Next: About this document ...
Up: Research Statement
Previous: Elliptical Instability
- Bay86
-
B. J. Bayly.
Three-dimensional instability of elliptical flow.
Phys. Rev. Lett., 57(17):2160-2163, 1986.
- CLO97
-
David Cox, John Little, and Donal O'Shea.
Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, second
edition, 1997.
An introduction to computational algebraic geometry and commutative
algebra.
- ETB+88
-
C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, and G. Iooss.
Addendum: ``A simple global characterization for normal forms of
singular vector fields''.
Phys. D, 32(3):488, 1988.
- GP92
-
E. B. Gledzer and V. M. Ponomarev.
Instability of bounded flows with elliptical streamlines.
J. Fluid Mech., 240:1-30, 1992.
- Hil93
-
David Hilbert.
Theory of algebraic invariants.
Cambridge University Press, Cambridge, 1993.
Translated from the German and with a preface by Reinhard C.
Laubenbacher, Edited and with an introduction by Bernd Sturmfels.
- IMD90
-
Gérard Iooss, Alexander Mielke, and Yves Demay.
Mathematical justification of steady Ginzburg-Landau equation
starting from Navier-Stokes.
In New trends in nonlinear dynamics and pattern-forming
phenomena (Cargèse, 1988), volume 237 of NATO Adv. Sci. Inst. Ser. B
Phys., pages 275-286. Plenum, New York, 1990.
- Ioo95
-
Gérard Iooss.
A codimension 2 bifurcation for reversible vector fields.
In Normal forms and homoclinic chaos (Waterloo, ON, 1992),
volume 4 of Fields Inst. Commun., pages 201-217. Amer. Math. Soc.,
Providence, RI, 1995.
- Ker02
-
Richard R. Kerswell.
Elliptical instability.
In Annual review of fluid mechanics, Vol. 34, pages 83-113.
Annual Reviews, Palo Alto, CA, 2002.
- Leb89
-
N. R. Lebovitz.
The stability equations for rotating, inviscid fluids: Galerkin
methods and orthogonal bases.
Geophys. Astrophys. Fluid Dynam., 46(4):221-243, 1989.
- LS99
-
Norman R. Lebovitz and Kenneth I. Saldanha.
On the weakly nonlinear development of the elliptic instability.
Phys. Fluids, 11(11):3374-3379, 1999.
- Sev92
-
M. B. Sevryuk.
Reversible linear systems and their versal deformations.
J. Soviet Math., 60(5):1663-1680, 1992.
- Stu93
-
Bernd Sturmfels.
Algorithms in invariant theory.
Texts and Monographs in Symbolic Computation. Springer-Verlag,
Vienna, 1993.
May