next up previous
Next: About this document ... Up: Research Statement Previous: Elliptical Instability

Bibliography

Bay86
B. J. Bayly.
Three-dimensional instability of elliptical flow.
Phys. Rev. Lett., 57(17):2160-2163, 1986.

CLO97
David Cox, John Little, and Donal O'Shea.
Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.
An introduction to computational algebraic geometry and commutative algebra.

ETB+88
C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, and G. Iooss.
Addendum: ``A simple global characterization for normal forms of singular vector fields''.
Phys. D, 32(3):488, 1988.

GP92
E. B. Gledzer and V. M. Ponomarev.
Instability of bounded flows with elliptical streamlines.
J. Fluid Mech., 240:1-30, 1992.

Hil93
David Hilbert.
Theory of algebraic invariants.
Cambridge University Press, Cambridge, 1993.
Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels.

IMD90
Gérard Iooss, Alexander Mielke, and Yves Demay.
Mathematical justification of steady Ginzburg-Landau equation starting from Navier-Stokes.
In New trends in nonlinear dynamics and pattern-forming phenomena (Cargèse, 1988), volume 237 of NATO Adv. Sci. Inst. Ser. B Phys., pages 275-286. Plenum, New York, 1990.

Ioo95
Gérard Iooss.
A codimension 2 bifurcation for reversible vector fields.
In Normal forms and homoclinic chaos (Waterloo, ON, 1992), volume 4 of Fields Inst. Commun., pages 201-217. Amer. Math. Soc., Providence, RI, 1995.

Ker02
Richard R. Kerswell.
Elliptical instability.
In Annual review of fluid mechanics, Vol. 34, pages 83-113. Annual Reviews, Palo Alto, CA, 2002.

Leb89
N. R. Lebovitz.
The stability equations for rotating, inviscid fluids: Galerkin methods and orthogonal bases.
Geophys. Astrophys. Fluid Dynam., 46(4):221-243, 1989.

LS99
Norman R. Lebovitz and Kenneth I. Saldanha.
On the weakly nonlinear development of the elliptic instability.
Phys. Fluids, 11(11):3374-3379, 1999.

Sev92
M. B. Sevryuk.
Reversible linear systems and their versal deformations.
J. Soviet Math., 60(5):1663-1680, 1992.

Stu93
Bernd Sturmfels.
Algorithms in invariant theory.
Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna, 1993.



May