The University of Arizona

Daniel Bartlett Memorial Lecture

Daniel_BartlettThe annual Bartlett Memorial Lecture gives the public a window into the nature of mathematics by illustrating the work of renowned mathematicians to general audiences. The lecture, made possible by contributions to the Bartlett Memorial Endowment, was established to memorialize Daniel Bartlett, a remarkable rising mathematician who passed away suddenly in 2006. At the time of his death, Daniel was beginning work in algebraic number theory, the area he envisioned would ground his dissertation work at UA. Daniel’s passion for, and dedication to mathematics, led his family to also establish the Daniel Bartlett Memorial Scholarship, supporting outstanding graduate research in mathematics every summer. The inaugural Bartlett Memorial Lecture was delivered in 2008 by Barry Mazur, Daniel’s undergraduate advisor at Harvard University.  


Upcoming Lecture:

How to use math to get rich in the lottery*
Jordan Ellenberg, University of Wisconsin

*will not actually help you get rich in the lottery

2017, April 24, 6:30pm        Gallagher Theater, UA Campus

Bartlett_Lottery_2017_Ellenberg How_not_to_be_wrong_2017_lecture

For seven years, a group of students from the MIT exploited a loophole in the Massachusetts State Lottery’s Cash WinFall game to win drawing after drawing, eventually pocketing more than $3 million. How did they do it? How did the lottery finally catch up with them? And what does this all have to do with probability, geometry, and combinatorics?

This lecture will include an interactive segment, and will be friendly to K-12 teachers, middle and high-school students.

— In the news: How not to be wrong: the power of mathematical thinking (Washington Post)




Past Bartlett Lectures:

Democracy in Numbers: A Tale of Two Elections
Momar Dieng, Senegal Ministry of Education & Harvard Graduate School of Education

2016, April 18, 6:30pm    •    Gallagher Theater, UA Campus

Bartlett_Democracy_2016_Dieng Bartlett_Democracy_2016_POSTER

In 2015 alone, more than half a billion votes were cast in one hundred national elections around the word. A large number of those elections were hotly contested, leading to mass violence and significant numbers of fatalities amidst claims of ballot rigging. The growing field of 'election forensics' seeks to develop quantitative tools that can be used to investigate the integrity of the electoral process, and particularly the plausibility of election results. These techniques can be effective for detecting the most obvious types of voting irregularities and fraudulent manipulations, particularly when statistical analyses are supplemented by other types of evidence, including reports from observer missions, election watch NGOs, and journalists. On the academic side, efforts are underway to improve the reliability of these techniques and bring sophisticated analytic methods to bear on the complex interplay between human and technological factors that can influence an election. This talk is an introduction to the mathematics and statistics of election forensics. As a practical application it will focus on the analysis of Senegal's 2000 and 2007 presidential races, and its use in securing the 2012 election. However, other countries and elections will be discussed as well.

— Watch the lecture (Vimeo)

Patterns and Disorder: How Random Can Random Be?
Bryna Kra, Northwestern University

2015, March 30, 6:30pm    •    Harvill Building - Room 150, UA Campus

Bartlett_Patterns_2015_Kra Bartlett_Patterns_2015_POSTER

A tiled floor usually has regular, ordered patterns in it, even if the tiling may be very complicated. We will explore what it means for a mathematical object to be ordered or disordered. For example, do all geometric configurations have to contain patterns? Do large sets of numbers have to contain any patterns? We explore different notions of patterned and random sets, starting with simple, well-known patterns and ending with problems that mathematicians still don’t know how to solve.

