Math 362 - Computer Lab #6 - Spring 2003
Introduction
to Probability Theory
Computer Lab 6: Joint distribution functions
Consider the experiment of rolling two balanced dice, and define two random variables:
- X is the sum of the two numbers,
- Y is the difference of the two numbers.
| ... |
X |
| 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 |
10 | 11 | 12 | Total |
| Y |
-5 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| -4 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| -3 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| -2 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| -1 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 0 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 1 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 2 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 3 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 4 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| 5 | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
| Total | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... | ... |
... |
- Joint probability function
- Use the computer to create a large random sample for the experiment of rolling the two dice
(in MINITAB, select Calc -> Random Data -> Integer...
and create at least 10000 rows of numbers in columns C1 and C2 to simulate at least
10000 outcomes).
For each outcome, calculate the values of the random variables X and Y.
- Use Stat -> Tables -> Cross Tabulation... (only display Total percents)
to obtain estimates of the probabilities Pr(X = x, Y = y) for
x = 2, 3, ..., 12 and y = -5, -4, ..., 5.
- Use this information to fill out the above table.
- We define the joint probability function of X and Y by
- f (x,y) = Pr(X = x, Y = y).
- Marginal distributions
- Fill out the column and row labeled "Total" in the above table.
- We define the marginal probability mass function of X and Y as
- f1(x) = Pr(X = x),
and f2(y) = Pr(Y = y).
Use the table above to estimate the following values
- f1(6) = Pr(X = 6) =
- f2(3) = Pr(Y = 3) =
- Which part of the table has information on f1?
- Which part of the table has information on f2?
- Independence
- Are the events (X = 6) and (Y = 3) independent? Why or why not?
- More generally, are the random variables X and Y independent? Why or why not?
Reading Assignment: Sections 3.4 & 3.5.
Back to Math 362