements in the local Arthur packet given by ψ∞ such that πf ⊗ π′∞ is

automorphic. One implication is that when π′∞ ranges over the local Arthur packet, the degrees of

all nonzero cohomologies have the same parity.

As another consequence, different direct summands in V (ν) have different weights (at least as-

suming Ramanujan conjecture), so they contribute to different cohomological degrees. In particular,

the πf -isotypic part in each cohomology with a fixed degree is irreducible, and hence semisimple

and completely determined by the Frobenius trace.
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