 Watch the lecture (Vimeo)

The Infinite Far Beyond
Hugh Woodin, Harvard University, UC Berkeley

2013, October 28, 6:30pm    •    Modern Languages Building - Room 350, UA Campus

Bartlett_Infinity_2013_Woodin Bartlett_Infinity_2013_POSTER

The modern mathematical study of Infinity began with Cantor’s discovery in the late 1800s that there are different sizes of Infinity and this immediately led to Cantor’s formulation of the Continuum Hypothesis. This is the hypothesis that the cardinalities of the sets defined by the two most basic conceptions of Mathematics, that of the counting numbers and that of the real numbers, represent consecutive sizes of infinity... [Read full brochure]

— Watch the lecture (AZ Public Media)

Chaos Games and Fractal Images
Robert Devaney, Boston University

2012, October 8, 6:30pm    •    Gallagher Theater, UA Campus

Bartlett_Chaos_2012_Devaney Bartlett_Chaos_2012_POSTER

In this lecture we will describe some of the beautiful images that arise from the “Chaos Game.” We will show how the simple steps of this game produce, when iterated millions of times, the intricate images known as fractals. We will describe some of the applications of this technique used in data compression as well as in Hollywood.We will also challenge the audience to “Beat the Professor” at the chaos game and maybe win his computer.

— Watch the lecture (Vimeo)

The Secrets of Mental Math
Arthur Benjamin, Harvey Mudd College

2011, October 17, 6:30pm    •    Gallagher Theater, UA Campus

Bartlett_Magic_2011_Benjamin Bartlett_Magic_2011_POSTERDr. Arthur Benjamin is a Professor of Mathematics at Harvey Mudd College in Claremont, California. He is also a professional magician, and in his entertaining and fast-paced performance, Dr. Benjamin will demonstrate how to mentally add and multiply numbers faster than a calculator, how to memorize 100 digits of pi, how to figure out the day of the week of any date in history, and other amazing feats of mind. For the last 30 years, he has presented his mixture of math and... [Read full brochure]

— In the news: 'Mathemagician' to Speak Monday at UA” (

— Watch the lecture (Vimeo)

The Fourth Dimension and Salvador Dali
Thomas Banchoff, Brown University

2010, March 22, 6:30pm    •    Gallagher Theater, UA Campus

Bartlett_Dali_2010_Banchoff Bartlett_Dali_2010_POSTER

Geometer Thomas Banchoff has been teaching at Brown University since 1967. A graduate of the University of Notre Dame, he received his Ph.D. at the University of California, Berkeley in 1964, and did post-doctoral teaching and research at Harvard University and the University of Amsterdam. At Brown, he and computer science professor Charles Strauss were among the first to produce computer animated, prize-winning films on objects in the fourth dimension... [Read full brochure]

— In the news: Salvador Dali: Where surrealism and mathematics intersect (UA Mathematics Newsletter, Winter 2009, page 14)

                                            — Watch the lecture (Vimeo)

The Shape of Space
Jeffrey Weeks, Independent Mathematician

2009, April 1, 6:30pm    •    Education Building - Room 211, UA Campus


When we look out on a clear night, the universe seems infinite. However, that may not be so. The presentation will take us on an intriguing tour of several potential shapes of our universe. As the article linked below states, in his work, Weeks collaborates with cosmologists to explore what astronomical observations imply about the large-scale structure of the universe. Weeks' presentation will involve attendees in computer games, interactive 3-D graphics and satellite data in an effort to illustrate the concept of a "multiconnected universe."

— In the news: The True Shape of Space (

The Unity of Mathematics
Barry Mazur, Harvard University

2008, March 25, 7pm        Gallagher Theater, UA Campus


One may wonder how the Bernoulli numbers, a mere list of rational numbers, can possibly be a “unifying force” in mathematics as the title of my lecture is meant to suggest. Theories, of course, can unify: category theory, for example, or set theory; physicists have their quest for a “unified theory of everything.” We will see how Bernoulli numbers sit in the center of a block diagram of six mathematical fields, and whenever, one of these numbers exhibits some particular behavior, all six of these fields seem to feel the consequences, each in their own way.

— In the news: Lecture Series Honors UA Doctoral Student, Study of Math (

Department of Mathematics, The University of Arizona 617 N. Santa Rita Ave. P.O. Box 210089 Tucson, AZ 85721-0089 USA Voice: (520) 621-6892 Fax: (520) 621-8322 Contact Us © Copyright 2017 Arizona Board of Regents All rights reserved