Ning Hao @ the University of Arizona

My research is partially supported by National Science Foundation and Simons Foundation.
My google scholar page.

Manuscripts

  • Park, J., Zhao, Y., and Hao, N. (2024)
    A Note on the Identifiability of Degree-Corrected Stochastic Block Model.
    [arXiv]

  • Li, X., Zhao, Y., Pan, Q., and Hao, N. (2024)
    Community Detection with Heterogeneous Block Covariance Model.
    [arXiv]; R package hbcm

  • Wang, Z., Tu, M., Liu, Z., Wang, K.K., Fang, Y., Hao, N., Zhang, H.H., Que, J., Sun, X., Yu, A., and Ding, H. (2024)
    An Iterative Approach to Polish the Nanopore Sequencing Basecalling for Therapeutic RNA Quality Control.
    [bioRxiv]

Journal Papers

  • Ouyang, W., Wu, R., Hao, N., and Zhang, H.H. (2025)
    Dynamic Supervised Principal Component Analysis for Classification.
    Journal of Computational and Graphical Statistics, to appear. [arXiv]; R package DSPCA

  • Wang, Z., Liu, Z., Fang, Y., Zhang, H.H., Sun, X., Hao, N., Que, J., and Ding, H. (2025)
    Training Data Diversity Enhances the Basecalling of Novel RNA Modification-Induced Nanopore Sequencing Readouts.
    Nature Communications, 16, 679. [PDF] [bioRxiv]; Code

  • Wang, Z., Fang, Y., Liu, Z., Hao, N., Zhang, H.H., Sun, X., Que, J., and Ding, H. (2024)
    Adapting Nanopore Sequencing Basecalling Models for Modification Detection via Incremental Learning and Anomaly Detection.
    Nature Communications, 15, 7148. [PDF] [bioRxiv]; Code

  • Zhao, Y., Hao, N., and Zhu, J. (2024)
    Variational Estimators of the Degree-corrected Latent Block Model for Bipartite Networks.
    Journal of Machine Learning Research, 25, 150, 1-42. [PDF] [arXiv]

  • Lu, Z., Hao, N. and Zhang, H.H. (2024)
    Simultaneous Change-point Detection and Curve Estimation.
    Statistics and Its Interface, 17, 493-500. [PDF]; R package SCHACE

  • Hao, N., Niu, Y.S. and Xiao, H. (2023)
    Equivariant Variance Estimation for Multiple Change-point Model.
    Electronic Journal of Statistics, 17, 3811-3853. [PDF] [arXiv]

  • Wu, R. and Hao, N. (2022)
    Quadratic Discriminant Analysis by Projection.
    Journal of Multivariate Analysis, 190, 104987. [PDF] [arXiv]; R package QDAP

  • Hao, N., Niu, Y.S., Xiao, F. and Zhang, H. (2021)
    A Super Scalable Algorithm for Short Segment Detection.
    Statistics in Biosciences, 13, 18-33. [PDF] [arXiv]; R package SSSS

  • Shin, S.J., Wu, Y. and Hao, N. (2020)
    A Backward Procedure for Change-point Detection with Application to Copy Number Variation Detection.
    The Canadian Journal of Statistics, 48, 366-385. [PDF] [arXiv]; R package bwd

  • Xiao, F., Luo, X., Hao, N., Niu, Y.S., Xiao, X., Cai, G., Amos, C.I., and Zhang, H. (2019)
    An Accurate and Powerful Method for Copy Number Variation Detection.
    Bioinformatics, 35, 2891-2898. [PDF]; R package modSaRa2

  • Hao, N., Feng, Y. and Zhang, H.H. (2018)
    Model Selection for High Dimensional Quadratic Regressions via Regularization.
    Journal of the American Statistical Association, 113, 615-625. [PDF] [arXiv]; R package RAMP

  • Niu, Y.S., Hao, N. and Zhang, H.H. (2018)
    Interaction Screening by Partial Correlation.
    Statistics and Its Interface, 11, 317-325. [PDF]

  • Niu, Y.S., Hao, N. and Dong, B. (2018)
    A New Reduced-Rank Linear Discriminant Analysis Method and Its Applications.
    Statistica Sinica, 28, 189-202. [PDF] [arXiv]; R package SPCALDA

  • Hao, N. and Zhang, H.H. (2017)
    A Note on High Dimensional Linear Regression with Interactions.
    The American Statistician, 71, 291-297. [PDF] [arXiv]

  • Hao, N. and Zhang, H.H. (2017)
    Oracle P-values and Variable Screening.
    Electronic Journal of Statistics, 11, 3251-3271. [PDF]; R codes

  • Xiao, F., Niu, Y.S., Hao, N., Xu, Y., Jin, Z. and Zhang, H. (2017)
    modSaRa: a computationally efficient R package for CNV identification
    Bioinformatics, btx212. [PDF]; R package modSaRa

  • Niu, Y.S., Hao, N. and Zhang, H. (2016).
    Multiple Change-Point Detection, a Selective Overview.
    Statistical Science, 31, 611-623. [PDF] [arXiv]

  • Hao, N., Dong, B. and Fan, J. (2015)
    Sparsifying the Fisher Linear Discriminant by Rotation.
    Journal of the Royal Statistical Society: Series B, 77, 827-851. [PDF] [arXiv]; Matlab codes

  • Hao, N. and Zhang, H.H. (2014).
    Interaction Screening for Ultra-High Dimensional Data.
    Journal of the American Statistical Association, 109, 1285-1301. [PDF]; Matlab codes

  • Hao, N., Niu, Y.S. and Zhang, H. (2013).
    Multiple Change-Point Detection via a Screening and Ranking Algorithm.
    Statistica Sinica, 23, 1553-1572. [PDF]; R package SaRa

  • Fan, J., Guo, S. and Hao, N. (2012).
    Variance Estimation Using Refitted Cross-Validation in Ultrahigh Dimensional Regression.
    Journal of the Royal Statistical Society: Series B, 74, 37-65. [PDF]

Conference Papers

  • Dong, B. and Hao, N. (2015)
    Semi-supervised High Dimensional Clustering by Tight Wavelet Frames.
    SPIE Optical Engineering+ Applications. [PDF]; Matlab codes

  • Niu, Y.S., Hao, N. and An, L. (2011).
    Detection of Rare Functional Variants Using Group ISIS.
    BMC Proceedings, 5(Suppl 9):S108. [PDF]

Miscellaneous

  • Hao, N. and Li, L. (2006)
    Higher cohomology of the pluricanonical bundle is not deformation invariant
    [arXiv]

  • Ph.D. dissertation: D-bar Spark Theory and Deligne Cohomology
    Key words: Cheeger-Simons differential characters, Chern classes, Harvery-Lawson spark characters, hypercohomology, Massey product, Nadel’s conjecture, secondary geometric invariants.
    The main results of my dissertation were uploaded in arXiv:

  • Hao, N. (2008) D-bar spark theory and Deligne cohomology
    [arXiv]

  • Hao, N. (2008) On the ring structure of spark characters
    [arXiv]