
|
|
Resonance in forced nonlinear oscillators
When nonlinear oscillators are periodically driven,
the possibility of resonance arises.
his figure demonstrates
the phenomenon of resonance. The two oscillators
are identical and we represent them as pendula Like all real pendula,
they are subject to friction, which tends to damp out oscillations.
Further, they are being driven by a periodically-varying force. The
only difference between them was the position in which they started.
One oscillates with only a small amplitude, the other with a much larger
amplitude but precisely the same period. We say that the second oscillator
resonates with the driving force, to produce a large amplitude oscillation.
A consequence of including seasonality in the
predator-prey models we have discussed is to create resonant solutions.
These large-amplitude, long-period solutions resemble the cycles of boreal
mammal populations.
M & B Home | Previous
| Top | Next
|